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Abstract: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, highlighting the urgent need for more effective 
treatments. The conventional drug discovery process is time-consuming and expensive; therefore, new approaches are required. Quantum machine 
learning in compound bioactivity prediction has been demonstrated in drug discovery, but its application in cardiovascular medicine remains 
limited. Therefore, this work proposed the quantum fusion model (QFM) to enhance the bioactivity predictions for heart disease treatments. The 
proposed model encoded molecular data into quantum states using the quantum random forest method on the ChEMBL dataset. Logistic regression 
classifiers were then trained on these encoded data. The QFM, which integrates quantum-inspired algorithms with classical machine learning, 
achieved an accuracy of 92.7% in classifying bioactive compounds, outperforming individual models and existing methods. It also demonstrated 
strong precision (0.92), recall (0.93), and F1 score of 0.92, with receiver operating characteristic area under the curve (AUC) and precision-recall 
AUC values of 0.961 and 0.959, respectively. These results indicate the model’s ability to identify complex molecular structures accurately. This 
work advances bioactivity prediction to aid drug development for CVDs and aligns with the United Nations Sustainable Development Goal 3: 
Good Health and Well-being. Future research will apply this approach to other diseases and incorporate more complex quantum circuits to enhance 
accuracy further.
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1. Introduction
Cardiovascular diseases (CVDs) stand as the second most 

common reason for global deaths because they cause 17.9 million 
annual fatalities and contribute to 31% of worldwide mortality. The 
advanced state of medical research faces significant hurdles from 
the intricate genetic and lifestyle, and environmental relationships of 
CVDs. The medical industry spends over 10 years and large finances to 
develop a single therapeutic product through its current drug discovery 
approaches for CVDs. Research on innovative drug discovery methods 
has become essential because it enables to creation of potential 
treatments for CVDs [1].

Drug discovery includes a prediction of bioactivity as its 
fundamental step, because the assessment of molecular features helps 
predict how compounds will impact biological systems. The prediction 
of bioactivity has incorporated machine learning (ML) approaches in 
recent times because this method allows processing extensive data 
sets to identify patterns for drug-like compound detection. However, 
traditional ML methods struggle with the nonlinear and complex 
molecular interactions inherent to drug discovery [2]. These situations 
limit the efficacy of prediction models and their ability to scale up 
because of the large-scale and complex molecular data.

Quantum computing (QC), therefore, has been developed as 
a solution to these challenges. Superposition and entanglement of 
quantum bits in quantum ML (QML) enable more efficient searching 
of high-dimensional spaces than in the case of classical algorithms. 

This capability makes QML an attractive approach for dealing with 
the difficulties of drug discovery. Although QML is now in its infancy 
with the current implementations that are limited by noisy intermediate-
scale quantum (NISQ) devices, it has already evidenced the ability to 
eliminate computational barriers in bioinformatics and drug design.

This work proposes the quantum fusion model (QFM) as a 
new approach to integrate quantum and classical ML into bioactivity 
prediction for cardiovascular drugs. This proposed model applies 
quantum random forest (QRF) to translate molecular data into quantum 
states, followed by the use of classical logistic regression classifiers. 
It is this hybrid approach that allows the capturing of more complex 
interactions between atoms within the molecule, thereby increasing 
the accuracy of bioactivity prediction. In testing, the QFM produced 
a classification accuracy of 92.7% and thus provided stronger 
differentiation of bioactive from inactive compounds as compared to 
conventional ML methods.

1.1. Research contributions
This work contributes to computational drug discovery in the 

following major ways:

1.  This work introduces QFM-BioPred, a novel framework that 
combines quantum-inspired and ML models to perform a 
computation on CVD targets.

2.  This study presents a novel quantum circuit, unlike regular 
encoding, which uses an angle encoding and entanglement-based 
feature interaction to encode molecular descriptors in high high-
dimensional space.
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3.  The amplified quantum attributes in combination with ensemble 
model prediction in a stacked framework with a logistic regression 
meta-learner contribute to the improvement in prediction accuracy 
and generalization capacity, which demonstrates 92.7% accuracy and 
0.961 receiver operating characteristic (ROC) area under the curve 
(AUC), which indicates its robust performance on cardiovascular 
datasets despite their imbalance.

4.  The study supports United Nations Sustainable Development 
Goal 3: Good Health and Well-being through its development of 
computational works that fasten and decrease drug creation expenses 
for necessary diseases such as CVDs.

QML technology provides high-dimensional feature analysis 
and nonlinear molecular modeling that process bioactivity prediction 
structures. The proposed model uses Hilbert space to analyze molecular 
descriptors, including LogP, molecular weight (MW), and hydrogen 
bond interaction, for structure-activity relationship discovery by the 
model. Quantum entanglement mechanisms within QML models 
establish better relationship detection, which leads to outstanding 
prediction outcomes [3]. The system regulates complex data patterns by 
using circuits and angle embedding, which eliminates the requirement 
for conventional kernel function development. Quantum states provide 
an effective solution for controlling intricate molecular data structures, 
which become crucial during medical drug development research [4].

The application of QML surpasses traditional ML for 
cardiovascular drug discovery because target interactions show 
multifactorial behavior while being sensitive to small alterations in 
molecular structure [5]. The method helps discover active compounds 
during early stages at higher accuracy levels, thus reducing experimental 
expenses and optimizing lead compounds [6].

The remainder of this study is structured as follows: Section 2 
presents the state of the art of computational drug discovery and the 
use of ML and QML for bioactivity prediction. Section 3 of the study 
provides details on the method and experimental design of the QFM’s 
creation. The experiments and the comparison with traditional methods 
are provided in Section 4 of the paper. Section 5 contains the conclusion, 
limitations, and recommendations for future research.

2. Literature Review
The conventional process of drug discovery is slow and expensive, 

taking over 10 years and several billion dollars to get one drug to 
the market [7]. These methods are largely based on high-throughput 
screening and experimental testing, which are time-consuming and 
liable to contain errors. To deal with these drawbacks, more and more 
researchers are using computational methods to enhance and facilitate 
the drug discovery process [8].

2.1. Traditional drug discovery and ML in bioactivity 
prediction

The method of discovering new drugs has advanced over the 
last few years, and one of the most useful techniques is using ML to 
identify new drug molecules. Molecular informatics is useful for target 
identification, lead optimization, and the optimization of drug-like 
properties [9]. Some of the conventional methods [10], like random 
forest (RF) and support vector machine (SVM), are found to be 
effective in explaining large chemical and biological data sets [11]. But, 
all these methods fail when the molecular structures are complex and 
the datasets are high-dimensional, in which case feature extraction and 
representation become challenging.

Recent work by Rodríguez-Pérez and Bajorath [12] proposed a 
C-SVM algorithm that successfully identifies dual inhibitors targeting 

cancer kinase targets. It performs better in terms of false positive 
detection and equivalent true positive detection than other ML 
approaches. Support vector regression (SVR) models, which stem from 
SVM, have a known weakness in that they underestimate the potency 
of very potent compounds, which can distort the bioactivity landscape. 
The C-SVM models proved capable of identifying 429 compounds that 
interact with 24 different kinases for drug discovery chemoinformatics 
applications.

Mao et al. [13] provided an iterative methodology that combines 
wet-lab work with MD simulations, combining ML and deep learning 
to boost QSAR models. This framework demonstrates model training 
through unstructured data combination with structured data, although 
it fails to disclose the exact datasets utilized. This approach utilizes 
a system that improves prediction accuracy and accelerates drug 
development by resolving QSAR method shortcomings in versatility 
and accuracy. 

A study by Siddiqui et al. [14] used a DPP-4 inhibitor dataset for 
a proposed RF-based predictive model, which gave the highest accuracy 
than the other models. This research analysis revealed that Murcko 
scaffold-based data splitting provided better reliability while reducing 
chemical bias compared to random split training approaches. These are the 
studies that provide the information regarding the previous studies [15].

2.2. QC and QML in drug discovery
QC presents solutions to the problems that classical ML faces by 

incorporating elements of quantum mechanics, including superposition 
and entanglement [16]. These principles enable quantum algorithms 
to perform computations on high-dimensional spaces that cannot be 
analyzed by classical systems. QC has much potential for drug discovery 
since it targets two major issues associated with bioactivity prediction, 
namely the optimization and patterns [17]. QML is a combination of 
QC and ML, and its application is in enhancing the predictive models of 
drug discovery. QML can transform classical molecular descriptors into 
quantum states and thus explain the relationships that classical models 
fail to explain.

However, current quantum devices, known for their NISQ 
systems, face challenges with noise and error rates [18]. However, 
there are some limitations of QC, and still, it has been applied in 
certain domains, including protein folding, molecular docking, and 
QSAR modeling [19]. Variational quantum eigensolver and quantum 
approximate optimization algorithm have been used to improve the 
model’s performance [20, 21]. 

2.3. Hybrid quantum-classical approaches in bioinfor-
matics

The use of quantum and classical algorithms is intended to provide 
the benefits of both approaches while avoiding the weaknesses inherent 
in each. To realize this, data encoding is done via quantum methods, 
while the fine-tuning is performed by classical ML techniques, allowing 
the models to search large feature spaces to improve predictive power. 
Such combinations have been helpful in drug discovery, especially 
when it comes to deriving interaction models for drugs and proteins 
and estimating their bioactivity. QML is a process that accelerates the 
generation and screening of drugs cost-effectively. For instance, Bhatia 
et al. [22] developed a framework of combining classical support vector 
classifiers with quantum kernel-based methods that yielded higher 
AUC ROC values of 0.80–0.95 in the simulation studies. A framework 
proposed by Mensa et al. [23] used SVC with a quantum kernel using a 
COVID-19 dataset for ligand-based virtual screening, proving quantum 
advantage for target-specific datasets. A hybrid quantum neural network 
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utilized the Genomics of Drug Sensitivity in Cancer dataset for building 
a prediction model to determine drug responses in cancer patients. The 
combination of deep learning with ML models gained a 15% increase in 
the predictive performance. The research did not present detailed, explicit 
limitations; however, it implied challenges stemming from quantum 
hardware constraints together with variations in cancer data [24].

Quantum SVMs and quantum kernel-based neural networks, as 
part of the more complex quantum hybrid models [25], are now proving 
to have better bioactivity prediction as compared to the traditional 
methods. Most of them are still in the proof-of-concept phase, but 
they show a great deal of potential for future drug discovery projects. 
However, Table 1 provides previous studies of drug discovery, but 
the application of hybrid quantum-classical methods is not toward 
cardiovascular drug discovery in particular, which is the gap that this 
paper seeks to fill. 

2.4. Research gap and motivation
QML to drug discovery. Nevertheless, the use of QML for 

bioactivity prediction of CVDs is still negligible. The majority of the 
past studies investigated less complex multi-pathway situations or 
diseases that are based on fewer pathways [26]. Because CVDs are 
inherently multiscale, they offer a perfect chance for synergistically 
combining quantum and classical ML approaches to enhance bioactivity 
predictions and speed up the identification of therapeutic compounds. 
QML technique in cardiovascular drug discovery is still in its early 
stage; however, the methodologies and approaches discussed in the 
recent studies are generic. Due to the complexity and massive data 

processing of the CVDs, the field is ripe for quantum and quantum-
inspired ML. These approaches can manage the structural-activity 
relationships, which are complex and not taken into account by the 
basic ML models.

To this end, the QFM is proposed to fill this gap. The QFM 
combines the quantum-based data encoding with the classical 
classification methods and the QRF for feature encoding and logistic 
regression for the prediction. Therefore, the QFM, which encodes 
molecular descriptors as quantum states, achieves a high level of 
structural-activity modeling of cardiovascular-targeted compounds and 
creates a basis for the subsequent development of quantum-driven drug 
discovery tools.

3. Data Acquisition 
In the current study, we employed data from the ChEMBL 

database [27], which is a large bioinformatics database containing 
information on the bioactivities of billions of compounds tested against 
numerous targets. ChEMBL was selected due to its relevance and 
accuracy in providing data on compounds that target cardiac proteins 
that are critical for cardiovascular drug discovery. This guarantees 
that the dataset employed in our model is accurate and relevant for 
bioactivity prediction in therapeutic compounds for cardiac diseases. 

3.1. Dataset characteristics
The dataset includes molecular descriptors, which serve as 

features for the predictive model are given in Table 2.

3

Study Methodology Application Dataset used
Performance 
metrics Key findings Limitations

Ashraf et al. [5] ML with neu-
ral networks

SARS-CoV-2 bio-
activity prediction

Custom 
SARS-CoV-2 
data

Accuracy, 
precision, F1 
score

Neural networks are effec-
tive in identifying bioactive 
compounds for SARS-
CoV-2

Limited in capturing 
nonlinear dependencies in 
molecular structures

Chenthamarakshan 
et al. [9]

Deep genera-
tive models

Drug target inhibi-
tor discovery

Drug inhibi-
tor dataset

Recall, F1 
score

Generated novel candidate 
molecules; effective in deep 
generative modeling

High computational cost, 
challenging to interpret 
generated features

Vamathevan et al. 
[10]

Random For-
est and Deep 
Learning

Drug discovery 
(various applica-
tions)

Large bio-
logical and 
chemical 
datasets

Accuracy, Pre-
cision, Recall

Demonstrated deep learning 
and RF effectiveness across 
large-scale datasets

Limited generalizability 
without extensive feature 
engineering

Shi [11] Support vec-
tor regression 
(SVR)

QSAR modeling 
for antioxidant 
activity

Custom 
antioxidant 
compounds

R², Mean ab-
solute error

Effective at capturing 
high-dimensional data 
patterns, SVR is effective 
for QSAR

Requires careful hyperpa-
rameter tuning, sensitive 
to data variability

Rodríguez-Pérez 
and Bajorath [12]

Support vec-
tor machine 
and regres-
sion

Chemoinfor-
matics and drug 
discovery

Molecular 
descriptors 
datasets

Accuracy, 
precision

Robust predictive modeling 
of bioactive compounds in 
large datasets

Limited scalability for 
highly nonlinear bioactivi-
ty relationships

Bhatia et al. [22] Quantum ML 
(QML) for 
ADME-Tox 
prediction

ADME-Tox 
properties in drug 
screening

SMILES-
based AD-
ME-Tox

AUC ROC, 
accuracy

QML-based quantum kernel 
outperformed classical 
models in predicting AD-
ME-Tox.

NISQ device limitations 
restrict scalability and 
real-world applications

Lau et al. [26] Quantum-​
Machine 
Learning

General drug-​pro-
tein interactions

Simulated 
drug-protein 
data

Accuracy, 
recall

Showed potential for 
quantum methods to explore 
high-dimensional feature 
spaces

Quantum methods are still 
largely theoretical, limited 
by current hardware.

Table 1
Previous studies
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It includes the molecular descriptors of the dataset, such as 
MW, LogP, NumHDonors, and NumHAcceptors are prominent in 
determining the level of bioactivity of the compounds. For instance, the 
LogP measures the hydrophobicity characteristic, which is fundamental 
to the bioactivity of a substance, and the MW affects the solubility and 
bioavailability of the substance. The dependent variable, Bioactivity 
Class, distinguishes compounds between “active” and “inactive.”

3.2. Data collection process
The data collection process involves systematic steps, which 

include:

1.  Accessing ChEMBL: Bioactivity data mining through the ChEMBL 
query tool.

2.  Defining search criteria: Concentrating on compounds with certain 
IC50 values associated with cardiac targets and high assay reliability.

3.  Filtering and quality control: The first step in cleaning the data is to 
delete any records that contain such values as missing or low-quality 
data.

4. Methodology
This research develops the QFM to integrate quantum-inspired 

and conventional ML models for better bioactivity prediction in 
cardiovascular drugs. This work proceeds from data preprocessing to 
quantum encoding of data and model development before implementing 
stacking classifiers for conventional and quantum models. The proposed 
model integrates classical and QC to build an operational model through 
these sequential steps

4.1. Data preprocessing
The QFM model requires good-quality input data, which 

preprocessing ensures according to Figure 1. The following data 
preparation procedure converted the ChEMBL dataset into a form 
suitable for bioactivity prediction:

1.  Eliminating incomplete records: The dataset underwent cleaning 
procedures to remove entries that contained errors or data omissions, 
such as improper SMILES strings or bioactivities, because of their 
impact on data integrity. Computational software depends on 

SMILES strings as its fundamental element to process and handle 
chemical structures.

2.  Filtration based on molecular descriptors: Compounds having 
MW or logP values outside permitted ranges were excluded. The 
selection process aims to eliminate compounds that would not 
perform well during target interaction with heart-related proteins.

3.  Feature normalization: The model required all molecular descriptors 
to maintain proper weighting, so we normalized all numerical 
features, including MW, LogP, NumHDonors, and NumHAcceptors, 
between 0 and 1 values. The process intends to keep features uniform 
for model training purposes.

4.1.1. Molecular descriptors calculation
The following are the molecular descriptors calculation:

1) Molecular Weight (MW)
The total mass of all atoms in a compound is calculated as:

where Mi is the atomic mass and Ni is the number of atoms of each 
element.

2) LogP
The logarithm of the partition coefficient between octanol and 

water, defined as:

3) NumHDonors and NumHAcceptors
•  The number of hydrogen atoms capable of forming hydrogen 

bonds.
•  The number of atoms (typically nitrogen, oxygen, or fluorine) 

that can form hydrogen bonds.
•  All descriptors were calculated from SMILES strings using 

RDKit, a cheminformatics toolkit. These descriptors are 
essential for identifying bioactivity trends in the molecular 
dataset

4.1.2. Class balancing with synthetic minority oversampling technique
A model trained on unbalanced datasets will make predictions 

toward the majority class due to the unequal distribution of “active” and 
“inactive” compounds. The synthetic minority oversampling technique 
(SMOTE) served as a solution to handle this problem. Through 
SMOTE, the minority class receives synthetic samples that arise from 

(1)

(2)
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Feature Description
Molecule ChEMBL ID Unique identifier for each compound.
SMILES Text representation of molecular structures.
Bioactivity Class Categorized as “active” or “inactive.”
Molecular Weight 
(MW)

Indicates solubility and bioavailability.

Logarithm of Partition 
Coefficient (LogP)

Represents hydrophobicity and membrane 
permeability.

Number of Hydrogen 
Bond Donors 
(NumHDonors)

Impacts binding with biological targets.

Number of Hydrogen 
Bond Acceptors 
(NumHAcceptors)

Affects molecular interactions with targets.

Table 2
Dataset Features

 Figure 1
Data Preprocessing 



interpolating existing feature space data points, thus achieving dataset 
balance.

The model’s dominance by the majority class is avoided through 
this method, which enhances its capability to handle imbalanced 
datasets. By balancing the instances of two classes in the dataset, 
SMOTE enables more accurate predictions of compound bioactivity 
between active and inactive categories.

4.2. Model development
QFM is a novel model that combines classical ML and quantum-

inspired strategies to improve the prediction performance of bioactivity 
in CVD drug candidates. 

1.  Initially, the core factor of the proposed model is where the QRF 
maps the molecular descriptors to quantum feature vectors in a 
high-dimensional Hilbert space to learn nonlinear dependencies and 
entangled relationships where the classical model fails.

2.  The proposed model has multiple layers can be observed in Figure 2, 
where the base layer and meta layer are. The first layer, where the 
classifiers are trained on quantum features in parallel with classical 
models trained on the same feature space. Bioactivity benefits from 
the ML approaches, which utilize distinct biases to discover different 
aspects of bioactivity data.

3.  During the second stage, the logistic regression model functions as a 
meta-learner that unifies prediction probabilities received from both 
quantum and classical base learners. The stacking technique serves 
three purposes, including error correction, weighted consensus 
formation, and strong generalizability to unseen molecular data.

This meta learner fuses both models, which helps to align model 
complexity with classical stability.

4.2.1. Quantum data encoding
The major part of this research is the use of quantum data 

encoding [28] within the QFM. This approach uses angle embedding 
as the quantum encoding method because this approach is efficient 
in the encoding of classical data into quantum states. Quantitative 
descriptors such as MW, LogP, NumHDonors, and NumHAcceptors are 
represented as rotation angles of quantum circuits. This transformation 
enables the model to work in a high feature space, identifying complex 
and nonlinear features that classical algorithms find difficult to capture.

1)  Angle embedding layer
In this layer, it allows taking numeric values from molecular 

descriptors and inputs them into the state of qubits. Imagine this is 

similar to turning the dial on a device with input numerals. This process 
brings standard data into the appropriate format that the quantum circuit 
will be able to work with.
The quantum state θ  after angle embedding is mathematically 

represented as follows:

θ θ

where U (θ) denotes the unitary operation parameterized by θ, and 0⊗n 
represents the initial state of n qubits.

Mathematically, this process transforms the default state of the 
qubits by applying a specific operation known as a unitary transformation 
based on input values. All qubits begin in a default state, essentially 
blank, and this layer configures them with the molecular data.

2)  Strongly entangled layer
This layer initiates the qubit states first and then connects the 

qubits. It uses a mix of two operations: CNOT gates that act as a 
connection between qubits so that they affect one another, and rotation 
gates (RX(π/5)) that further modify the state of each qubit.

These two steps enable the circuit to capture more sophisticated 
relationships between features. The embedding and entangling layers, 
in conjunction with each other, convert the input data into a new and 
more informative format better suited to learn patterns of bioactivity.

4.2.2. Quantum embedding circuit
As shown in Figure 3, the QFM uses a quantum embedding 

circuit in its design. The circuit comprises four quantum bits, q[0] 
through q[3], and four control classical bits, c[0] through c[3]. 

The key steps include the following:

1.  Every qubit is then subjected to an RX(π/2), where molecular 
features of heart-targeted drugs are encoded into the qubit states.

2.  A control gate connects q[0] with q[1], with an RZ(π/5) performed 
on q[1].

3.  q[1] and q[2] are entangled, and then an RZ (π) is done on q[2].
4.  q[2]and q[3]are now entangled and then an RZ(π/5) is performed 

on q[3].

This circuit creates dependencies between qubits, which 
correspond to different molecular descriptors. It demonstrates how the 
partition coefficient (LogP) may affect bioactivity if the MW is taken 
into consideration. The outcome of this quantum embedding circuit is to 
expand the number of features that QRF can look at by an exponential 
factor, improving its capability to classify bioactivities.

In this study, we used angle embedding for quantum data encoding 
because it provides good computational efficiency and NISQ-era 
hardware compatibility. Angle embedding converts traditional molecular 
attributes like MW and LogP together with hydrogen bond donors and 
acceptors into quantum gate rotation angles, mostly consisting of RX, 
RY, or RZ types that alter the quantum state. The implementation of 
Amplitude Embedding depends on vector normalization followed by 

(3)

 Figure 3
Quantum Embedding Circuit
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Figure 2
Quantum Fusion Model 

Note. SMOTE = synthetic minority oversampling technique.
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data encoding into quantum states through amplitude modification 
[29]. The unique nature of amplitude encoding requires deep quantum 
circuits and exact state preparation, but it remains incompatible 
with both simulation work and hardware that needs precision. Basic 
encoding techniques use binary inputs, which makes them incapable 
of representing continuous molecular descriptors. This requires high 
computational expenses and optimization complications. Angle 
embedding provides linear depth in circuits and easier training and 
simulation capabilities, and direct links between quantum parameters 
and input features to boost interpretability.

4.3. Quantum random forest
The QRF classifier is the central component of the QFM model, 

as it implements quantum states to boost the bioactivity prediction. 
After the circuit transformation of every data point into one with the 
quantum embedding circuit, the intricate patterns are more recognizable. 
QRF works with parallel “quantum trees” in a way that resembles the 
decision tree approach of classical RFs. A different section of the data 
set reaches each model, which generates a prediction. By using quantum 
operations, the quantum trees contain data processing operations, 
including rotations and entanglements. The operations within the 
model enable it to uncover relationships between features that classical 
trees cannot usually discover. The quantitative predictions come from 
individual quantum trees. Majority voting serves as the basis to produce 
the final output, just as traditional forests do. The voting procedure 
strengthens both the accuracy and stability of the model. 

4.3.1. Comparison with other quantum techniques
The development of the QFM involved studying multiple QML 

techniques, where QRF emerged as the selected quantum component. 
The following explanation describes the selection of QRF over other 
quantum models during the QFM development process.

1)  Quantum Support Vector Machine (QSVM)
The QSVM detects complex data relationships through quantum 

kernel functions. The theoretical power of QSVM [30] requires 
substantial computational effort because it must generate extensive 
kernel matrices that expand proportionally to dataset expansion. 
Quantum models demonstrate poor performance and slowness during 
dataset processing on current quantum platforms.

2)  Variational Quantum Classifier
Variational circuits incorporate trainable parameters as the basis 

for modeling nonlinear data in variational quantum classifier. The 
expressive nature of these models comes with two main challenges that 
must be addressed. The deep circuit architecture becomes incompatible 
with NISQ devices due to their unreliable operation. Training 
optimization turns extremely difficult as barren plateaus create barren 
regions, which frequently appear in these models.

The use of QRF enables superiority because it merges QC 
advantages with classical computing advantages. This helps to train 
different models to produce predictions that combine into a single 
output. This technique demonstrates both effective noise resistance and 
protection against overfitting. The system allows parallel prediction 
processing that suits molecular data sets with large dimensions and 
unbalanced characteristics. QRF functions effectively as part of QFM 
stacked architecture with traditional models like RF and gradient 
boosting (GB). The method uses angle-encoded molecular descriptors 
with logistic regression classifiers in each tree to generate results that run 
on current hardware systems.

The prediction through QRF uses aggregated outputs from multiple 
logistic regression classifiers that analyze quantum-encoded features. 
The system reaches its final decision by applying majority voting to 
predictions from individual classifiers, which evaluate each input.

4.3.2. QRF prediction mechanism
QRF performs predictions by combining the results from multiple 

logistic regression classifiers that work with features encoded in quantum 
mechanics. This makes use of majority voting to determine its final 
decision based on the class predictions provided by individual classifiers. 
Mathematically, the final decision is made through major voting by the 
following:

where Nestimators are the number of estimators in the QRF, hj(xi) is the 
prediction of the jth logistic regression model for input data xi, and I (·) 
is an indicator function.

4.4. Quantum fusion model
QFM is an ensemble framework that combines logistic regression 

learners that use quantum-level encoding with traditional machine 
learning classifiers, which apply RF and logistic regression as the 
meta-learner. This combination takes the feature expressiveness of the 
quantum circuit and the classical stability and uses them to enhance the 
prediction capability.

4.4.1. QFM training

At the beginning of the QFM pipeline, the molecular 
descriptor vectors enter a feature space through the quantum 
circuit. Simple rotations and entangling gates in this method 
generate the set of quantum measurements, which serve as quantum 
features. The quantum measurements produce data that contains 
high-order correlation information through mechanisms that 
avoid deep or noisy circuit operations. Once they are precomputed, 
quantum feature vectors are trained on the following base learners 
in parallel:

1)  Random forest (RF)
This model constructs numerous decision trees using RF from 

randomly selected molecular descriptor subsets that contain both 
physicochemical properties and fingerprint counts. This employs 
bagging techniques that protect against noise while avoiding overfitting 
of related chemical characteristics.
2)  Gradient boosting (GB)

The same descriptor space is used by GB to build multiple 
shallow decision trees in sequence, while each new tree aims to address 
remaining errors from previous trees. The model reveals hidden 
structure activity relationships that exist within the dataset through this 
method.
3)  AdaBoost (AB)

The class imbalance between active and inactive bioactivity 
labels leads AB to adaptively adjust the weights of misclassified 
molecules during training. The ensemble model focuses exclusively on 
testing molecules that are situated close to the activity threshold during 
training.
4) Quantum random forest (QRF)

The quantum measurements of molecules are the input for QRF 
through the Pauli-Z expectation values from the embedding circuit, 
while the model trains multiple logistic regression nodes on different 
bootstrap samples. QRF uses the quantum-encoded features to identify 
the complex interactions.

These base learners, consisting of three classical and one 
quantum-enhanced approach, deliver distinct perspectives about the 
cardiovascular bioactivity data. The stacked meta-learner receives 
predictions from each of the four learners to generate the final activity 
classification.

(4)
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4.4.2. QFM stacking procedure

The stacking classifier functions through the following two-step 
process:

1.  Training each base model requires separate execution using 80% of 
the dataset with optimized hyperparameters for achieving maximum 

performance. The models produce meta-features that serve as inputs 
for the subsequent stage of the process.

2.  The training of a logistic regression classifier uses base model-
derived meta-features to produce its combined output. The stacking 
classifier produces its final output through an integration of base 
model predictions that harmonizes QC elements with classical 
approaches.

The meta-classifier is defined as follows:

The softmax function σ applies to the weight matrix W together 
with the bias vector b, which were learned during training.

4.4.3. Cross-validation and training

A five-fold cross-validation approach is applied to the model 
during the training methodology.

1.  For each fold k = 1, . . . , 5:
The training of base models hi occurred on four folds while 

predictions were generated for the reserved fold. The out-of-fold 
predictions get aggregated to create new features Xmeta. The training of 
hmeta occurs on the generated meta-features through a process.

2.  The entire dataset undergoes model training with the optimized 
configuration after final model development.

This method employs two distinct levels to predict accurate 
performance, along with avoiding overfitting through prediction 
validation across different dataset sections.

4.5. Hyperparameter tuning and cross-validation
Hyperparameter tuning is an essential step for both classical 

and quantum models to enhance model performance. The grid 
search methodology was used to determine parameter values, which 
included mtry for RF and alpha for GB, and max_depth together 
with n_estimators for AB from predefined ranges. The proposed 
model adjusted the QRF model parameters to find the best point 
between performance effectiveness and quantum computational 
requirements.

The training phase employed five-fold cross-validation to validate 
the proposed models against overtraining while performing the training 
process. The evaluation process provided independent assessments 
of all components, ensuring high validity and transferability for the 
stacked QFM.

4.6. Computational resources and constraints
The training of high-power computing resources with GPU 

capabilities was used for the development and evaluation of the model, 
as well as to train the classical models for the QFM. Data encoding and 
circuit emulation were performed with classical hardware, using the 
PennyLane library to simulate an NISQ environment. All the quantum 
operations were performed in the emulated quantum platform, which 
is realistic considering existing limitations to quantum technology and 
available quantum hardware.

5. Model Evaluation and Results
This section analyzes the performance results of the proposed 

QFM with the classification report, F1 score, recall, precision, and ROC 
curves. The QFM, together with QRF, RF, GB, and AB models, showed 
high accuracy in bioactive compounds classification. Table 3 shows that 

(12)
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the QFM attained an accuracy of 92.7%, which is higher than that of the 
individual models. High accuracy is further backed up by the balanced 
precision, recall, and F1 score of 0.91 in both the active and inactive 
classes in the model.  

A detailed analysis shows a balanced class-wise performance. 
For the active class, the model was 0.92 for accuracy, 0.93 for recall, 
and 0.92 for the F1 score. At the same time, for the inactive class, it 
obtained the precision of 0.94, the recall of 0.93, and the F1 score of 
0.93. This balance is significant in bioactivity classification because 
misclassification in either class can be costly.

Figures 4 and 5 represent the ROC and precision-recall curves 
of QFM, which achieves high performance in bioactivity prediction. 
QFM demonstrates reliable active-compound identification by showing 
a steep rising ROC curve and a large AUC value, along with a high 
PR AUC value for maintaining precision in rare active detection. It 
combines multiple perspective views through majority voting, which 
detects weak structure–activity relationship patterns that classical 
models cannot detect, while using partial vote dilution to minimize bias 
and variance in the process. This makes the QFM optimal for imbalanced 
noisy_filted datasets found in cardiovascular drug discovery.

5.1. Comparative analysis
This section provides a comparative analysis of the proposed 

QFM with the individual base models and classical ML methods. 
The evaluation metrics include accuracy, precision, recall, F1 score, 
confusion matrix, and ROC-AUC. This section highlights the values of 

the quantum-classical integration in improving the predictive capability 
and model stability of a given problem.

5.1.1. Confusion matrix analysis

The confusion matrix shows detailed qualitative model 
classification performance results by recording TP, TN, FP, and FN 
counts for active and inactive class classifications. The classification 
errors demonstrated by the QFM appear less frequent in Figure 6 when 
compared to classical model performance levels.

The QFM demonstrates strong generalization capabilities 
for unseen data because it balances true positive and true negative 
predictions effectively for bioactivity prediction. The diminished 
number of false positives and false negatives demonstrates improved 
reliability of active compound identification through error reduction in 
classification.

5.1.2. ROC-AUC analysis

The AUC acts as a performance indicator for the ROC curve, 
which controls model classification abilities. Figure 7 shows the 
ROC curves for the QFM and classical models.  QFM model with 
an AUC score of 0.961 as its curve extends toward the top-left 
corner of the plot for excellent discrimination ability. Quantum data 
encoding in the QFM enables strong discriminative power because it 
successfully detects complex molecular patterns, resulting in a high 
AUC score. The AUC scores from classical models fall between 0.82 
and 0.87, indicating moderate performance levels. This represents 
that the proposed model performs well compared with the classical 
models.

5.1.3. Precision-recall curve analysis

The precision-recall curve acts bioactivity prediction evaluation 
because it demonstrates how well models predict “active” class 
instances among minority datasets. The QFM demonstrates superior 
precision performance for all models. The QFM demonstrates the best 
precision-recall area performance in Figure 8 among all evaluated 
models, which proves its effectiveness in working with imbalanced 
datasets and keeping precision at elevated recall points.
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 Figure 5
QFM Precision-Recall Curve 

Class Precision Recall F1 score
Active 0.92 0.93 0.92
Inactive 0.94 0.93 0.93
Accuracy: 0.93

Table 3
Classification Report

 Figure 4
QFM ROC Curve 

Note. QFM = quantum fusion model and ROC = receiver operating character-
istic.
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5.1.4. Performance metrics summary

The results in Figure 9 show that the QFM provided superior 
performance than classical approaches across all metrics, including 
accuracy, precision, recall, and F1-score. In Table 4, QFM demonstrated 
92.7% accuracy and precision levels of 0.94 and recall levels of 0.92, 
resulting in an F1-score of 0.93.

Tables 5, 6, and 7 provide the key improvements about the QFM 
approach. First, the comparison with Classical models, Tree-based 
models, and Boosting models is addressed below.

The QFM shows better accuracy, recall, and F1 score outcomes 
when compared to conventional ML methods, as well as classical 
learners and tree-based models, and advanced ensemble techniques. 
QFM demonstrates remarkable performance gains because it achieves 

 Figure 6
Confusion Matrix for Comparison with Traditional Models 



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

10

Model Accuracy F1 score Recall
Decision tree +0.08 +0.05 +0.08
Random forest +0.05 +0.04 +0.07
Extra trees +0.07 +0.04 +0.08

Table 6
Comparison with Tree-Based Models

 Figure 8
Comparison of the Precision-Recall Curve 

 Figure 9
Model Performance 

Model Accuracy F1 score Recall
Logistic Regression 0.60 0.61 0.60
Support Vector Machine 0.65 0.66 0.65
k-Nearest Neighbors 0.79 0.79 0.78
Decision Tree 0.85 0.87 0.86
Naive Bayes 0.57 0.57 0.58
Random Forest 0.88 0.88 0.87
Gradient Boosting 0.85 0.85 0.85
AdaBoost 0.79 0.79 0.79
Extra Trees 0.86 0.88 0.86
XGBoost 0.87 0.87 0.85
CatBoost 0.86 0.87 0.86
Quantum Fusion Model 0.93 0.92 0.94

Table 4
Comparative Analysis 

Model Accuracy F1 score Recall
Logistic regression +0.33 +0.31 +0.34
Support vector machine +0.28 +0.26 +0.29
k-nearest neighbors +0.14 +0.13 +0.16

Table 5
Comparison with Classical Models

 Figure 7
Comparison of ROC Curves 

Note. ROC = receiver operating characteristic.
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33% more accuracy than logistic regression and 29% better recall 
than SVM. The fixed feature spaces, together with linear separability 
and distance-based models within continuous neighborhoods, fail to 
function properly when molecular features interact through hierarchical 
methods. Tree-based models perform better due to their ability to model 
nonlinearity, but they depend on discrete decision boundaries and 
cannot represent subtle interdependencies among molecular descriptors. 
QFM focuses on these limitations by introducing quantum angle 
embedding and entangling layers that send molecular descriptors into 
a high-dimensional Hilbert space, which allows for capturing intricate 
correlations between features such as LogP, MW, and hydrogen bond 
interactions. The hybrid architecture combines a quantum-enhanced 
model with diverse classical models through a stacked ensemble. 
This stacked fusion enables to representation of discrete decisions and 
continuous entangled patterns, resulting in higher accuracy and better 
generalization to unseen compounds. Particularly, the improved recall 
across all comparisons indicates QFM’s strength in minimizing false 
negatives in bioactivity prediction.

The high precision and recall values depict the efficiency of 
the QFM in the bioactivity prediction by assessing the number of 
true positive activities while at the same time reducing false positive 
activities. The high F1 score also underlines the fact that for the majority 
of real-world applications where both precision and recall are equally 
crucial, the proposed model yields satisfactory results.

6. Conclusion and Future Work
This study provides a novel QFM framework that integrates 

quantum mechanics  with the classical models, which classifies 
the active and inactive compounds in CVD bioactivity targets. It 
combines a shallow-circuit QRF alongside RF, GB, along with AB 
through stacking, which enables the model to detect both quantum 
correlations of high order and classical decision boundaries. The 
proposed model demonstrates generalization capacity with high 
precision and recall values under imbalanced class conditions. The 
capabilities of QFM produce significant benefits for drug discovery 
through two channels: it enables the robust selection of better 
candidate molecules and slashes false positive rates in experiments, 
and guides more advanced enhancement methods focused on 
unobserved feature interactions.

This work has some constraints despite recent accomplishments. 
This examines cardiovascular targets from ChEMBL with standard 
descriptors, but it does not cover the extensive chemical diversity 
found in wider therapeutic fields. The performance of quantum models 
requires optimization of hyperparameters and circuit designs because 
their impact on quantum hardware will improve with its ongoing 
development.

The future work may include the following:

1.  Testing on new bioactivity repositories, which include various 
targets from oncology, infectious disease, and metabolic categories, 
to determine their predictive power across diverse chemical 
environments. 

2.  A study can be conducted on deep or variational quantum 
circuits with error mitigation methods while also testing stacked 
components, including SVMs and neural networks, to improve 
performance.

These directions may drive the development of more efficient and 
cost-effective drug discovery strategies for CVD and other therapeutic 
areas.

Ethical Statement
This study does not contain any studies with human or animal 

subjects performed by any of the authors.

Conflicts of Interest 
The authors declare that they have no conflicts of interest to this 

work.

Data Availability Statement 
The data that support the findings of this study are openly avail-

able at https://www.ebi.ac.uk.

Author  Contribution Statement
Gundala Pallavi: Methodology, Software, Data curation, 

Writing – original draft, Visualization, Project administration. 
Ali Altalbe: Investigation, Writing – review & editing. Prasanna 
Kumar Rangarajan: Conceptualization, Validation, Formal analysis, 
Resources, Writing – review and editing, Supervision.

References
[1]	 Zaidan, A. M. (2023). The leading global health challenges in the 

artificial intelligence era. Frontiers in Public Health, 11, 1328918. 
https://doi.org/10.3389/fpubh.2023.1328918

[2]	 Schapin, N., Majewski, M., Varela-Rial, A., Arroniz, C., & de 
Fabritiis, G. (2023). Machine learning small molecule properties 
in drug discovery. Artificial Intelligence Chemistry, 1(2), 100020. 
https://doi.org/10.1016/j.aichem.2023.100020

[3]	 Babu, S. V., Ramya, P., & Gracewell, J. (2024). Revolutionizing 
heart disease prediction with quantum-enhanced machine learning. 
Scientific Reports, 14(1), 7453. https://doi.org/10.1038/s41598-
024-55991-w

[4]	 Liang, Z., He, Z., Sun, Y., Herman, D., Jiao, Q., Zhu, Y., ..., & Shi, 
Y. (2024). Synergizing quantum techniques with machine learning 
for advancing drug discovery challenge. Scientific Reports, 14(1), 
31216. https://doi.org/10.1038/s41598-024-82576-4

[5]	 Ashraf, F. B., Akter, S., Mumu, S. H., Islam, M. U., & Uddin, 
J. (2023). Bio-activity prediction of drug candidate compounds 
targeting SARS-Cov-2 using machine learning approaches. 
PLOS ONE, 18(9), e0288053. https://doi.org/10.1371/journal.
pone.0288053

[6]	 Sadybekov, A. V., & Katritch, V. (2023). Computational approach-
es streamlining drug discovery. Nature, 616, 673–685. https://doi.
org/10.1038/s41586-023-05905-z

[7]	 Obaido, G., Mienye, I. D., Egbelowo, O. F., Emmanuel, I. D., 
Ogunleye, A., Ogbuokiri, B., ..., & Aruleba, K. (2024). Super-
vised machine learning in drug discovery and development: 
Algorithms, applications, challenges, and prospects. Machine 
Learning with Applications, 17, 100576. https://doi.org/10.1016/j.
mlwa.2024.100576

Model Accuracy F1 score Recall
AdaBoost +0.14 +0.13 +0.15
XGBoost +0.06 +0.05 +0.09
CatBoost +0.07 +0.05 +0.08

Table 7
Comparison with Boosting Models

https://www.ebi.ac.uk
https://doi.org/10.3389/fpubh.2023.1328918
https://doi.org/10.1016/j.aichem.2023.100020
https://doi.org/10.1038/s41598-024-55991-w
https://doi.org/10.1038/s41598-024-55991-w
https://doi.org/10.1038/s41598-024-82576-4
https://doi.org/10.1371/journal.pone.0288053
https://doi.org/10.1371/journal.pone.0288053
https://doi.org/10.1038/s41586-023-05905-z
https://doi.org/10.1038/s41586-023-05905-z
https://doi.org/10.1016/j.mlwa.2024.100576
https://doi.org/10.1016/j.mlwa.2024.100576


Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

[8]	 Pallavi, G., & Prasanna Kumar, R. (2025). Quantum natural lan-
guage processing and its applications in bioinformatics: A com-
prehensive review of methodologies, concepts, and future direc-
tions. Frontiers in Computational Science, 7, 1464122. https://doi.
org/10.3389/fcomp.2025.1464122

[9]	 Chenthamarakshan, V., Hoffman, S. C., Owen, C. D., Lukacik, P., 
Strain-Damerell, C., Fearon, D., ..., & Das, P. (2023). Accelerat-
ing drug target inhibitor discovery with a deep generative foun-
dation model. Science Advances, 9(25), eadg7865. https://doi.
org/10.1126/sciadv.adg7865

[10]	 Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, 
E., Lee, G., ..., & Zhao, S. (2019). Applications of machine learn-
ing in drug discovery and development. Nature Reviews Drug 
Discovery, 18, 463–477. https://doi.org/10.1038/s41573-019-
0024-5

[11]	 Shi, Y. (2021). Support vector regression-based QSAR models 
for prediction of antioxidant activity of phenolic compounds. 
Scientific Reports, 11(1), 8806. https://doi.org/10.1038/s41598-
021-88341-1

[12]	 Rodríguez-Pérez, R., & Bajorath, J. (2022). Evolution of support 
vector machine and regression modeling in chemoinformatics 
and drug discovery. Journal of Computer-Aided Molecular De-
sign, 36(5), 355–362. https://doi.org/10.1007/s10822-022-00442-
9

[13]	 Mao, J., Akhtar, J., Zhang, X., Sun, L., Guan, S., Li, X., ..., & Wang, 
G. (2021). Comprehensive strategies of machine-learning-based 
quantitative structure-activity relationship models. iScience, 
24(9), 103052. https://doi.org/10.1016/j.isci.2021.103052

[14]	 Siddiqui, N. F., Vishwakarma, P., Thakur, S., & Jadhav, H. R. 
(2025). Bioactivity predictions and virtual screening using ma-
chine learning predictive model. Journal of Biomolecular Struc-
ture and Dynamics, 43(8), 3909–3928. https://doi.org/10.1080/07
391102.2023.2300132

[15]	 Raschka, S., & Kaufman, B. (2020). Machine learning and AI-
based approaches for bioactive ligand discovery and GPCR-ligand 
recognition. Methods, 180, 89–110. https://doi.org/10.1016/j.
ymeth.2020.06.016

[16]	 Yadalam, P. K., Natarajan, P. M., Saeed, M. H., & Ardila, C. M. 
(2025). Variational approaches for drug-disease-gene links in 
periodontal inflammation. International Dental Journal, 75(1), 
185–194. https://doi.org/10.1016/j.identj.2024.09.025

[17]	 Pyrkov, A., Aliper, A., Bezrukov, D., Lin, Y. C., Polykovskiy, 
D., Kamya, P., ..., & Zhavoronkov, A. (2023). Quantum comput-
ing for near-term applications in generative chemistry and drug 
discovery. Drug Discovery Today, 28(8), 103675. https://doi.
org/10.1016/j.drudis.2023.103675

[18]	 Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, 
S., Anand, A., ..., & Aspuru-Guzik, A. (2022). Noisy intermedi-
ate-scale quantum algorithms. Reviews of Modern Physics, 94(1), 
015004. https://doi.org/10.1103/RevModPhys.94.015004

[19]	 Wang, P. H., Chen, J. H., Yang, Y. Y., Lee, C., & Tseng, Y. J. 
(2023). Recent advances in quantum computing for drug discov-
ery and development. IEEE Nanotechnology Magazine, 17(2), 
26-30. https://doi.org/10.1109/MNANO.2023.3249499

[20]	 Ding, Q. M., Huang, Y. M., & Yuan, X. (2024). Molecular dock-
ing via quantum approximate optimization algorithm. Physical 

Review Applied, 21(3), 034036. https://doi.org/10.1103/Phys-
RevApplied.21.034036

[21]	 Xie, N., Lee, X., Cai, D., Saito, Y., & Asai, N. (2023). Quan-
tum approximate optimization algorithm parameter prediction 
using a convolutional neural network. Journal of Physics: Con-
ference Series, 2595(1), 012001. https://doi.org/10.1088/1742-
6596/2595/1/012001

[22]	 Bhatia, A. S., Saggi, M. K., & Kais, S. (2023). Quantum machine 
learning predicting ADME-Tox properties in drug discovery. 
Journal of Chemical Information and Modeling, 63(21), 6476–
6486. https://doi.org/10.1021/acs.jcim.3c01079

[23]	 Mensa, S., Sahin, E., Tacchino, F., Kl Barkoutsos, P., & Tavernel-
li, I. (2023). Quantum machine learning framework for virtual 
screening in drug discovery: A prospective quantum advantage. 
Machine Learning: Science and Technology, 4(1), 015023. 
https://doi.org/10.1088/2632-2153/acb900

[24]	 Sagingalieva, A., Kordzanganeh, M., Kenbayev, N., Kosichkina, 
D., Tomashuk, T., & Melnikov, A. (2023). Hybrid quantum neu-
ral network for drug response prediction. Cancers, 15(10), 2705. 
https://doi.org/10.3390/cancers15102705

[25]	 Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. 
O., Lane, T. R., & Ekins, S. (2021). Quantum machine learning 
algorithms for drug discovery applications. Journal of Chem-
ical Information and Modeling, 61(6), 2641-2647. https://doi.
org/10.1021/acs.jcim.1c00166

[26]	 Lau, B., Emani, P. S., Chapman, J., Yao, L., Lam, T., Merrill, P., 
..., & Lam, H. Y. K. (2023). Insights from incorporating quantum 
computing into drug design workflows. Bioinformatics, 39(1), 
btac789. https://doi.org/10.1093/bioinformatics/btac789

[27]	 Rath, M., & Date, H. (2024). Quantum data encoding: A compar-
ative analysis of classical-to-quantum mapping techniques and 
their impact on machine learning accuracy. EPJ Quantum Tech-
nology, 11, 72. https://doi.org/10.1140/epjqt/s40507-024-00285-
3

[28]	 Riaz, F., Abdulla, S., Suzuki, H., Ganguly, S., Deo, R. C., & 
Hopkins, S. (2025). The application of quantum pre-processing 
filter for binary image classification with small samples. Journal 
of Data Science and Intelligent Systems, 3(2), 109–116. https://
doi.org/10.47852/bonviewJDSIS42024229

[29]	 Rani, S., Kaur, R., Desai, C., & Ambilwade, R. P. (2024). Quan-
tum machine learning: Leveraging quantum computing for en-
hanced learning algorithms. International Journal of Future 
Management Research, 6(5), 1–15. https://doi.org/10.36948/
ijfmr.2024.v06i05.27450

[30]	 Ding, C., Bao, T. Y., & Huang, H. L. (2022). Quantum-inspired 
support vector machine. IEEE Transactions on Neural Net-
works and Learning Systems, 33(12), 7210–7222. https://doi.
org/10.1109/TNNLS.2021.3084467

12

How to Cite: Pallavi G., Altalbe A., & Rangarajan, P. K. (2025). QFM-BioPred: Quan-
tum Fusion Model for Bioactivity Prediction in Cardiovascular Disease Drug Discovery. 
Journal of ​Computational and Cognitive Engineering. https://doi.org/10.47852/
bonviewJCCE52025138 

https://doi.org/10.3389/fcomp.2025.1464122
https://doi.org/10.3389/fcomp.2025.1464122
https://doi.org/10.1126/sciadv.adg7865
https://doi.org/10.1126/sciadv.adg7865
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41598-021-88341-1
https://doi.org/10.1038/s41598-021-88341-1
https://doi.org/10.1007/s10822-022-00442-9
https://doi.org/10.1007/s10822-022-00442-9
https://doi.org/10.1016/j.isci.2021.103052
https://doi.org/10.1080/07391102.2023.2300132
https://doi.org/10.1080/07391102.2023.2300132
https://doi.org/10.1016/j.ymeth.2020.06.016
https://doi.org/10.1016/j.ymeth.2020.06.016
https://doi.org/10.1016/j.identj.2024.09.025
https://doi.org/10.1016/j.drudis.2023.103675
https://doi.org/10.1016/j.drudis.2023.103675
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1109/MNANO.2023.3249499
https://doi.org/10.1103/PhysRevApplied.21.034036
https://doi.org/10.1103/PhysRevApplied.21.034036
https://doi.org/10.1088/1742-6596/2595/1/012001
https://doi.org/10.1088/1742-6596/2595/1/012001
https://doi.org/10.1021/acs.jcim.3c01079
https://doi.org/10.1088/2632-2153/acb900
https://doi.org/10.3390/cancers15102705
https://doi.org/10.1021/acs.jcim.1c00166
https://doi.org/10.1021/acs.jcim.1c00166
https://doi.org/10.1093/bioinformatics/btac789
https://doi.org/10.1140/epjqt/s40507-024-00285-3
https://doi.org/10.1140/epjqt/s40507-024-00285-3
https://doi.org/10.47852/bonviewJDSIS42024229
https://doi.org/10.47852/bonviewJDSIS42024229
https://doi.org/10.36948/ijfmr.2024.v06i05.27450
https://doi.org/10.36948/ijfmr.2024.v06i05.27450
https://doi.org/10.1109/TNNLS.2021.3084467
https://doi.org/10.1109/TNNLS.2021.3084467
https://doi.org/10.47852/bonviewJCCE52025138

