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Abstract: Sign language recognition (SLR) plays a crucial role in enhancing communication accessibility for individuals who are deaf or
hard of hearing. This paper introduces the convolutional recurrent attention model (CRAM), a novel deep learning framework specifically
designed to improve recognition performance in low-resource sign languages such as Indian Sign Language (ISL) andArabic Sign Language
(ArSL). CRAM features a Critical Frames Identification algorithm that leverages the histogram of oriented gradients descriptor to extract
the most informative key frames from sign videos, thereby reducing computational overhead while retaining essential gesture information.
The model architecture combines convolutional layers to extract rich spatial features, bidirectional long short-term memory networks for
effective temporal sequencemodeling, and an attentionmechanism to dynamically prioritize crucial frames. This integration enables CRAM
to capture complex spatial-temporal dependencies inherent in sign gestures. Extensive experiments conducted on ISL and ArSL datasets
validate the model’s effectiveness, with CRAM achieving state-of-the-art accuracy, precision, and recall. The results highlight CRAM’s
potential in advancing robust and inclusive SLR solutions for underrepresented sign languages, promoting more effective gesture-based
human-computer interaction.
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1. Introduction

Sign language is a form of communication that is used as
the first language for many in the hearing-impaired and hard-of-
hearing communities, who use it to interact, convey their emotions
and thoughts, and understand others in a primarily spoken language
world. Although accessible sign language communication is impor-
tant, many regions, especially those with limited resources, suffer
considerable challenges in effectively deploying sign language
recognition (SLR) technologies. Due to limited data availabil-
ity, lack of technical infrastructure, and other cultural perceptions
that deprioritize technological solutions to the deaf community,
countries such as India and many more in the Arabian region con-
tinue to stay behind in SLR advancements as well [1]. Such a
lack of proper channels to communicate denies the deaf in poor
areas from education, jobs, or social engagement, further isolat-
ing them from society. Furthermore, since sign languages are so
rich and artistically elaborate, they cannot be transposed to tra-
ditional communication forms such as lip-reading or written text,
which is insufficient to express the meaning delivered by gestures,
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feelings, and nuances. This highlights an immediate need for acces-
sible technology-based solutions specifically targeted toward sign
language users in resource-constrained settings [2].

The field of artificial intelligence and machine learning [3] has
seen rapid advancements, bringing the potential for more accurate
and effective SLR systems. Deep learning techniques, in particu-
lar, have demonstrated the ability to improve gesture recognition
by converting signs into comprehensible text or spoken language.
While some studies, such as those referenced in Sasidharan et al. [4],
have explored sign languages with abundant datasets, the choice of
these languages for research often stems from other factors, such as
their linguistic prominence, availability of structured annotations,
or broader applicability, rather than solely the availability of data.
For SLR to become truly inclusive, it is essential to address the
needs of marginalized communities by focusing on the diversity and
complexity of sign languages worldwide.

We introduce theCritical Frames Identification (CFI) algorithm
and convolutional recurrent attention model (CRAM) specifi-
cally designed for handling low-resource languages in the SLR
domain pretty effectively. The CFI algorithm utilizes the his-
togram of oriented gradients (HOG) technique for selecting
seven crucial frames from sign language videos rather effec-
tively. CFI reduces computational demands rather significantly and
boosts efficiency notably without much loss of accuracy by isolat-
ing the most informative frames. CRAM effectively captures spatial

Pdf_Fol io:1

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://doi.org/10.47852/bonviewJCCE52025288
https://orcid.org/0009-0005-2803-2703
https://orcid.org/0000-0003-3876-1254
http://poornass@am.amrita.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

and temporal dynamics of sign language gestures with convolu-
tional neural networks (CNNs) and bidirectional long short-term
memory (BiLSTM) networks alongside an attention mechanism.
Attention mechanism plays a crucial role in enabling the model to
focus selectively on high-value frames within a sequence, improv-
ing interpretability significantly and boosting accuracy. In contrast to
well-documented sign languages such as American Sign Language
(ASL), Arabic Sign Language (ArSL) and Indian Sign Language
(ISL) face significant challenges due to limited publicly available
datasets anda lackof standardized linguistic annotation.For instance,
datasets like Word Level American Sign Language for ASL com-
prise over 21,000 signs,whereas IndianSignLanguage –Continuous
Sign Language Translation andRecognition contains only 700 anno-
tated videos, underscoring the disparity in resource availability [5].
Furthermore, socioeconomic factors in regions where ArSL and ISL
are prevalent contribute to limited technological advancements and
research efforts in these languages. This underrepresentation is also
evident in bibliometric analyses, where studies on ArSL and ISL are
significantlyfewercomparedtoASL[2].Addressingthesechallenges
is critical for developing inclusive SLR systems.

Our research focuses on inclusiveness and accessibility for
hearing-impaired and hard-of-hearing individuals in underserved
areas, with particular attention to low-resource Asian sign languages
such as ISL and ArSL. We conduct rigorous experimentation and
evaluation on these datasets to verify the model’s efficiency and
effectiveness in identifying and interpreting sign gestures. By target-
ing low-resource settings and diverse linguistic communities, this
work aims to foster a more inclusive and accessible world where
advanced technology serves as a bridge between sign language users
and non-signers. Below, we summarize the main contributions of
our proposed CRAM-SLR model as follows:

1) Crucial frame identification using HOG descriptors: We
propose a lightweight Critical Frame Identification (CFI) algo-
rithm based on HOG, which selects seven highly informative
frames from each sign language video. This approach captures
motion dynamics while significantly reducing computational
load, enabling efficient recognition in real-time systems.

2) Hybrid attention-based CNN-BiLSTM architecture: The
CRAM model integrates CNN for extracting spatial features
from selected frames and BiLSTM for modeling tempo-
ral dependencies, enhanced by an attention mechanism that
emphasizes discriminative gesture patterns.

3) Adaptability to low-resource sign languages:CRAM is specif-
ically designed for resource-constrained scenarios and tested on
two low-resource datasets—ISL andArSL. It demonstrates com-
petitive accuracy with significantly fewer frames and simpler
architectures.

4) Comprehensive evaluation with visual and quantitative anal-
ysis: We provide an in-depth performance evaluation includ-
ing ablation studies, visualization of attention maps, critical
frame selections, and comparisonwith recent Transformer-based
and skeleton-based methods, showing CRAM’s superiority in
efficiency and robustness.

The proposed CRAM model offers a novel and efficient solu-
tion for SLRby combining crucial frame selectionwith a hybrid deep
learningapproach.Designed for low-resource sign languagecommu-
nities, it bridges a critical gap by enabling accessible and inclusive
communication technologies for underserved regions worldwide.

2. Related Literature

SLR has seen significant advancement over the years, with
a growing number of methods exploring visual, sensor-based,

and hybrid approaches to bridge communication gaps for the
hearing impaired [6, 7].These techniquesoftendependonavarietyof
modalities includingRGBvideo,depthsensors,andwearabledevices
to process both manual and non-manual components of signs [8, 9].

In vision-based recognition, two primary approaches are
commonly used: static and dynamic gesture recognition. Static
approaches interpret individual frames showing isolated hand
signs, while dynamic recognition captures continuous sign lan-
guage motion, incorporating temporal dependencies and facial
expressions. Sensor-based systems, on the other hand, utilize wear-
able gloves embedded with accelerometers and gyroscopes to
accurately capture motion, orientation, and hand shapes. Depth-
sensor-based recognition leverages devices like Microsoft Kinect or
Intel RealSense to collect 3D spatial information, improving gesture
understanding by adding a third dimension [10].

Traditional machine learning methods such as hidden Markov
models and support vector machines have been effective in earlier
systems. However, with the rise of deep learning, models based on
CNNs and recurrent neural networks (RNNs) have become domi-
nant due to their superior performance in visual and sequential data
processing. These models allow for efficient spatial and temporal
feature extraction, making them suitable for complex gesture inter-
pretation. The effectiveness of each model depends heavily on the
use case, available computational resources, and the requirement for
real-time processing. Recent literature shows significant improve-
ments when integrating non-manual features into recognition
systems. For example, Alyami et al. [11] demonstrated that com-
bining face and hand keypoints led to a 4% accuracy increase over
using hand keypoints alone. Their approach employed three model
architectures—temporal convolution networks, Transformer-based
models, and LSTM networks—and showed that pose-based Trans-
former models outperformed others with 99.74% signer-dependent
accuracy in the KArSL-100 dataset.

In ASL recognition, Mohsin et al. [12] explored transfer learn-
ing strategies using deep architectures like VGG16, ResNet50,
MobileNetV2, and a custom CNN with InceptionV3. Their Incep-
tionV3 model achieved the highest accuracy of 96%, while the
others followed closely. This work highlights that pre-trained mod-
els fine-tuned on domain-specific sign language data can yield
remarkable performance even in the presence of limited labeled
datasets. A substantial contribution to the dataset development
was made by Hasib et al. [13], who introduced the BdSL dataset
comprising 29,490 annotated RGB images representing 49 Bangla
alphabet signs. Smartphone cameras snapped pictures that formed
a robust basis for machine learning models adept at deciphering
Bengali Sign Language nuances fairly well. They contributed sig-
nificantly toward the development of the Malaysian Word Sign
Language dataset, featuring diverse hand signs from individuals
having different skin tones. Trained on this dataset, a sequential
CNN model attained quite impressively 98% accuracy. RGB and
depth modalities were utilized by Poonia et al. [14] rather effec-
tively inside CNN-based architectures for recognizing ISL gestures
somewhat accurately. Dynamic gesture recognition via optical flow
and skeleton-based models enhances classification performance
significantly in Indonesian Sign Language research. Hybrid deep
learning techniques are expanding rapidly into low-resource sign
languages also. Graph convolutional networks (GCNs) were imple-
mented by Khartheesvar in 2024 using Chinese Sign Language data
to represent spatial-temporal relationships effectively. Korean Sign
Language research has utilized attention-based models heavily, pri-
oritizingmeaningful gesture segments during recognition somewhat
effectively lately [15].

Several recent works have advanced the field of signal and
modulation classification using lightweight and attention-driven
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models. Zheng et al. proposed an asymmetric trilinear attention
network with noisy activation functions to improve robustness
in automatic modulation classification under complex channel
conditions [16]. In another effort, the authors developed a real-
time constellation image classification framework leveraging the
MobileViT architecture, which demonstrated efficient processing of
wireless communication signals with low latency and computational
cost [17]. Further extending their contributions, the MobileRaT
framework introduced a lightweight radio transformer optimized for
drone-based communication systems, achieving both high accuracy
and model compactness suitable for edge deployment [18].

Despite these advancements, SLR still faces challenges such
as variability in signing styles, limited annotated datasets, back-
ground interference, and difficulties in capturing dynamic gestures.
Sign variations across individuals, lighting conditions, and com-
plex backgrounds contribute to the complexity of real-time gesture
recognition.

Our proposed CRAM addresses these challenges through a
hybrid approach. For handling variability in sign styles, CRAM
integrates CNNs with RNNs to extract both spatial and temporal
features. The use of diverse datasets enhances the generalization
and robustness of unseen signs. To minimize background noise, pre-
processing techniques such as background subtraction and noise
filtering are employed. Moreover, CRAM uses BiLSTM layers that
allow for better temporal understanding of continuous gestures,
critical for recognizing dynamic movements accurately.

Overall, CRAM effectively addresses heterogeneity, limited
data, and environmental challenges. By combining sensor-based and
vision-based modalities and leveraging deep learning, it demon-
strates enhanced performance across multiple sign languages and
use environments.

3. Problem Statement

The goal is to develop a robust and accurate system for rec-
ognizing sign language gestures to facilitate communication for
individuals with hearing impairments.

Let X represent the input space, consisting of sign language
videos, where each video xi ∈ X is composed of T frames. Each
frame contains features representing spatial and temporal aspects of
the gestures.

Let Y represent the output space of gesture classes, where y j ∈
Y denotes the class label corresponding to a gesture xi. The goal is to
learn a mapping function f ∶ X → Y that predicts the correct class
label y j for an input xi, such that:

f (xi) = y j, for xi ∈ X and y j ∈ Y (1)

Given the challenges in low-resource languages such as ISL and
ArSL:

1) The dataset X is limited in size, leading to insufficient training
samples for traditional deep learning models.

2) Sign gestures exhibit complex spatial-temporal dependencies,
making it difficult to extract meaningful features 𝜙(xi) from the
input.

The problem can be further formalized as finding the optimal
function f ∗ that minimizes a loss function L over the dataset (X, Y):

f ∗ = arg min
f

N∑
i=1

 L( f (xi), yi) (2)

where L measures the error between the predicted class f (xi) and
the ground truth class yi.

To address these challenges, this research incorporates:

1) Critical frames identification (CFI): Selecting a subset
x′

i ⊂ xi of crucial frames that preserve temporal dynamics,
reducing computational cost.

2) Hybrid model design: A CRAM that extracts spatial features𝜙s(x′
i ) using a CNN, models temporal dependencies 𝜙t(x′

i ) using
BiLSTM, and applies attention mechanisms to focus on salient
gesture patterns.

The optimization problem is thus reformulated as:

f ∗ = arg min
f

N∑
i=1

 L( f (𝜙s(𝜙t(x′i))), yi) (3)

where x′
i represents the critical frames selected by the CFI algo-

rithm. The model aims to achieve high accuracy while minimizing
computational complexity, making it suitable for low-resource sign
languages.

4. Proposed Model

We adopt the convolutional recurrent attention (CRA)model as
we strive to design a system for SLR. This novel approach is created
with the aim of capturing both spatial and temporal characteristics,
which are inherent in sign language gestures, thus making it possible
for accurate recognition to be achieved. The CRA model combines
CNNs with recurrent ones to effectively process spatial information
from input images as well as capture sequential frames’ temporal
dependencies using their respective strengths. The holistic nature
of this strategy enables the model to differentiate between slight
variations in hand movements, facial expressions, and body pos-
tures, thus necessary for the correct interpretation of sign language.
Figure 1 is a block diagram that represents the proposed model.
The suggested pipeline for SLR includes frame extraction, prepro-
cessing, and CRA to provide a complete method of SLR based on
temporal-spatial feature representation.

4.1. Frame extraction

The initial part of an SLR system is frame extraction. Because
sign language gestures are characterized by dynamic hand move-
ments and configurations that change over time, it is important to
take into account the temporal context for accurate recognition. To
represent this aspect properly, video frames should be captured at
regular intervals of around 50 milliseconds or so-called “extracted
frames,” which will serve as input sequences during following
preprocess steps (Figure 1).

Temporally preserving details and the context of sign language
gestures is critical—this is where correct frame extraction becomes
invaluable. We take snapshots at fixed rates, thereby maintaining
continuity through subsequent processing stages where communica-
tion using signs involves such things as dynamic hand movements,
facial expressions, or body postures.

4.2. Critical Frames Identification (CFI)

In this stage, each frame f i from the video sequence is pro-
cessed through the CFI algorithm, designed to extract frames that
reflect meaningful transitions in the gesture. Unlike fixed-threshold
methods, our approach integrates gradient-based motion analysis
with adaptive thresholding and local extrema detection to robustly
capture the most informative frames.

Pdf_Fol io:3 03



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 1
Block diagram of proposed model

Each frame f i is first resized to a standard dimension to
normalize the spatial resolution:

f ′
i = resize( f i) (4)

This preprocessing step ensures consistent computation of HOG
descriptors across all frames, reducing sensitivity to resolution dif-
ferences and enabling computational efficiency. Next, the HOG
descriptor is calculated for each resized frame f ′

i as:

Hi = ∑
c∈C

 hist(𝜃c, wc) (5)

where each image is divided into cells c, 𝜃c = arctan(Iy/Ix) is the
gradient orientation in cell c, and wc = √I2x + I2y is the gradient
magnitude. The function hist(·) accumulates the gradient orien-
tations weighted by magnitudes into a fixed-bin histogram. This
representation captures shape and contour information crucial for
distinguishing gesture changes. The algorithm then computes the
motion difference between consecutive frames using the L2 norm
of HOG descriptors:

Δi =∥ Hi − Hi−1 ∥2 (6)

The resulting sequence {Δ1, Δ2, . . . , Δn−1} represents the motion
energy between each pair of frames. An adaptive threshold T is then
calculated using the statistical properties of motion differences:

T = 𝜇D + 𝜆 · 𝜎D (7)

where 𝜇D and 𝜎D are the mean and standard deviation of the differ-
ence sequenceD and 𝜆 is a scaling factor (e.g., 0.5–1.0) that controls
sensitivity. This dynamic threshold adapts to each video’s unique
motion profile. To identify themostmeaningful transitions, the algo-
rithm detects local maxima and minima in the motion difference
sequence. For each index i, a point is selected if it satisfies:

(Δi−1 < Δi > Δi+1) or (Δi−1 > Δi < Δi+1) (8)

Theselocalextremarepresentturningpointsingesturedynamics.
If such a point also satisfies Δi > T, the corresponding frame f i is
added to the set of critical framesC. The first and last frames are also
added toC topreserve the startingandendingposeof the signgesture:

C = { f 0} ∪ C ∪ { f n} (9)

The final output set C thus contains frames that capture
salient gesture transitions, filtered through both struc-
tural motion analysis and adaptive selection criteria. This

significantly reduces redundant frames while retaining the expres-
sive components necessary for accurate recognition, enabling
real-time performance and improved robustness in low-resource
SLR applications.

Algorithm 1 Critical Frame Identification (CFI)

1: Input: Sequence of video frames f 0, f 1, . . . , f n
2: Output: Set of critical frames C
3: Initialize C = { f 0}, D = [ ]
4: for each i from 1 to n do
5: Resize frame f ′

i = resize( f i)
6: Compute gradients: Ix = 𝜕 f ′

i /𝜕x, Iy = 𝜕 f ′
i /𝜕y

7: Compute magnitude: w = √I2x + I2y, orientation: 𝜃 =
arctan(Iy/Ix)
8: Compute HOG descriptor Hi = ∑c∈C

 hist(𝜃c, wc)
9: if i > 1 then
10: Compute difference Δi =∥ Hi − Hi−1 ∥2
11: Append Δi to D
12: end if
13: end for
14: Compute adaptive threshold T = 𝜇D + 𝜆 · 𝜎D ⊳mean + scaled
std-dev
15: for each i from 2 to n − 2 do
16: if Δi−1 < Δi > Δi+1 or Δi−1 > Δi < Δi+1 then
17: if Δi > T then
18: Add f i to C
19: end if
20: end if
21: end for
22: Add final frame f n to C
23: return C

Figures 2 and 3 illustrate the application of the CFI algorithm
for the SL word “Fall.” Figure 2 shows all frames from the ges-
ture, while Figure 3 presents the subset identified as critical frames.
This selection is based on numerical differences computed between
consecutive frames, and a frame is selected as ⊳critical if the com-
puted difference exceeds a predefined threshold. In our approach,
we empirically set the threshold to T = 0.75, which effectively cap-
tures significant pose transitions. Figure 3 is annotated with both
the threshold line and the computed values to clearly indicate where
T > 0.75. This approach selectively captures key transitions, result-
ing in a more efficient and accurate SLR process by focusing on the
frames most representative of each sign. The steps involved in the
CFI algorithm are outlined in Algorithm 1.
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Figure 2
Extracted frames of the SL word ‘Fall’

Figure 3
Critical frames identified for the SL word ‘Fall’

Figure 4
Background removed from the critical frames for SL word ‘Fall’

4.3. Pre-processing

After videos have been broken down into crucial frames, they
undergo preprocessing within the SLR system. This step aims at
making input data more appropriate for efficient feature extraction
by improving its quality and bringing it into a uniform format prior
to being fed into themodel. The typical operations performed during
preprocessing may involve standardization of pixel values, scaling
images to some common size, while dealing with noise/artifacts in
datasets also forms part of them. Standardizing input data enables
patterns learned from different examples by themodel. Among other
additional preprocessing steps in our approach are background sub-
traction and noise reduction, which were introduced to enhance
model robustness when working under challenging environments.
These actions help eliminate irrelevant information, thus allowing
only relevant hand gestures to be considered by the model, hence
increasing overall system accuracy.

Background subtraction works by separating the foreground
(usually the signer’s hands) from the background, thereby

eliminating stationary parts of the video, hence exposing moving
hand details. We used popular methods like frame differencing for
accurate background subtraction as well as more sophisticated ones
like Gaussian mixture models. Another technique employed for
noise reduction in our method is temporal smoothing, which looks
at temporal consistency across neighboring frames either to stabi-
lize erratic motions or discard short-lived ripples; this can be done
by taking temporal averages or applying moving average filters over
a sequence of frames. By using these preprocessing techniques that
make input data more suitable for feature extraction later, the SLR
system’s robustness and accuracy in real-world environments are
improved. Figure 4 depicts images of the background removed from
the criticalframes for the SL word ‘Fall.’

4.4. Convolutional recurrent attention model
(CRAM)

The proposed CRAM-SLR system uses a hybrid literature that
combines CNN and BiLSTM with attention models. This design is
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Figure 5
Proposed model architecture

aimed at exploiting natural spatial as well as temporal features found
in sign language movements. The model’s proposed architecture is
shown in Figure 5.

4.4.1. CNN component
The model’s first section is devoted to employing a CNN to

extract spatial features. This part can extract hierarchical character-
istics from the input photos with ease. The following layers make
up the CNN component of the suggested model.

1) Convolutional layers: The model starts with a CNN for extract-
ing features from input images. The convolutional layer applies a
convolution operation on the input image using a set of learnable
filters (kernels). Given an input image tensor I with shape (64,
64, 3) and a convolutional kernel K, the convolution operation is
defined as:

(I∗K)(x, y) = ∑m

i=1
 ∑n

j=1
 I(x − i, y − j) · K(i, j) (10)

where (x, y) represents the spatial coordinates in the output feature
map, (i, j) represents the spatial coordinates in the kernel, andm and
n represent the dimensions of the kernel. Two convolutional layers
with 32 and 64 filters of size (3, 3), respectively, are applied with
rectified linear unit (ReLU) activation functions.

ReLU(x) = max(0, x) (11)

That is, the first convolutional layer applies 32 filters denoted as W1
of size (3, 3), resulting in feature maps with shape (62, 62, 32) after
applying ReLU activation: H1 = ReLU(X∗W1 + b1), where b1 is
the bias.

The second convolutional layer applies 64 filters of size (3, 3),
resulting in feature maps H2 with shape (29, 29, 64) after applying
ReLU activation.

2) Pooling layers: Max pooling layers with a pool size (2, 2) are
used to downsample the feature maps.

MaxPooling(x, y) = maxi, j∈poolI(x + i, y + j) (12)

Downsampling feature maps using max pooling layers pre-
serves important informationwhile lowering spatial dimensions.The
model’s capacity to concentrate on pertinent features is improved
by pooling. The input feature map is divided into tiny 2×2 blocks,
and the largest value in each block is kept, while the other values are
discarded. This downsampling reduces the size of the feature map

without sacrificing significant information. The output form of the
MaxPooling2D((2, 2)) operation is (31, 31, 32). The feature maps’
spatial dimensions are decreased using downsampling. The 32 fea-
ture maps are now divided into (31,31)grids. The final max pooling
layer with a pool size of (2, 2) downsamples the feature maps to P2
with shape (14, 14, 64).

3) Flattening: The process of flattening in the CNN component
transforms the 2D feature maps into a 1D vector. This step is
crucial as it prepares the spatial features extracted by the con-
volutional and max pooling layers to be fed into the subsequent
BiLSTM layers for sequence modeling. Mathematically, if we
have feature maps of size 14 × 14 × 64, flattening them results
in a 1D vector of length 14× 14× 64 = 12544. Each value from
the 14 × 14 grid is lined up in a single row, resulting in a long
list containing all the values from the feature maps.

Indeed, the flattened representation acts as the input sequence
for the BiLSTM layers. By doing so, it enables the BiLSTM layers to
capture temporal dependencies within the spatial features acquired
by the CNN. This integration of spatial and temporal information is
crucial for effectively recognizing intricate patterns inherent in sign
language gestures.

4.4.2. Attention mechanism
The attention mechanism computes attention scores between

the input sequence and itself, resulting in attention weights denoted
as 𝛼, Let HBiLSTM denote the output sequence from the BiLSTM
layer. The attended encoding can be represented as

E = 𝛼 · HBiLSTM (13)

where · denotes element-wise multiplication. The attention mecha-
nism can be mathematically expressed as

𝛼 = Attention(HBiLSTM) (14)

The Attention layer computes the attention scores between the
input sequence and itself, enhancing the focus on relevant temporal
features.ThePermute layer transposes thedimensionsof theattention
scores to match the sequence length. Another Reshape layer is used
to reshape the attended encoding to match the sequence length of the
input.TheConcatenate layerconcatenates theoriginaloutcomeof the
BiLSTMlayerwith theattendedencodingobtainedfromtheattention
mechanism. Figure 6 illustrates the attention heatmap of a selected
critical frame, highlighting concentrated focus on the hand and facial
regions. This visualization demonstrates that the model effectively
attends to semantically relevant areas corresponding to key gesture
components, thereby supporting the interpretability and functional
reliability of the attention mechanism.
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Figure 6
Attention heatmap of a critical frame

4.4.3. BiLSTM component
To address the temporal aspect of SL gestures, the model

incorporates BiLSTM layers. Unlike traditional LSTMs, BiLSTMs
process sequences in both forward and backward directions, cap-
turing temporal dependencies effectively. The BiLSTM component
has the following operations:

1) Temporal reshaping: The flattened output from the CNN com-
ponent is reshaped to accommodate the temporal dimension.
This reshaping prepares the data for input into the BiLSTM lay-
ers. It rearranges the values from the flattened list into a new
shape, where each row contains 64 values. The output shape after
reshaping is (196, 64), indicating that the data has been orga-
nized into 196 rows, each containing 64 values. This reshaping
fits the data into the BiLSTM layer, designed to understand and
process sequences.

2) Bidirectional LSTM layers: The model can represent dependen-
cies in both past and future contexts because of these layers’
bidirectional processing of sequences. Each LSTM cell stores
and retrieves information over extended sequences, which is cru-
cial for understanding sign language gestures’ temporal nuances.
At each step, the 64 memory cells of the first BiLSTM layer
return sequences. Sequences are not returned by the second BiL-
STM layer despite having 64 memory cells as well. For the
first layer, the output shape is (196, 128). It means at each step,
the model considers both the forward and backward sequences,
resulting in a total of 128 values. For the second layer, the output
shape is (128). This is obtained by concatenating the forward and
backward hidden states, resulting in a condensed representation.

3) Dense layers for classification: The output from the con-
catenated BiLSTM layer is fed into fully connected dense
layers for classification. Dense layers process the combined
spatial-temporal features, further enhancing the model’s abil-
ity to discern intricate patterns. Nonlinear activation functions
introduce complexity, enabling the model to learn intricate rela-
tionships within the data. The Dense layer has 64 nodes and uses
the ReLU activation function. The output shape is (64), indicat-
ing 64 values produced by this Dense layer. These values are
a condensed representation of the information learned from the
earlier layers.

4) Softmax output layer: The final layer employs softmax acti-
vation for multiclass classification, assigning probabilities to

different sign language words. The Dense output layer with Soft-
max transforms the condensed information from previous layers
into probabilities for each class. The class with the highest prob-
ability is considered the model’s prediction for the input SL
gesture.

5. Results and Discussion

The CRA model was developed for better SLR and was eval-
uated comprehensively using both the ISL dataset and the ArSL
dataset. The evaluation of performance primarily focused on accu-
racy, which showed that the model can indeed recognize sign
language gestures correctly most of the time. These findings indi-
cate that the model could help promote communication inclusivity
among people with hearing impairments.

5.1. Experiments

The CRA model underwent evaluation in a Jupyter Notebook
environment utilizing Python 3.11. The evaluation took place on a
personal computer with an AMD Ryzen 5000 series CPU, NVIDIA
graphics, and 24 GB of RAM.

5.2. Dataset

5.2.1. ArSL dataset
ArSL database, called SignsWorldAtlas Database [19], records

various body postures, gestures, and movements represented
through different classes of manual as well as non-manual signs
using digital cameras having high-quality video and image res-
olutions. Three scenarios of medical, roadside, and educational
contexts are covered in the clips, totaling 178 motions. These
include about 76 ArSL words represented by four skilled ArSL
signers demonstrating them as movements. For analysis purposes,
a subset of 25 ArSL words was selected from this database. These
words are ‘Alif,’ ‘Ba,’ ‘Ta,’ ‘One,’ ‘Two,’ ‘Hello,’ ‘Goodbye,’
‘Mother,’ ‘Father,’ ‘Brother,’ ‘Sister,’ ‘Red,’ ‘Blue,’ ‘Monday,’
‘Friday,’ ‘January,’ ‘July,’ ‘Morning,’ ‘Evening,’ ‘Happy,’ ‘Sad,’
‘Thank you,’ ‘Anthem,’ ‘Cross,’ and ‘Mosque.’

5.2.2. ISL dataset
The ISL dataset [20] is a comprehensive and diverse resource

for ISLR research. It consists of 4,287 videos spanning 263 classes
across 15 semantic categories, such as adjectives, animals, clothes,
colors, people, and places. The videos are captured at a resolution
of 1920 × 1080 pixels, with an average duration of 2.57 seconds,
approximately 56 frames per video, and a frame rate of 28 FPS.
The dataset includes recordings from multiple signers to reflect
signer variations and ensure robustness. It supports isolated word-
level gesture recognition and is particularly valuable for training
and evaluating models that utilize deep learning and computer
vision techniques for improved accessibility and communication
for the hearing-impaired community. For simplicity purposes, our
research focused on 25 chosen ISL words. These are ‘Hello,’ ‘Fall,’
‘Good evening,’ ‘Happy,’ ‘Eat,’ ‘Red,’ ‘Dog,’ ‘Apple,’ ‘Mother,’
‘Morning,’ ‘Tree,’ ‘Sun,’ ‘Car,’ ‘Doctor,’ ‘Book,’ ‘Medicine,’
‘Computer,’ ‘Football,’ ‘Guitar,’ ‘Shirt,’ ‘Chair,’ ‘Train,’ ‘Teacher,’
‘Birthday,’ and ’high.’

5.3. Evaluation strategy

We employed evaluation criteria such as accuracy, precision,
recall, F-measure, and confusion matrix.
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The technique that we used is called 5-fold cross-validation,
which is a common procedure in research on SLR and which is quite
robust. Here, the dataset is divided into five parts known as folds
or subsets. The model has undergone training and evaluation five
times each, using different combinations of four folds for training
and one for evaluation in every one of these cases. Such an iterative
process allows themodel to be tested across multiple subsets of data,
where it can be seen how well it generalizes. A confusion matrix
is employed to provide an overview of how accurately the model
performed across all experiments or folds.

All frames were resized to a uniform resolution of 256 × 256
pixels. For HOG descriptor calculation, frames were converted to
grayscale and normalized to reduce redundancy and standardize fea-
ture extraction. Themodel was trained for 50 epochs using theAdam
optimizer with an initial learning rate of 0.001, categorical cross-
entropy loss, and a batch size of 32. A learning rate decay schedule
was applied every 10 epochs to enhance convergence stability.

To mitigate confounding variables and biases, several precau-
tions were taken during experimentation. Both datasets used—ISL
and ArSL—contain diverse signer identities, backgrounds, and

recording conditions, which help improve the generalizability of
the model. Signer-independent splits were ensured where possible
to avoid overfitting to specific individuals. All video frames were
resized to a fixed resolution prior to HOG descriptor extraction to
standardize input features across samples.

Randomized train-test splits were performed using fixed ran-
dom seeds to ensure reproducibility and to eliminate selection
bias. Additionally, class distributions were verified to be balanced
during evaluation, and multiple metrics (accuracy, precision, recall,
and F1-score) were used to ensure fairness across all classes. These
steps collectively ensure that the results reflect the model’s true per-
formance rather than being skewed by data artifacts or procedural
inconsistencies.

5.4. Results

5.4.1. ArSL dataset
Strong performance by the CRA model is observed from

its evaluation results in the ArSL dataset. The experiment was

Figure 7
Confusion matrix of 5th fold of proposed model on ArSL dataset
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conducted for 35 epochs. This model has an accuracy of 92.87%,
illustrating its ability to predict signs correctly across sign classes.
Its high precision of 92.04% explains how well it predicts posi-
tive predictions; its recall of 91.84% indicates that the model is
good at recognizing actual instances of SL gestures, respectively,
and an F-measure score of 91.01% shows this as a balanced perfor-
mance, which means that the model achieves both high precision
and recall. The aforementioned findings suggest that the Hybrid
CNN-BiLSTM model demonstrates robustness in recognizing and
classifying ArSL gestures, achieving a favorable balance between
comprehensiveness and accuracy, as depicted in Figure 7, which
illustrates the confusion matrix of the proposed architecture.

5.4.2. ISL dataset
The evaluation results in the ISL dataset with respect to the

proposed CRA model indicate its commendable performance. The
model achieved an accuracy of 93.46%; therefore, it shows a high
level of correctness when predicting sign language gestures. More-
over, the statistics displayed in Table 1 such as precision at 93.14%,
recall at 92.76%, and F-measure at 92.14% indicate accurate pos-
itive predictions and capture more positive instances. The above
measures collectively emphasize the strength of this approach in
relation to practical sign language translation and recognition tasks,
thus making it an important contribution to the field. Figure 8
shows the confusion matrix of the proposed model on the ISL

Table 1
Performance metrics of the proposed model

Dataset Accuracy Precision Recall F-measure
ISL 93.46 93.14 92.76 92.14
ArSL 92.87 92.04 91.84 91.01

Figure 8
Confusion matrix of 5th fold of the proposed model on ISL dataset
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Figure 9
5-fold cross-validation accuracy of proposed model

dataset. Table 1 shows the performance evaluation for both datasets.
Figure 9 shows the 5-fold cross-validation accuracy of the proposed
model on both datasets.

5.5. Ablation study

The assessment juxtaposed three models—CNN,
CNN+BiLSTM, and CNN+BiLSTM+Attention (CRAM)—using
two sign language datasets: ISL and ArSL. The accuracy kept on
increasing with each model variation in both datasets. For the ISL
dataset, the CNN achieved 89.24% accuracy; this was improved
to 91.47% by CNN+BiLSTM and further increased to 93.46%
by CNN+BiLSTM+Attention (CRAM). Similarly, in the ArSL
dataset, the accuracy grew from 87.59% for CNN to 89.51% for
CNN+BiLSTM and then to 92.87% for CNN+BiLSTM+Attention
(CRAM). These findings attest that incorporating temporal infor-
mation as well as attention mechanisms can greatly increase sign
recognition systems’ precision over different databases. Table 2
depicts the results of an ablation study done on the proposed model
on the two distinct datasets.

Table 2
Results of ablation study

Dataset Model Accuracy
ISL CNN 89.24
ISL CNN+BiLSTM 91.47
ISL CNN+BiLSTM+Attention (CRAM) 93.46
ArSL CNN 87.59
ArSL CNN+BiLSTM 89.51
ArSL CNN+BiLSTM+Attention (CRAM) 92.87

5.6. Computational complexity analysis

5.6.1. Computational complexity of the CFI algorithm
The computational complexity of the CFI algorithm can be

analyzed in terms of its main components:

1) Frame resizing: Each of the N video frames is resized to a
fixed dimension. This operation is linear in the number of pix-
els, assumed constant due to fixed resolution. Therefore, the
complexity is O(N).

2) HOG descriptor computation: For each frame, the HOG is
computed. Assuming a fixed image size and fixed number of
cells and bins, the computation per frame is constant. Hence, the
total complexity across all frames is O(N).

3) Gradient difference computation: The algorithm calculates
motion differences Δi between consecutive frame descriptors
using the Euclidean distance. This is computed N − 1 times with
a fixed-length feature vector, resulting in O(N) complexity.

4) Adaptive thresholding: The mean 𝜇D and standard deviation𝜎D of the difference sequence are computed once over N − 1
values. This step is also O(N).

5) Local maxima/minima detection and frame selection: This
step involves a single pass through the Δ sequence, checking for
extrema and comparing with the threshold T. This operation is
linear in N, that is, O(N).

6) Set construction:The final setC of critical frames is constructed
by adding selected frames, which takes O(K), where K ≤ N.

7) Overall complexity: Since all major steps operate linearly with
respect to the number of frames N, the total computational
complexity of the CFI algorithm is:

O(N) (13)
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Table 3
Comparison with other SOTA models

Model ISL accuracy (%) ArSL accuracy (%)
LiST [14] 92.50 –
CNN-LSTM [20] 89.60 –
HCBSLR [21] 87.67 –
DCDW+LSTM [22] 91.30 –
CNN+LSTM [23] – 88.00
CNN+LSTM [24] – 90.48
CNN+Skeleton Features [25] – 89.62
BiLSTM (two stage) [26] – 92.60
Proposed model (CRAM) 93.46 92.87

This linear-time complexity makes the CFI algorithm highly
suitable for real-time and low-resource SLR systems.

5.7. State-of-the-art model comparison

The SL recognition domain is a partly untouched landscape of
SLR. In the past, most research on SLR has focused on recognizing
simple words and numeral prints. There have been a few studies in
ISL word recognition within the last decade that are mainly concen-
trated on sensor-based methods and dynamic gesturing approaches.
The hybrid convolutional-bidirectional long short-term memory
(HCBSLR) system undergoes a thorough 5-fold cross-validation
process, which produces an astonishing average accuracy of 89.67%
[20–26]. It is important to note that the proposed model has signif-
icant advantages in terms of training time compared to established
models. Therefore, it can be concluded that the proposed system
for ISL and ArSL word recognition outperforms its competitors in
terms of accuracy and efficiency. The comparative analysis of var-
ious existing models against the proposed model within the same
experimental setup is detailed in Table 3, providing a comprehensive
overview of their respective performances.

6. Conclusion and Future Work

In this work, we presented CRAM, a lightweight and compu-
tationally efficient attention-based model for SLR. The proposed
framework introduces a novel CFI algorithm that leverages HOG
descriptors and an adaptive thresholding mechanism to extract the
most informative frames, significantly reducing redundancy while
preserving key spatiotemporal dynamics. CRAM combines spa-
tial feature extraction using CNNs with temporal modeling through
BiLSTM, enhanced by an attention mechanism that helps the model
focus on critical gesture segments. The model demonstrates strong
performance on two low-resource sign language datasets—ISL and
ArSL—while maintaining low computational overhead, making it
suitable for deployment in resource-constrained environments.

We plan to explore multimodal fusion by incorporating seman-
tic signals like gloss-level text annotations or subtitles, allowing the
model to resolve ambiguities between similar gestures through a
multimodal attention mechanism. To enhance robustness to view-
ing angle changes and reduce the need for labeled data, we aim
to conduct self-supervised pre-training using multi-view sign lan-
guage videos. We will also implement spatiotemporal decoupling
by separating spatial and temporal feature extraction paths, which
will be recombined via a dynamic fusion layer for better gesture
modeling. Additionally, we propose leveraging transfer learning

with pre-trained backbones from large-scale sign language datasets
and fine-tuning them for the target domain. Finally, we will intro-
duce GCNs to model the grammatical structure of sign language,
capturing topological relationships between key points or frames
and improving the expression of complex gestures.
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