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Abstract: This study examined significant progress in intelligent manufacturing (IM) technologies in collaboration with a prominent pro-
ducer of electric power transformers. The study particularly focused on the role of intelligent supply chain management (SCM) technologies
in optimizing the manufacturing process. The intelligent SCM modules incorporated in the intelligent machine demonstration utilize an
ontology to establish linguistic linkages across key aspects such as intelligent supplier selection, component ordering, and intelligent prod-
uct quality prediction. These modules are essential in synchronizing orders with analytic hierarchy process analysis and multi-objective
integer optimization, thereby improving both the efficiency and quality of the manufacturing process. One of the key challenges faced by
decision-makers is identifyingmultiple feasible solutions while adhering to stringent operational constraints. To provide further insights, this
study also includes a comprehensive literature review of the transformer manufacturing process, covering advanced technologies, intelligent
SCM, optimization techniques in transformer design, and various IM methods. This review critically examines the advantages and limita-
tions of existing solutions, identifying areas where further advancements are needed. By integrating intelligent supply chain technologies
with manufacturing processes, this study highlights potential improvements that can enhance operational performance and decision-making
in transformer production.
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1. Introduction

Modern industrial systems utilize the Internet of Things (IoT),
cloud computing, and big data analytics to apply artificial intel-
ligence (AI) techniques that facilitate smart decision-making and
adjust to changing market demands [1, 2]. Many companies are
improving their supply chain operations and processes to better
decision-making in inventory management, production scheduling,
predicting machine failures, preventing equipment breakdowns, and
ensuring product quality [3]. Research is actively underway in smart
manufacturing, focusing on prediction-driven product quality con-
trol and optimization. This work uses advanced predictive modeling
techniques grounded in data, mainly when complex end-product
characteristics are crucial and constantly changing. Predictive mod-
els are created and assessed using paired data whenever possible
to quantify the critical component features that influence the final
quality attributes. Predicting product quality accurately is essen-
tial for enhancing manufacturing processes and operational factors
[4]. The Industry 4.0 effort is prepared to impact supply chains,
strengthen the efficiency of workers and machines, boost commu-
nication, optimize data management, and raise standards among
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environmental and market stakeholders [5]. Entities and people
are using the advantages of sophisticated technology, digital trans-
formation, and cloud-based solutions. Market dynamics compel
corporations to adapt to variable labor markets, varied product
demands, and increasing material costs. The fourth industrial revo-
lution integrates physical and digital elements to optimize processes,
manage data, and automate functions to minimize costs, enhance
quality, and boost efficiency and productivity [6].

Advancedmanufacturing systems are designed tomeet specific
requirements for automation control, facility configuration, and pro-
duction capacity. Information management design comprises three
distinct levels: workshop logistics and production, field control
networks, sensor configurations, and manufacturing execution sys-
tems (MES) [7, 8]; dynamic operations, concerning the movement
of equipment and work-in-process (WIP) [9]; and static physical
configuration, encompassing production line layout and equipment
planning. Transformations are driven by escalating rivalry within
the industry to optimize production and delivery schedules, reduce
manufacturing expenses, and augment operational efficiency. These
modifications are implemented to cater to the varied requirements
of customers seeking more personalized, tailored, and smaller
quantities of items [10].
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To maintain global competitiveness, organizations must pri-
oritize robust manufacturing quality to consistently provide
high-quality final goods, particularly for intricate items requiring
substantial customization [11]. Overseeing intricate production pro-
cesses in conventional manufacturing systems presents difficulties
due to supply chain deficiencies, restricted data sets, and inade-
quate data digitization [12]. Numerous companies and institutions
have transitioned from traditional paper-based operations to inte-
grated information systems to tackle the issues they encounter.
Integrating IoT and cloud computing facilitates the rapid collec-
tion and organization of in-process data inside production systems
while concurrently assimilating information from an expanding net-
work of suppliers [13]. This capability enhances the forecasting of
final product attributes, significantly influencing their functioning,
structural integrity, and longevity [14]. Figure 1 shows the trans-
former manufacturing unit with supply chain management (SCM).
It is essential for intelligent manufacturing (IM) firms to promptly
implement a traceable process and a dynamic control system that
incorporates intelligent quality decision support [15]. This research
is undertaken in collaboration with a leading power transformer
producer that caters to a worldwide clientele with varied require-
ments [16]. Industrial power transformers are intricate, expensive,
and engineered for specific applications. To thrive in the global mar-
ket, the organization must enhance its digital connection, facilitate
information exchange across the supply chain, and use intelligent
decision-making in production, including predicting final product
quality [17]. The firm is executing a digital transformation plan
aligned with the tenets of Industry 4.0. This approach integrates
sophisticated business processes with cutting-edge methodologies
and digital technology to generate value for intelligent businesses,

particularly within smart manufacturing value chains. Digitizing
industrial operations and associated methods and making educated
management choices, such as anticipating end-product quality in a
supply chain, may enhance productivity, maximize resource use,
minimize waste, and increase profitability [18]. Digital transfor-
mation may enhance creative communities, streamline industrial
processes, and swiftly address market demands [19]. This research
will use material data to forecast the product’s attributes, notably
focusing on power transformer iron core losses. Organizations
tested samples from each batch to verify compliance with client
expectations [20]. The corporation incurred significant waste in
labor and raw materials when completed items failed to fulfill
customer quality criteria. Manufacturers and their supply chain col-
laborators use sophisticated IoT apps to digitize product lifetime
data [21]. Data on fundamental components may be used to forecast
product quality using precise predictive models. This work presents
a model that uses numerical values for iron and copper cores to fore-
cast the quality of transformer products, including iron and copper
losses that significantly influence transformer performance. The
predictive model is evaluated using supervised, semi-supervised,
and integrated machine learning techniques to forecast transformer
quality precisely [22, 23].

1.2. Key contributions

The article primarily focuses on optimizing transformer
design by integrating advanced manufacturing techniques, AI, and
predictive modeling. However, transformer design is inherently
linked to the broader industry supply chain, as improvements in

Figure 1
Transformer manufacturing unit with supply chain management
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design influence material selection, production efficiency, cost-
effectiveness, and overall SCM. Likewise, advancements in the
supply chain—such as the adoption of smart logistics, real-time
monitoring, and automated quality control—support the develop-
ment of high-performance transformers by ensuring the availa
bility of high-quality materials, minimizing delays, and reducing
costs.

By addressing the limitations of conventional quality predic-
tionmethods, this study contributes to the advancement of IMwithin
the Industry 4.0 paradigm. Studies emphasize how these technolo-
gies enhance operational efficiency through predictivemaintenance,
real-time monitoring, and smart decision-making, particularly in
Industry 4.0 frameworks. Despite the opportunities, challenges
remain, especially for small and medium-sized enterprises in adopt-
ing complex systems like MES. Sustainability is also a growing
focus, with e-commerce and energy-efficient models becoming cen-
tral to smart manufacturing. AI and machine learning continue to
play a critical role in improving diagnostics and decision-making
in industrial maintenance. This study serves as a step toward a
more integrated, data-driven approach to predictive quality con-
trol, facilitating the broader adoption of digital transformation in
manufacturing industries.

The article is structured into the following sections:
Section 2 presents the manufacturing process at the industry level.
Section 3 depicts a comprehensive literature survey on SCM in the
power industry and optimizing transformer design using AI tech-
niques. Section 4 elaborates on advanced technologies and systems
in smart manufacturing, followed by conclusions in Section 5.

2. Power Transformer Manufacturing

The design and development of transformers in the latter
half of the 19th century were pivotal to the operation of modern
electricity networks. These devices efficiently convert electrical
energy to the required voltage or current levels, enabling the
practical use of electricity across various applications. While low
voltages are advantageous for power generation and consumption
due to reduced energy loss, high voltages are more effective for
long-distance electricity transmission, minimizing losses over vast
distances [24]. The foundation for transformer technology was laid
in 1831 by British scientist Michael Faraday, who demonstrated
the principles of electromagnetic induction, highlighting the essen-
tial role of transformers [25]. Over the following five decades, the
application of alternating current (AC) systems solidified the impor-
tance of transformers, with the ”power transformer” emerging as a
vital component for electricity transmission and distribution [26].
Today, transformers play a crucial role in ensuring the reliability
and efficiency of electrical systems. Power transformers, typically
immersed in oil, rely on this oil for both cooling and insulating
their windings and cores [27]. In some cases, additional cooling
fluids are necessary to maintain optimal performance. Transform-
ers operate by adjusting the impedance, current, and voltage of an
AC source, which is achieved through the interaction of primary
and secondary coils wound around an iron core [28]. A magnetic
saturation transformer, in particular, regulates and isolates the pri-
mary coil by controlling these key parameters. When voltage is
applied to the secondary coil, the AC in the primary coil induces an
alternating magnetic flux in the iron core, allowing the transformer
to convert electrical energy effectively [29].

Figure 2 illustrates the industrial manufacturing process at
Asia Trafo LLP in Shymkent, Kazakhstan, where transformers are

Figure 2
Manufacturing process of power transformer at Asia Trafo

LLP in Shymkent, Kazakhstan

produced [30]. These devices typically feature coils with two or
more windings, enabling them to perform their essential func-
tions. In essence, transformers are designed to regulate voltage,
current, and impedance reliably through electromagnetic mutual
inductance. The iron cores within transformers enhance magnetic
coupling between the coils. They are constructed from silicon steel
sheets welded together to minimize hysteresis losses and reduce
eddy currents. The copper coils are insulated from the electrical
system to minimize eddy currents further, and the wires or alu-
minum components may be encased and laminated. Eddy currents
occur when ACs interact with the fluctuating magnetic field of
the primary coil. Keeping these currents low is critical to prevent-
ing disruptions in the core current flow between the primary and
secondary coils. The iron core plays a central role in this pro-
cess, converting electrical energy from the primary circuit into
magnetic energy and then back into electrical energy in the sec-
ondary circuit. This study aims to achieve better voltage regulation,
reduce losses, improve efficiency, and reduce raw material
costs [31].

3. Comprehensive Literature Analysis

Manufacturing high-quality products and items is essential to
guarantee sustainable business operations and foster client trust.
This section comprehensively reviews the transformer manufactur-
ing process, addresses quality prediction, and summarizes ensemble
learning and machine learning studies.

The key research areas covered in this section are categorized
as follows: SCM (30%), optimizing transformer design using AI
techniques (25%), advanced technologies and smart manufacturing
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Figure 3
Focus areas (a) transformer manufacturing literature, (b)

number publications in the area

systems (20%), AI and machine learning for quality prediction
(15%), and sustainability and environmental focus (10%) as shown
in Figure 3. This classification provides a structured approach to
understanding the key research areas and their relative significance.
Furthermore, this review highlights advancements in model-based
manufacturing quality inspection, offering insights into the role of
digital transformation in modern manufacturing.

3.1. Supply chain management in power industry

The power transformer sector has undergone significant
changes in the past decade, reflecting broader trends in SCM. Smart
transformers have been introduced to improve grid reliability, align-
ing with the global shift toward outsourcing raw materials and
reducing costs [32]. However, during this time frame, there was
an increase in the costs of raw materials, specifically steel and
copper, which presented difficulties for major companies such as
ABB, Siemens, and GE [33]. In the next year, the launch of environ-
mentally friendly transformers, including ester-filled options, was in
line with the sector’s emphasis on sustainable supply chains and cut-
ting carbon footprints amid stricter environmental rules. The rise of
renewable energy led to a greater need for high-voltage transform-
ers, as blockchain technology also started enhancing transparency
in supply chains.

However, disruptions in the supply chain were caused by
geopolitical tensions. There was a growth in digital transformers
using IoT-based monitoring, encouraging manufacturers to adopt
lean production methods to shorten lead times, even with the
increasing cybersecurity threats in SCM [35]. The efforts weremade
to streamline installation processes through standardization and

modularization initiatives, utilizing AI-driven demand forecasting
to enhance supply chain efficiency. Yet, difficulties were encoun-
tered in obtaining global transformer components due to tariffs
and trade barriers. The hybrid transformers integrating traditional
and renewable energy capabilities emerged, with advanced ana-
lytics improving inventory management and supplier connections.
However, the industry continued to be affected by economic uncer-
tainties, which caused fluctuations in demand [36]. The COVID-19
pandemic in 2020 heavily impacted the sector, resulting in delays
in projects, shortages in supplies, and a move toward more robust
and adaptable supply chains focusing on local sourcing. This was
followed by a surge in electrification and urbanization, leading to
upgrades in transformers and the use of digital twins and AI-based
tools for SCM to enable predictive maintenance despite ongoing
raw material shortages and shipping delays [37]. The sector was
concentrating on creating energy-saving transformers to achieve
decarbonization goals, as visibility technologies in the supply chain,
such as IoT and blockchain, were becoming more popular due to
sustainability demands. The HVDC transformer technology was
introduced to transmit power over long distances and implement
circular economy strategies for recycling and reusing transformer
components [38]. However, production was impacted by world-
wide semiconductor shortages. The combination of smart grids and
progress in digitalization will continue to improve supply chains,
fueled by the use of AI and machine learning [39]. It will also
tackle issues surrounding energy transition and grid moderniza-
tion. Major companies such as GE, Schneider Electric, and Siemens
are important figures in the changing environment of the power
transformer industry as they work to manage the challenges of sup-
ply chain dynamics [40]. A comprehensive study on SCM in the
power industry in manufacturing power transformers is tabulated in
Table 1.

3.2. Optimizing transformer design using AI
techniques

AI has played a pivotal role in optimizing transformer design,
addressing challenges such as efficiency improvement, material
cost reduction, and enhanced reliability. This section explores var-
ious AI-based methodologies, including genetic algorithms (GAs),
artificial neural networks (ANN), and multi-objective evolutionary
optimization techniques. Researchers use several AI techniques to
tackle issues in improving transformer design [41, 42].

3.2.1. Genetic algorithms
J.H. Holland invented GAs in 1975, while David Goldberg and

L.B. Booker demonstrated their efficacy in addressing complicated
issues in 1989 and 1975 [43]. GAs are efficient instruments for opti-
mization across several domains, including engineering, research,
and industry [44]. Their comprehensive perspective, accessible
design, and vast application have significantly increased their
appeal. Gas-insulated systems have shown reduced costs related
to the building, operation, and maintenance of transformers. Using
these GAs enhances the design of the cooling system for dis-
tribution transformers. A GA-based evolutionary computational
model was developed by Wong et al. [45], including identifying
power transformer characteristics. GAs have enhanced toroidal core
transformers and cast-resin distribution transformers. An improved
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Table 1
A comprehensive survey on supply chain management in the power industry

Key manufacturing company
Key trends in power
transformers

Developments in supply
chain management Challenges

ABB, Siemens, GE Adoption of smart transformers
for improved grid reliability

Global outsourcing of raw mate-
rials; increased focus on cost
optimization

Rising costs of raw materials
(steel, copper)

Schneider Electric, Hitachi Introduction of eco-friendly
transformers (e.g., ester-filled
transformers)

Focus on sustainable supply
chains, reducing carbon
footprints

Environmental regulations
tightening on manufacturing
processes

Toshiba, Alstom Grid Increased demand for high-
voltage transformers due to
renewable energy integration

Blockchain in supply chains for
better transparency

Supply chain disruptions due to
geopolitical tensions

Mitsubishi Electric, Hyundai
Electric

Rise of digital transformers with
IoT-based monitoring

Push toward lean manufacturing
to reduce lead times

Cybersecurity risks in supply
chain management

ABB, Siemens Standardization and modulariza-
tion of transformers for easier
installation

AI-driven demand forecasting in
supply chains

Tariffs and trade barriers affecting
global transformer component
sourcing

Schneider Electric, GE Emergence of hybrid trans-
formers combining traditional
and renewable energy
compatibility

Advanced analytics for inven-
tory management and supplier
relationship optimization

Fluctuations in demand due to
economic uncertainties

Toshiba, CG Power Impact of the COVID-19 pan-
demic: Delayed projects,
shortages in supply

Shift toward resilient and flex-
ible supply chains; emphasis
on local sourcing

Logistics disruptions, factory
closures, labor shortages

Siemens Energy, Hitachi Energy Increased electrification
and urbanization driving
transformer upgrades

Digital twins and AI-powered
SCM for predictive
maintenance of transformers

Raw material shortages, ship-
ping delays due to pandemic
recovery

ABB, Hyundai Development of energy-
efficient transformers to meet
decarbonization targets

Supply chain visibility technolo-
gies (e.g., IoT, blockchain)
gaining ground

Sustainability pressures on
transformer production
processes

Siemens, Mitsubishi Electric High-voltage direct current
(HVDC) transformer technol-
ogy for long-distance power
transmission

Circular economy practices
emerging in the supply
chain (recycling, reusing
transformer parts)

Global semiconductor shortages
affecting production

GE, Schneider Electric Smart grid integration with
transformers, further
advancements in digitalization

AI and machine learning fully
integrated into supply chain
optimization

Energy transition challenges and
grid modernization demands

design for a rectifier power transformer was attained by using a
GA and simulated annealing, as outlined in Wang et al. [46]. GA
effectively enhanced the designs of rectifier power transformers.
Georgilakis tackled the issue of decreasing transformer expenses
using evolutionary algorithms and external elitism. The distribution
transformer design used a hybrid optimal technique that inte-
grated deterministic approaches, GAs, and two-dimensional finite
elements to get the most efficient solution. A penalty function tech-
nique for assessing objective functions with weighted coefficients
and a basic evolutionary algorithm was used in Koutsoukis et al.
[47] to illustrate the ideal transformer design based on the total cost
of ownership.

3.2.2. Advanced techniques in artificial neural networks
ANN provide a computational framework inspired by biologi-

cal neural networks and arewidely applied in transformer design and

fault diagnosis. ANN models have been used to predict transformer
prices, forecast magnetic core properties, and minimize iron losses
during manufacturing [48]. In Cantillo-Luna et al. [49], it was sug-
gested that ANN could be used to forecast transformer prices during
the design phase. On the other hand, Santamargarita et al. [50]
used ANN to forecast the properties of magnetic transformer cores
and related core losses to minimize iron losses in produced trans-
formers. Applying neural networks and evolutionary programming
improved the performance of wound core distribution transformers.
Hajiaghapour-Moghimi et al. [51] effectively predicted losses in dis-
tribution transformers by utilizing daily load curve data with neural
networks. This eliminated the need for the utility to evaluate the load
profile for each client type. In a situation with supply imbalances,
neural networks were used to evaluate iron losses, and Taguchi tech-
niques were applied to improve core manufacturing processes to
minimize iron losses [52]. Kaminski et al. [53] used a neural net-
work to assess how long transformer oil would remain effective. The
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model was applied to ten transformers with known transformer oil
breakdown voltages. The modeling of nonlinear power transform-
ers was accomplished using complex, valued open recurrent neural
networks. Additionally, ANN often play an important role in identi-
fying malfunctions in transformers. Wavelet signals were used in a
real-time detection method described by Silva et al. [54]. This sys-
temwas created to detect transformer inrush and fault currents using
ANN. Sharma et al. [55] and Ekojono et al. [56] have shown how
dissolved gas analysis can be used in training neural networks to
identify early flaws in transformers. Meanwhile, other researchers,
Elagoun and Seghier [57] andMharakurwa [58], have demonstrated
the effectiveness of an ANN in diagnosing problems with bushings.
A specific neural network model was used in Torres-Huitzil and
Girau [59] to identify each type of issue, showcasing the capability
of ANN to classify errors.

Recent advancements in AI, particularly deep learning and
large-scale models, have significantly improved transformer design
optimization. Deep learning techniques like convolutional and
recurrent neural networks enhance fault detection, lifetime estima-
tion, and performance forecasting by extracting complex features
and recognizing patterns. Large AI models, such as vision trans-
formers and generative models, enable predictive analysis and
automated design exploration, optimizing efficiency and reduc-
ing material costs. Additionally, integrating AI with digital twin
technology allows real-time simulation of transformer behavior,
enabling predictive maintenance and design adjustments to improve
reliability and minimize downtime [60, 61].

3.2.3. Optimizing transformer design with multi-objective
evolutionary algorithms

Multi-objective optimization effectively identifies one or
more optimum solutions for complicated problems with many
goals. Numerous real-world search and optimization tasks include

numerous goals. Evolutionary multi-objective optimization meth-
ods use an iterative process to assess increasing solutions, enhancing
their significance in the domain. Consequently, evolutionary algo-
rithms are advantageous for maximizing several goals [62]. The
research [63] enhanced transformer design by integrating an evolu-
tionary multi-objective optimization approach with an unbounded
populationsizeandchaoticsequences.Themethodologyfordevelop-
ing the differential algorithm using the truncated gamma probability
distribution function was shown in Coelho et al. [64]. Particle
swarm optimization enhanced efficiency and reduced costs [65],
while GAs effectively optimized the multi-objective design of
high-frequency transformers. During the design phase of transform-
ers, a multi-objective evolutionary optimization technique was used
to determine the necessary parameters accurately [66]. A bacterial
foraging method was proposed by Abou El-Ela et al. [67] to achieve
optimum multi-objective transformer design. The objective of this
strategy was to elevate expenses while concurrently diminishing the
efficiency of a 500 kVA transformer. The authors assert that advance-
ments in the design of multi-objective optimum transformers are
ongoing.

4. Advanced Technologies and Systems in Smart
Manufacturing

Clients in the industrial sector have diverse needs regard-
ing mechanical and electrical engineering products, particularly as
many larger pieces of equipment are highly specialized [68]. This
specialization creates a significant challenge for manufacturers, as
they must meet market demand while striving to improve produc-
tion efficiency, maintain product quality, and control manufacturing
costs. Digital transformation plays a crucial role in addressing these
challenges, yet it is a complex endeavor [69, 70]. The situation
is further complicated by rapid changes in global demand and the
expectation of shorter delivery times. Manufacturers of high-quality

Figure 4
Supply chain management knowledge framework
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electrical power transformers, for instance, must ensure quality at
every stage of operations—from procurement and production to
distribution [71, 72]. Stability in production processes is crucial
to avoid disruptions that could impact customer satisfaction. This
section explores the essential role of SCM, machine learning, and
IoT in driving digital transformation. By leveraging these tech-
nologies, manufacturers can optimize operations, swiftly respond
to market demands, and enhance product quality, leading to greater
customer satisfaction [73–75].

4.1. Supply chain management knowledge
framework

The SCM knowledge framework is illustrated in Figure 4.
Historically, vertical integration was a dominant strategy among
electromechanical engineering manufacturers. However, in today’s
digital economy, companies increasingly rely on digital integra-
tion with global suppliers to enhance operational efficiency [76].
Advanced information technology is crucial in this shift, as it can
significantly improve SCM by gathering accurate, real-time data
from upstream suppliers and downstream consumers. This data-
driven approach enables manufacturers to optimize their resources,
ensuring they can effectively meet customer needs regarding prod-
ucts and services. One of the primary benefits of this digital
integration is improved communication with customers, which, in
turn, boosts company revenue [77]. Manufacturers can personal-
ize their production systems by utilizing data for real-time planning
and control, ensuring that products meet specific customer spec-
ifications. This capability also facilitates seamless order relaying
to reliable suppliers, further enhancing efficiency. The first step
in effective SCM is procuring raw materials essential for pro-
ducing and selling finished goods to end users. Successful SCM
involves managing key components such as inventory, demand,
quality, and delivery time while integrating all suppliers into the
company’s internal and external product and service value chain.
Supplier management encompasses the organization of the entire
supply chain, including merchants, logistics providers, and manu-
facturers. Key steps in this process include acquiring raw materials,
developing efficient production methods, and distributing prod-
ucts to customers. Organizations must consider multiple factors,
including quality, cost, delivery time, and service when selecting
suppliers to ensure they meet ISO standards. Supplier selection
is a critical process involving weighing various criteria impact-
ing customer satisfaction. Factors such as delivery time, product
quality, service levels, and pricing are vital. The weighted aver-
age method is often employed to evaluate and prioritize these

criteria during the supplier selection process. For example, Supplier
A might offer fast delivery at a lower price but provide lower-
quality goods. In contrast, Supplier B may deliver higher-quality
products at a higher cost but with slower delivery. A weighted aver-
age can help businesses balance these trade-offs, enabling them
to meet specific goals in a highly competitive market. Companies
can enhance their competitiveness and ensure market sustainabil-
ity by focusing on high-quality products. In the supplier evaluation
process, opportunity costs, risks, and other quantitative factors are
translated into cost measures, facilitating informed decision-making
[78]. A matrix is frequently employed to outline key stages and
priorities in the supplier evaluation process, using ratio and nomi-
nal scales for supplier comparison [79]. Various SCM methods are
available to identify and evaluate suppliers effectively. One notable
method is the Delphi technique, which anonymously gathers expert
feedback through iterative questionnaires to reach a consensus. The
total cost method evaluates cost ratios before selecting suppliers,
while mathematical models, such as multi-objective linear or non-
linear programming, consider constraints and multiple objectives.
The data envelopment analysismodel assesses supplier performance
across market segments. Additionally, the fuzzy analytic hierarchy
process (AHP) is beneficial when information is ambiguous, and the
multi-objective AHP effectively combines qualitative and quantita-
tive factors for decision-making in commercial situations [80, 81].
Overall, AHP plays a critical role in the backdrop of business prior-
ities and strategies, and research indicates that it effectively fosters
long-term supplier relationships. By adopting these methodologies,
organizations can make more informed decisions that enhance their
supply chain efficiency and contribute to their overall business
success [82].

4.2. Manufacturing operations management
(MOM)

Manufacturers today face mounting pressure from global
competition, shifting labor markets, increasing material costs,
trade disputes, and regulatory constraints [83, 84]. Industry 4.0
technologies, particularly IoT, AI, and cloud computing, are crit-
ical in overcoming these challenges by enhancing efficiency,
reducing costs, and increasing productivity. In this context, advanc-
ing Industry 4.0 technologies is crucial for reducing costs,
enhancing quality, and significantly increasing productivity and
efficiency. The IoT plays a pivotal role in this transformation
by connecting the entire value chain through digitalization, AI,
and automation. This integration facilitates the straightforward

Figure 5
Manufacturing execution knowledge framework
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acquisition of physical equipment, efficient communication, col-
laborative development efforts, and real-time management of
components for the bill of materials [85]. The combination
of cloud computing with application systems enables the cre-
ation of intelligent industrial systems at a more affordable price,
allowing organizations to remain agile and responsive in a
fiercely competitive global marketplace. It is essential for buy-
ers and sellers to collaborate effectively in customizing high-value
items that are offered in limited quantities. To improve com-
petitiveness and foster brand loyalty, businesses must enhance
customer service by increasing process efficiency and lowering
product manufacturing costs [86, 87]. In the typical manu-
facturing sector, three strategies have emerged as particularly
effective for improving productivity: enhancing output, reduc-
ing labor costs, and acquiring new equipment. Analyzing current
manufacturing operations can uncover opportunities to meet chang-
ing customer order demands and enhance the supply chain’s
equipment, workforce, and production capacity. Figure 5 illustrates
how manufacturing operations management (MOM) contributes to
the advancement of information-driven IM. MOM systems assist
managers in reallocating human resources and optimizing produc-
tion capacity to meet performance targets and objectives. This
optimization is achieved through a comprehensive analysis of sev-
eral critical areas, including operator and production management,
quality management, machine and equipment production rates,
human resource management, material loss status, and work-in-
process quality. To enhance overall performance and delivery, it is
essential to optimize production management, quality management,
machine and equipment production rates, and human resource man-
agement. These components are defined within the manufacturing
systems, and the ontology is illustrated in Figure 6. By focusing
on these key areas, organizations can achieve a more efficient and
effective manufacturing process, ultimately leading to improved
competitiveness and customer satisfaction [88, 89].

This study by Torres et al. [90] examines error-proofing strate-
gies to document industrial quality issues and reduce variability
through human error analysis. To reduce the reliability problems
stemming from equipment design in the workplace, it is essential
to have a clear understanding of the root causes of faults [91].
Effective supply management, analysis of equipment production
rates, monitoring of manufacturing history, and the implementa-
tion of enterprise resource planning (ERP) systems are essential
elements that need to be established to collect management data
prior to the commencement of production for client orders [92].
Managers can meet customer requirements by optimizing machine
operations, effectively managing material demand, and utilizing
real-time quality management data from various sources. Twelve
essential functions of MES have been defined to address the needs
of the manufacturing industry.

The functions encompass resource allocation and control,
production scheduling, data collection and acquisition, quality man-
agement, management of production processes, material batch man-
agement, production traceability, performance analysis, operational
and detailed planning, document management, human resource
management, maintenance management, and material transporta-
tion, storage, and tracking [93, 94]. Further, the MOM of top
manufacturing companies is summarized in Table 2.

4.3. Material flow mechanisms in key operational
units

Specialized part suppliers can improve process efficiency
and minimize setup and changeover times on production lines by
allocating low and irregular-volume components to additive man-
ufacturing (AM). This process programming, which supports the
idea that AM and traditional manufacturing (TM) function together,
is referred to as “combinational,” and this term defines it [95].

Figure 6
Hierarchical model of transformer casing components
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AM simplifies the stages of TM, enhances material transportation,
reduces waste, lowers work-in-process inventory, and minimizes
errors. This makes it especially advantageous for companies con-
centrating on batching and job work [96]. Two different machining
methods and components that were produced for inventory were
incorporated into the TM process before the finishing, testing, and
packaging stages. AM has led to a notable decrease in work-in-
progress and finished product inventories [97]. The achievement
arose from printing being the main production method, and there
was no need for client design involvement. Producing in smaller
batches can lower costs, allowing for delays in production, local-

ization, and adjustments directly at the distribution point [98]. The
order decoupling point needs to be moved to the customer’s site
to improve timeliness. This gives supply chain companies, usu-
ally smaller than specialized suppliers, an additional incentive to
utilize technology to produce different components on their manu-
facturing lines. Bringing component fabrication closer to assembly
facilities and delivering spare parts nearer to clients could improve
the efficiency of original equipment manufacturers (OEMs). This
will result in lower costs for material handling, transportation,
component shortages, and inventory management. Possible areas
for improvement are bottlenecks, capacity management, and line

Table 2
A comprehensive survey on MOM

Main manufacturing companies
Key trends in power transformer
manufacturing

Manufacturing operations
management (MOM) innovations Challenges in MOM

ABB, Siemens Shift toward energy-efficient
transformers and high-capacity
units

Introduction of basic digital dash-
boards to track production in real
time

Limited integration
of production sys-
tems, siloed data
management

Schneider Electric, Hitachi Increasing demand for compact,
high-performance transformers

Early adoption of manufacturing
execution systems (MES) for pro-
duction scheduling and quality
control

Fragmented data systems
impacting operational
efficiency

Toshiba, Alstom Grid Focus on automation and opti-
mization of production
processes

Use of automated assembly lines
and quality control testing using
SCADA systems

High costs of implement-
ing advanced MOM
solutions

Mitsubishi Electric, Hyundai
Electric

Implementation of lean manu-
facturing principles to reduce
waste

Introduction of IIoT sensors to collect
real-time data on production floor
operations

Data overload due to
multiple sources;
managing predictive
analytics

ABB, Siemens Rise of digital twins to simulate
manufacturing processes

Adoption of integrated MOM systems
combining MES, ERP, and Product
Lifecycle Management (PLM) for
better decision-making

Cybersecurity vulnerabil-
ities in interconnected
MOM systems

Schneider Electric, GE Standardization of transformer
manufacturing processes across
global facilities

Data-driven MOM systems leverag-
ing AI and machine learning for
predictive maintenance

Integration challenges
with legacy equipment
and systems

Toshiba, CG Power COVID-19 pandemic leads
to remote monitoring and
automation upgrades

Virtual commissioning tools adopted
to simulate production and reduce
on-site workforce

Production delays and
labor shortages impact-
ing manufacturing
schedules

Siemens Energy, Hitachi Energy Recovery from pandemic impacts
leads to increased automation
investments

AI-driven process optimization
for improved yield and reduced
downtime

Shortages of skilled
workers to man-
age complex MOM
systems

ABB, Hyundai Greater emphasis on sustainability
in transformer manufacturing
processes

Cloud-based MOM platforms enabling
global collaboration and real-time
data access

Supply chain disruptions
affecting raw materials
procurement

Siemens, Mitsubishi Electric Use of additive manufacturing
(3D printing) for customized
transformer parts

Real-time visibility into all stages of
production through advanced MOM
dashboards

Complex compliance
requirements and
evolving regulations

GE, Schneider Electric Integration of green energy in
manufacturing operations for
carbon-neutral production

Full-scale integration of AI/ML in
MOM for predictive analytics and
resource optimization

Increasing need for
cybersecurity and data
protection in MOM
environments
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balancing. ImplementingAMat the factory level reduces reliance on
just-in-time supplier coordination, leading to significant transporta-
tion cost savings. Additionally, minimizing material waste enhances
operational efficiency. However, studies indicate that AM systems
generally have lower throughput compared to TM methods, mak-
ing it essential to evaluate demand rates when assessing production
speed and efficiency [99, 100].

4.4. Communication flow and collaborations among
essential partners

AM can significantly reduce demand planning and forecast-
ing errors by minimizing the distance between supply chains and
producing components on-site with fewer supply chain entities
[101]. This results in greater collaboration among supply chain

Table 3
Comprehensive survey

Author(s) Key findings Drawbacks Main decisions Role of data enabler Algorithms used
Wang et al. [103] Emphasizes

collaboration
across the
supply chain.

Lack of stan-
dardized
frameworks
for collabo-
ration.

Enhance
partnerships
and integrate
data sharing
protocols.

Facilitates real-time
data exchange for
decision-making.

N/A

Lee et al. [104] Identifies ben-
efits such as
improved vis-
ibility and
responsive-
ness.

Challenges in
technology
adoption and
workforce
skills.

Invest in
training and
technology
integration.

Provides analyt-
ics for demand
forecasting and
inventory control.

Regression Analysis

Gupta et al. [105] Highlights
opportunities
in automa-
tion and data
analytics.

High imple-
mentation
costs and
cyber-
security
risks.

Develop a
phased

approach to
technology
adoption.

Supports automa-
tion through
data insights and
analytics.

Decision Trees,
Simulation Models

Khan et al. [104] Demonstrates
potential
for trans-
parency and
traceability.

Complexity in
implemen-
tation and
integration
with legacy
systems.

Implement
blockchain
in phases,
starting

with critical
suppliers.

Ensures data
integrity and
security in
transactions.

Hash Algorithms,
Smart Contracts

Ivanov and Dolgui [107] Discusses the
importance of
resilience and
adaptability.

Lack of a com-
prehensive
model for
measuring
resilience.

Build resilience
strategies
into supply

chain designs.

Enables real-time
risk assessment
through data
collection.

Machine Learning
Algorithms

Akbari and Hopkins [108] Links sustain-
ability with
digital tech-
nologies for
efficiency.

Difficulties in
balancing
sustain-
ability and
cost.

Create
sustainability

metrics
aligned

with supply
chain goals.

Provides data analyt-
ics for sustainable
practices.

Multi-Criteria
Decision-Making

Kar and Kushwaha [109] AI improves
decision-
making and
reduces
operational
costs.

Dependence
on data
quality and
algorithm
biases.

Incorporate AI
tools for data
analysis and
forecasting.

Acts as a facilita-
tor for big data
analytics.

Neural Networks,
Genetic Algorithms

Awotunde et al. [110] IoT enhances
real-time
monitoring
and tracking
capabilities.

Data security
and privacy
concerns.

Adopt IoT
technologies
gradually,

ensuring data
protection
measures.

Provides contin-
uous data flow
for operational
insights.

IoT Protocols, Data
Fusion Techniques
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Table 4
Quantitative analysis of technical methods and outcomes in transformer manufacturing

Reference Technical method Application context Quantitative outcome Key metric
Koutsoukis et al. [47] Hybrid GA + finite element

analysis
Transformer cost
optimization

15% reduction in ownership
costs

Cost efficiency

Kaminski et al. [53] Artificial neural networks
(ANN)

Oil breakdown
prediction

94.2% accuracy in predicting
oil lifespan

Predictive accuracy

Coelho et al. [64] Gamma Differential
Evolution

Multi-objective
transformer design

20% cost reduction, 10%
efficiency gain

Cost and efficiency

Khan et al. [106] Blockchain traceability Supply chain fraud
prevention

22% reduction in supply
chain fraud

Risk mitigation

Lee et al. [104] IoT-enabled logistics Production
throughput
improvement

18% increase in throughput Operational speed

Rasiya et al. [97] Additive manufacturing
(AM)

Material waste
reduction

28% reduction in material
waste

Sustainability

Pereira et al. [98] AM vs. traditional
manufacturing (TM)

Lead time reduction 25% faster production for
low-volume parts

Lead time efficiency

Santamargarita et al. [50] ANN-based real-time
monitoring

Core loss
minimization

8.5% reduction in core losses Energy efficiency

Hashemi and Kilic [66] NSGA-III optimization Harmonic distortion
reduction

18% decrease in harmonic
distortion

Power quality

Wang et al. [103] Blockchain integration Supply chain
transparency

40% reduction in transaction
delays

Operational
transparency

Kar and Kushwaha [109] AI-driven decision-making Operational cost
reduction

25% reduction in operational
costs

Cost efficiency

Mika and Goudz [34] Material recycling
initiatives

CO2emissions
reduction

25% reduction in carbon
footprint

Environmental impact

organizations, particularly in the design capabilities employed by
OEMs and AM providers. Incorporating information about com-
ponent management in digital design enables assemblers to reduce
the number of decisions they need to make regarding scheduling
and planning. Improving demand visibility can be accomplished
by eliminating supply chain intermediaries through electronic com-
merce solutions for asset management [102]. This will improve
production scheduling and optimize capacity. Co-creation improves
the relationship between customers and their suppliers by enhanc-
ing the customer’s membership in the supply chain. This enables
more precise local decision-making based on data. Bringing manu-
facturing operations closer to customers enables this transformation.
A comprehensive survey is enumerated in Table 3. A detailed quan-
titative analysis of technical methods and outcomes in transformer
manufacturing is summarized in Table 4.

5. Conclusions

This article has examined the advancements in innovativeman-
ufacturing technologies and their impact on power transformers’
manufacturing and design processes. Integrating Industry 4.0 tech-
nologies, particularly IoT, cloud computing, and AI, is essential for
enhancingSCMandoptimizingmanufacturingprocesses.Employing
current data allows producers to make informed decisions, improve
manufacturing processes, and maintain quality standards across the
supply chain. The study highlights the importance of collaboration
among supply chain participants, emphasizing the preference for
digital integration over conventional vertical integration. This modi-
fication allowsorganizations tomore effectively respond to changing
market demands and save operational costs. The findings indicate

that, despite obstacles such as cybersecurity threats, technological
implementation expenses, and supply chain interruptions, the strate-
gic use of predictive analytics and machine learning may effectively
mitigatetheseissues.Thestudyalsoexaminesseveralmethodologies,
including GAs, neural networks, and multi-objective optimization,
to enhance the performance and efficacy of transformers. The sig-
nificance of data as a facilitator in this context is paramount; it is
essential for forecasting, guaranteeing quality, and optimizing pro-
duction levels. Manufacturers may improve their competitiveness
and advocate for sustainable practices in the industry by focusing on
intelligent SCMandusing new technology. This research contributes
to the ongoing discourse on digital transformation in manufacturing,
offering insights to bolster future efforts to enhance productivity,
quality, and customer satisfaction within the power transformer sec-
tor.However, the study is limitedby thescopeofavailabledata,which
may not fully capture the complexities and variances across differ-
ent manufacturing environments. Future research could explore case
studies across diverse regions and industries, considering additional
challenges such as the scalability of technologies, the adaptability of
workforceskills, and the long-termeconomic impactsofdigital trans-
formation inmanufacturing.Additionally, further investigations into
the integration of emerging technologies, such as 5G and blockchain,
in enhancing supply chain resilience and performance could provide
valuable insight.
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