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Abstract: The rise of quantum computing poses threats to traditional cryptographic systems, thereby requiring security measures to safeguard 
against traditional and quantum-attacker cyber insecurity. This framework uses quantum machine learning (QML) algorithms along with quantum-
safe encryption to boost security measures. The proposed system combines QML anomaly detection models variational quantum classifier (VQC) 
with quantum support vector classifier (QSVC) as well as quantum neural network and examines them based on the BB84 QKD protocol for 
information safety. This model was evaluated using three datasets of HIKARI Flow intrusion detection records, phishing activity logs, and 
malicious URLs. This includes all high-dimensional input by extensive application of feature engineering, which merges entropy scoring combined 
with keyword extraction and domain analysis to transmogrify it into suitable inputs for quantum processing. The QML models outperformed the 
traditional models with a maximum phishing detection accuracy of 97.75% by QSVC implementation. With the BB84 protocol, its eavesdropping 
detection was proved by quantum interference detection upon testing on IBM’s Qiskit and Google’s Cirq systems while the operations were secure 
and in attack scenarios.  This system combines the latest features to address the limitations of the current AI security model and incorporates 
post-quantum cryptography to protect against quantum threats. In conclusion, QML and quantum cryptography work efficiently with operational 
cybersecurity platforms.
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1. Introduction
In today’s digitally connected world, cybersecurity needs to 

focus on protecting systems, network, data from unauthorized access, 
disruption, and cyberattacks. Traditional security systems cannot 
provide protection from these technologically advanced attacks as they 
rely on predefined and established rules. Security systems have evolved 
with machine learning (ML) and artificial intelligence (AI) techniques 
[1], which has successfully enabled cybersecurity assignments 
including intrusion detection and phishing classification. However, 
these systems become vulnerable to attacks through AI cybersecurity 
because attackers deploy the same technological methods to execute 
data poisoning and evasion attacks [2].

Quantum computing technology causes an instant threat to 
traditional cryptographic systems that are currently in use. RSA  along 
with elliptic curve cryptography (ECC) depends on the mathematical 
difficulty of breaking large number factorization for encryption security. 
Shor’s algorithm as a quantum factorization method proves efficient 
at breaking encryption schemes that makes much of present-day 
cybersecurity infrastructure susceptible to attack [3]. The development 
of quantum-safe cryptographic methods including quantum key 

distribution (QKD) and post-quantum encryption algorithms represents 
researchers’ response to ensure data security in the long term [4].

Even with these developments, AI-powered cybersecurity and 
quantum cryptography are usually built independently. AI/ML models 
are mainly used to detect and counter classical cyberattacks, whereas 
quantum cryptographic methods are meant to be quantum adversary-
resistant without using AI-powered anomaly detection [5]. This lack of 
integration is a key challenge, exposing digital security systems to both 
adversarial AI attacks and quantum-enabled cryptanalysis.

This research proposes a hybrid cybersecurity approach that 
uses AI-based anomaly detection and quantum-resilient cryptographic 
protocols. 

The following are the main contributions of this research:

1)  A novel hybrid quantum-resistant cryptographic system featuring AI 
2)  Significant cybersecurity operations involving diverse datasets like 

intrusion detection along with phishing classification and malicious 
URL identification

3)  A proposed system that solves operating difficulties presented by 
noisy intermediate-scale quantum (NISQ) devices

4)  A comparison study that validates the quantum machine learning 
(QML)-based security system against standard AI/ML model 
performances.

The paper is structured as follows: Section 2 provides a detailed 
literature review of AI-based cybersecurity, quantum computing threats, 
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quantum-safe cryptographic methods, and current research gaps. 
Section 3 summarizes the methodology, explaining data collection, 
preprocessing, QKD integration, and QML model development. 
Section 4 discusses the results and a comparison of classical and 
quantum models of cybersecurity. Last, Section 5 concludes the research 
and considers possible avenues for future research.

2. Literature Review
The convergence of AI, ML, and quantum-safe cryptography 

has emerged as a critical part in cybersecurity, stabilizing threats from 
classical and quantum computing developments. New studies report 
challenges and opportunities involved in integrating these technologies 
to support digital security protocols. This section runs toward significant 
work in this new field. The advent of quantum computers threatens 
traditionally used cryptographic systems, RSA and ECC, both of which 
depend on the hardness of factoring large primes. Shor’s algorithm, 
which is a quantum algorithm solving this problem efficiently, would 
make conventional encryption techniques obsolete [6]. Bernstein [7] 
presented a thorough examination of why traditional cryptographic 
protocols are liable to quantum attacks.

Identifying these risks, the National Institute of Standards and 
Technology (NIST) has initiated efforts to develop post-quantum 
cryptography (PQC) standards targeted at resisting quantum adversaries. 
While these cryptographic solutions offer theoretical resistance to 
quantum attacks, Radanliev [8] critiques their computational overhead 
and deployment challenges. It recommends using hybrid security 
systems that link quantum protocol BB84 with AI security models. 
The combined approach provides a balanced solution according to 
their argument by integrating scalability capabilities with strengthened 
resilience against modern and future cyber threats.

2.1. Artificial intelligence and machine learning in 
cybersecurity

The application of AI and ML has transformed how organizations 
discover, prevent, and react to cyberattacks. These are superior in 
pattern detection, anomaly discovery, and automated response to 
threats and thus must be used in contemporary security systems. Kaur 
et al. [9] proved the superiority of adversarial ML models in both 
mimicking cyberattacks and resisting changing attacks, solidifying 
their implementation in proactive defense systems. Rafy et al. [10] 
presented deep learning-based intrusion detection models, which 
achieved the best-in-class accuracy in huge networks by effectively 
detecting malicious traffic. Likewise, Sehgal et al. [11] investigated 
ML classifiers for URL and phishing and tested their efficacy for real-
time email and URL threat detection. Aside from network security, Rios 
[12] also studied AI-based biometric authentication systems, such as 
keystroke dynamics, and their potential to improve user authentication 
against advanced attacks.

However, there are still challenges for AI-based cybersecurity. 
Avro et al. [13] and Okeke et al. [14] pointed out scalability, bias, 
and deployment limitations, citing that most organizations still rely 
on unsupervised anomaly detection approaches, which can lead 
to the research-led innovation–practice gap. In addition, Thakur 
et al. [15] pointed out the dual-edged nature of ML in cybersecurity, 
emphasizing its use in both cyber defense and offensive campaigns, 
including malware detection and spear-phishing attacks. The growing 
deployment of AI/ML in cybersecurity paradigms also raises ethical 
and technical concerns. Nag et al. [16] have highlighted the importance 
of bias mitigation enhancements and scaling to ensure AI-driven 
security controls are fair, transparent, and effective in deployment 
environments.

2.2. QML in cybersecurity
QML is an emerging field in cybersecurity, leveraging the 

capabilities of quantum computing to support threat detection. By 
combining quantum algorithms with advanced ML models, QML 
enables more efficient detection and prevention of cyberattacks 
[17–18]. Akter et al. [19] showed how a quantum support vector 
machine (QSVM) detects malware by processing Drebin215 dataset 
on Pennylane framework. The model achieved 95% accuracy in 
its operations, which proved the suitability of QML for real-world 
cybersecurity applications. Rosa-Remedios et al. [20] examined QML 
models for their ability to forecast cyberattacks by analyzing various 
cybersecurity databases where QML effectively finds concealed attack 
signatures as cybersecurity databases gain more significance for future 
investigations.

QML has also demonstrated tremendous potential in intrusion 
detection systems (IDS). Abreu et al. [21] designed QML-IDS, a hybrid 
quantum and classical IDS model, showing a higher classification 
performance for both binary and multiclass intrusion detection. Ciliberto 
et al. [22] defined fundamental QML algorithms, such as variational 
quantum classifiers (VQC) and QSVM, for security use. Later studies 
focused on certain QML methods for security applications. Rahman 
et al. [23] employed VQC and quantum feature maps to identify cyber 
threats in big data, whereas Ciaramella et al. [24] used quantum kernels 
to improve the accuracy of phishing and malware detection. Kalinin 
et al. [25] illustrated the generalization capability of quantum neural 
networks (QNNs) for complex intrusion patterns that make QNNs a 
valuable tool for managing dynamic cybersecurity threats. 

2.3. Quantum cryptography: BB84 and beyond
QKD provides a cryptographic security solution that allows 

secure encryption key exchange over insecure communication channels. 
In 1984, Bennett and Brassard introduced BB84, the most popular QKD 
protocol today, whose security rests on the principles of fundamental 
quantum mechanics.  The BB84 protocol employs polarized photons 
together with the uncertainty principle to reveal eavesdropping attempts 
because any interception produces detectable disturbances in the 
quantum channel. Multiple experimental investigations have proven that 
BB84 stands firm against multiple forms of eavesdropping attacks. This  
shows the protocol stands up to quantum attacks by using IBM Qiskit 
simulations to validate its performance [26].

The implementation of BB84 in real-world scenarios has 
significant obstacles because of quantum channel noise and hardware 
constraints. Research investigations have established new security-
improving operational enhancements for BB84 systems. On their 
thorough analysis of the QKD systems, Reddy et al. [27] explained 
decoy state protocols and improved error correction methods that defend 
against complex security threats. The BB84 protocol remains vital for 
creating enhanced modifications to establish secure communication 
systems to be adopted in practical applications.

Educational institutions now receive increased access to quantum 
cryptography technology through recent developments. Bloom et al. 
[28] created an undergraduate-level experimental setup combining 
optical components with computational simulations that implemented 
BB84 to provide students with practical exposure of QKD principles.

Bennett and Brassard [29] extended its scope to include different 
uses of quantum cryptography beyond key exchange methods. They proved 
that QKD works together with classical channels to enable secure key 
establishment without requiring prior shared information. This previous 
study presented quantum coin-tossing protocols while establishing 
fundamental principles about quantum mechanics for cryptographic 
security and exploring the Einstein-Podolsky-Rosen paradox. 
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2.4. Hybrid frameworks: AI and quantum-safe cryp-
tography

The integration of AI with quantum-resistant cryptography 
provides a feasible approach to enhancing cybersecurity through 
adaptive learning processes and quantum-resistant encryption [30]. 
Majid et al. [31] presented a hybrid model that integrates PQC and ML 
models, optimizing encryption protocols to enhance the security of 
data. Their article brings to the fore the need for adaptive cryptographic 
techniques that can counter quantum-enabled cyberattacks.

Li et al. [32] brought in gradient-free optimizers, including 
Constrained Optimization By Linear Approximations (COBYLA), for 
training QML models in NISQ systems. This helps save computational 
overhead and makes it more efficient, enhancing the practicality of 
secure quantum architectures. Building on this idea, Dash and Ullah 
[33] proposed a privacy-preserving federated learning framework, 
combining fully homomorphic encryption (FHE) with quantum kernels 
to facilitate secure decentralized data processing. To enhance quantum-
resistant cyber resilience, recent advances in cybersecurity have 
explored hybrid solutions that blend AI, cryptographic techniques, and 
blockchain-based security architectures.

Unlike isolated cryptographic systems, hybrid AI-QML 
cybersecurity models employ blockchain for safe data provenance 
tracking, PQC methods for safe encryption, and ML for anomaly 
detection. Wang et al. [34] demonstrated how graph convolutional 
networks and blockchain-based anomaly detection enhance security 
in smart healthcare environments. Similarly, for secure IoT-based 
communication, a quantum-safe software-defined IoT approach [35] 
proposes hardware-backed cybersecurity combining AI and PQC 
algorithms. Such frameworks exhibit the potential of hybrid models 
for quantum-resistant cybersecurity integrating decentralized trust 
mechanisms, cryptography, and AI. Hybrid cryptographic methods 
have also been examined for enterprise communication security. 
Rencis et al. [36] proposed a QKD-based hybrid security model that 
blends the use of classical cryptographic algorithms with quantum-
resistant PQC approaches. Their method sets up secure channels of 
communication by employing QKD links for user authentication and 
key exchange with smart cards, providing an economical and scalable 
security paradigm. Building further on these concepts, Fedorov [37] 
examined hybrid quantum-secured environments, proving the synergy 
of QKD and PQC for the protection of distributed applications like 
blockchains.

2.5. Research gaps and challenges
Despite the progress in AI, ML, QML [38], and PCQ, current 

cybersecurity frameworks do not have an integrated solution that 
accurately counteracts the classical and quantum cyber threats. 
Current research is more confined to the AI/ML-based security models 
or quantum-safe cryptographic methods but hardly considers their 
collective efficacy in a hybrid AI-QML cybersecurity framework. 
Table 1 consolidates recent AI-QML cybersecurity research 
contributions, showcasing their methodologies, strengths, weaknesses, 
and areas of research gaps. The comparison highlights the need for a 
hybrid AI-QML framework combining AI-based cyber defense with 
quantum-resistant cryptographic techniques to deliver greater security 
against both classical and quantum cyber threats.

The deployment of QML-based cybersecurity systems has 
multiple essential research obstacles, which are listed in Table 1. 

1)  NISQ hardware operates with unstable performance and numerous 
errors that slow down the growth of QML-based cybersecurity 
solutions.

2)  QKD deployment in AI-based cybersecurity systems remains 
inconsistent because no established protocols exist for its full 
implementation across different architectures.

3)  The implementation of hybrid AI-QML security systems faces 
difficulties with real-time and large-scale deployment because they 
need significant computational resources.

4)  Secure AI models utilizing QML for cybersecurity protection can 
develop into security risks when adversaries misuse them through 
automated methods for security evasion attacks.

Mitigating such challenges requires more research into:

1)  The development of uniform security guidelines needs to focus 
exclusively on protecting AI-QML cybersecurity systems.

2)  The development of ethical frameworks along with regulatory rules 
must occur to stop malicious QML technology uses.

3)  This research helps reduce existing gaps through its proposed 
combination of AI and QML cybersecurity systems. 

The present study aims to bridge existing gaps by implementation 
of an AI-QML cybersecurity framework that combines multiple 
components. The integration of QML-based threat detection models 
with quantum-resistant encryption schemes enhances cybersecurity 
resistance to cyberattacks.

3

Reference Method Strength Limitations Research Gap
[39] Theoretical framework for 

enhancing threat detection and 
encryption

Highlights QML potential in 
security

Limited experimental 
validation and lacks real-world 
implementation

Standardizing quantum 
integration and practical 
deployment

[40] Hybrid quantum security for 
botnet detection

Quantum speed-up and 
accuracy improvements

High execution time and 
hardware dependent

Optimization for practical 
QML cybersecurity analytics

[41] Red teaming approach to 
analyze cybersecurity risks

Assesses quantum security 
measures

Theoretical focus lacks 
practical deployment

Needs real-world application

[42] PCA-based intrusion detection 
using QML

Achieving quantum advantage 
in cybersecurity

Scalability concerns, high 
computational requirements

Exploration in QML’s 
application of broader 
cybersecurity tasks

[43] Quantum-enhanced Zero Trust 
Framework (QNN-ZTF) for 
anomaly detection

Strengthens Zero Trust 
security; Introduces adaptive 
quantum anomaly detection

Scalability concerns; high 
computational requirements

Optimization is needed

Table 1
Comparison of recent AI-QML cybersecurity studies
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3. Methodology
The AI-QML cybersecurity model provides a systematic 

approach, which integrates data-driven threat intelligence, quantum 
cryptographic security, and quantum-enhanced ML algorithms. This 
process has five main phases:

1) Data collection and preprocessing
2) Quantum cryptography implementation
3) Development of QML models
4) Optimization methods
5) Security validation and deployment

Figure 1 presents the entire research workflow that follows a 
systematic methodology starting from data retrieval and processing 
through quantum-enhanced secure threat identification. 

3.1. Dataset collection and preprocessing
This research examines QML model performances through 

assessment of HIKARI Flow, Phishing, and Malicious URL datasets, 
which are widely recognized in cybersecurity fields. The selected datasets 
support security operations by detecting intrusions and classifying 
phishing attacks and web links, which establishes their usefulness in 
analyzing QML efficiency under practical threat conditions.

3.1.1. Preprocessing and feature engineering
To achieve compatibility with QML models, the gathered 

datasets are cleaned, normalized, and transformed into features. 
Feature engineering is conducted to extract the prominent attributes 
that facilitate intrusion detection, phishing classification, and malicious 
URL detection.

The HIKARI Flow dataset depends on entropy scores to 
evaluate network packet randomness for detecting anomalies. The 
analysis examined flow duration as an additional feature, which joins 
protocol type and port usage features to detect suspicious behaviors 
that might indicate attack patterns. The Phishing dataset was used to 
detect phishing content by analyzing two indicator types, which include 
urgent or password keywords and email header inconsistencies and 
URL length and domain age measurements. The malicious URL dataset 
was evaluated using URL entropy assessments together with subdomain 
complexity metrics and domain registration period measurements to 
detect malicious behavior.

The standardization technique underlines all numerical dataset 
features as it transforms them into a [0,1] value range. The analysis 
of complex cybersecurity datasets achieves higher effectiveness with 
VQC and quantum support vector classifier (QSVC) and QNN QML 
models because of their implementation of statistical features that derive 
entropy measurements and anomalous scoring and interaction terms.

The BB84 QKD protocol provides secure key exchange for the 
process before detecting protected communication. The QML models 
operate using improved data inputs, which both boost their learning 
algorithms and enhances protection of the system against classical and 
quantum cyber threats.

3.2. Quantum cryptography implementation
We tested the protocol through simulations executed with IBM 

Qiskit and Google Cirq platforms, which created environments for 
testing BB84 using secure conditions and situations where attackers 
tried to detect its communication.

The protocol underwent two test scenarios where successful 
key exchange protected secure communication between the sender 
and the receiver occurred first and then an eavesdropper’s  attempted 
interception generated detectable disturbances. The simulated 
cryptographic keys became part of the extended QML threat detection 
system, which strengthened security against quantum and classical 
source attacks.

3.2.1. Theoretical design
The BB84 protocol involves the following steps, as summarized 

in Algorithm 1 :

The BB84 QKD protocol guarantees the secure exchange of 
keys through the use of quantum superposition and measurement 
disturbance for the detection of eavesdropping. The sender (Alice) 
first generates qubits, randomly encoding them in either the rectilinear 
(+, −) or diagonal (×, ÷) basis. They were sent over a quantum channel 
to the receiver (Bob), who measures every qubit with a randomly 
chosen basis. After the quantum transmission, Alice and Bob exchange 
over a classical channel to identify the basis they used. Only qubits 
measured in the same basis are kept to create the final cryptographic 
key, whereas others are discarded. Any difference above a threshold 
shows that there exists an eavesdropper (Eve), thus providing security 
before key use.

Figure 2 describes the BB84 QKD protocol, depicting interaction 
between Alice (sender) and Bob (receiver) via both quantum and classical 
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 Figure 1
AI-QML cybersecurity methodology workflow



channels. The figure indicates key exchange steps, eavesdropping 
detection, and ultimate encryption. To simulate the BB84 protocol, 
a quantum circuit model is constructed utilizing quantum computing 
paradigms. Figure 3 illustrates the quantum circuit employed in BB84 
implementation, in which qubits (q0,q1,…,qn ) are used for encoding 
and transmission as the quantum bits. Hadamard gates (H) are used to 
achieve superposition so that qubits can be in more than one state at the 
same time. Measurement gates decide the ultimate qubit states upon 
transmission.

The circuit mimics Alice encoding a random string of qubits 
and sending them over a quantum channel and Bob measuring them 
with randomly chosen bases. When Eve tries to intercept the qubits, 
the no-cloning theorem and quantum measurement rules induce 
inconsistencies in Bob’s received string, introducing measurable 
perturbations in the quantum channel. These interruptions enable Alice 
and Bob to identify tampering and guarantee that only a secure key is 
utilized for cryptographic processes (Figure 3).

3.2.2. Simulation environment
In this study, BB84 protocol served by creating an eavesdropping-

resistant quantum cryptographic infrastructure for key protection. IBM 
Qiskit and Google Cirq served as two main platforms to accomplish 
this work. The BB84 protocol was designed using IBM Qiskit before 
Google Cirq executed the testing under realistic noisy conditions 
including simulated eavesdropping tests.

The evaluation of BB84 protocol required studying two distinct 
simulation scenarios.

Alice and Bob conducted cryptographic key exchange, which 
produced an identical key on their respective ends because they 
experienced no eavesdropping.

Non-eavesdropped communication: In the qubit exchanges 
between Alice and Bob, the cryptographic keys develop into a perfectly 
matched key without any form of interception.

Eavesdropped communication: An attacker named Eve tries 
to capture qubits, which causes detectable disturbances because of 
quantum measurement rules.

In an ideal scenario where no adversary interferes, Alice encodes 
a sequence of qubits using random bases and transmits them to Bob. 
Bob measures the qubits using his randomly selected bases. After a 
basic reconciliation over a classical channel, they retain only the qubits 
where their bases match. As shown in Figure 4, the shared key remains 
unaltered, demonstrating a 100% key match. This successful exchange 
ensures a secure cryptographic key for encryption, as Alice’s expected 
key and Bob’s actual key are perfectly aligned.

3.2.3. Eavesdropped communication and security analysis
When an adversary (Eve) attempts to intercept the quantum 

transmission, the no-cloning theorem and quantum measurement 
disturbance introduce detectable errors in Bob’s received qubits. As 
depicted in Figure 5, this interference disrupts the key agreement 
process, leading to a mismatch between Alice’s expected key and 
Bob’s actual key. To quantify the level of tampering, the error rate Dis 
computed as

Alice and Bob end their communication session at once when 
the computed error rate (D) exceeds the security threshold because 
they want to prevent the use of compromised keys for encryption. The 
BB84 protocol includes a security measure that identifies unapproved 
access attempts, thereby strengthening its practical worth for quantum 
cryptographic systems.

3.2.4. Security validation
The BB84 protocol establishes its security through two quantum 

mechanical principles: the no-cloning theorem and measurement 
disturbance. The no-cloning theorem establishes that an eavesdropper 
(Eve) cannot generate perfect qubit copies because this process 

(4)

 Figure 3
Quantum circuit for BB84 protocol
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Figure 2
Flow diagram of the BB84 Quantum Key Distribution Protocol

 Figure 4
Non-eavesdropped protocol simulation
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necessarily modifies the original state of the qubit. The process of 
intercepting and measuring qubits always results in detectable errors 
that affect the transmission. The protocol implements this feature to 
detect eavesdropping by removing compromised key sections that 
exhibit evidence of tampering, thus securing the retained keys.

Simulation outcomes demonstrated that the protocol protected 
information security throughout both secure and hostile communication 
situations. The experimental results in Figure 6 show that Alice and 
Bob successfully generated an aligned shared key because Bob 
measured identical qubits that Alice sent. When Eve tried to intercept 
the communication, her actions triggered quantum disturbances that 
changed the bitstring sent to Bob compared to Alice’s original key. 
When the error rate (D) passed the defined threshold value, the protocol 
system automatically ended the session to prove its ability for key 
protection.

While quantum-enabled attacks such as photon number splitting 
(PNS) and intercept-resend attacks pose potential threats, BB84 
remains secure against classical attackers. Decoy state QKD, privacy 
amplification, and hybrid QKD-PQC encryption architectures are 
available to improve security and mitigate such threats. Including 
these techniques in large-scale quantum-safe security implementations 
should be explored further.

3.3. Integration of QML models
The BB84 key exchange protocol serves as an important tool 

in cybersecurity that protects communication pathways by analyzing 
network behavior irregularities and phishing attacks and harmful 
URLs. BB84 distributes secure keys by using quantum mechanics 
principles to implement its operations. Quantum feature maps 
function as the primary factor behind their success because they create 
improved data representations that help discover hidden security risks 
more effectively.

Several features can be represented in parallel by QML models 
due to quantum superposition, enhancing data representation and 
reducing training complexity. By establishing feature correlations 
that classical models find it hard to effectively compute, quantum 
entanglement strengthens anomaly detection. By making separability 
nonlinear, quantum feature maps enhance classifiers’ capacity for 
distinguishing between malicious and benign behavior in cybersecurity 
data.

This work deploys and compares three QML models for 
cybersecurity use:

1)  Variational quantum classifier (VQC) 
2)  Quantum support vector classifier (QSVC)
3)  Quantum neural networks (QNN)

3.3.1. Variational quantum classifier
The VQC uses a combination of quantum computing and 

classical optimization to resolve classification problems through 
its three distinct operational stages. The VQC model performs its 
operations through three fundamental stages can be observed in 
Algorithm 2.

The initial operation starts with quantum feature encoding, which 
transforms classical input data through specific quantum feature maps 
𝜙(𝑥) to generate quantum states ∣𝜓(𝑥)⟩. The data embedding procedure 
transforms information into a quantum space with high dimensions, so 
the model can detect sophisticated patterns that cannot be handled by 
traditional systems. 

(5)
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 Figure 5
Eavesdropped protocol – Cirq

 Figure 6
Output of a 10-qubit quantum circuit
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The quantum state encoding proceeds to an ansatz, which 
functions as a parameterized quantum circuit 𝜃. During training, 
the quantum gates with adjustable parameters form the basis of the 
parameterized quantum circuit. The adjustable parameters in this model 
structure determine how decision boundaries shape which directly 
affects the classification accuracy.

The circuit goes through measurement in its last stage to generate 
output probabilities that correspond to each class label. The measured 
results are evaluated against actual labels through a loss function. By 
performing multiple training iterations, a classical optimizer receives 
feedback that allows it to update circuit parameters 𝜙, thereby enhancing 
model performance. 

The VQC implements quantum data encoding functions 
together with classical optimization algorithms into a unified system. 
The combination of quantum and classical methods in VQC allows 
it to find effective solutions for analyzing complex nonlinear data 
patterns and high-dimensional datasets. The quantum approach 
with VQC enables superior exploration of feature spaces that leads 
to better classification results for difficult cases that standard ML 
methods cannot handle.

3.3.2. Quantum support vector classifier 
QSVC executes data transformation through quantum kernels, 

which create quantum feature space with high dimensions. Fidelity 
quantum kernel serves as the similarity assessment tool for quantum 
states during QSVC operation, which enhances its performance in 
phishing detection because of its ability to detect fine patterns and 
decision limits.

Quantum kernel function encodes classical data points x, which 
are encoded into quantum states ∣ψ(x)⟩| using a quantum feature map 
Ux. The similarity between data points in the quantum feature space is 
represented by the kernel matrix:

ψ ψ

QSVC can identify complex security relationships that standard 
kernels do not recognize. Training occurs through Pegasos-QSVC 
implementation and employs stochastic sub-gradient descent as its 
approach. The regularization parameters 𝐶 and 𝜏 together find the right 
balance between maximizing margin and preventing overfitting to 
achieve best results.

The Algorithm 3, QSVC provides effective solutions for high-
dimensional datasets because it detects complex relationships that 
traditional kernel methods fail to detect. The Pegasos optimization 
algorithm ensures model scalability when dealing with large data 
volumes during training. Quantum feature mapping united with optimal 
optimization techniques enables QSVC to outperform conventional 
classifiers that handle complex and faintly defined data structures.

3.3.3. Quantum neural networks
The QNN improves classical architectures of neural network 

by incorporating quantum layers so that they can deal with very 
sophisticated high-dimensional patterns, which traditional ones are not 
capable of learning. They are useful in tasks like identifying malicious 
URL, where recognizing hidden relationships and patterns improve 
classification accuracy. The core of QNN consists of layered quantum 
gates, which encode data into quantum encoded data and then transform 
this encoded data to produce a set of feature representations showing 
nonlinear relationships, which classical methods may fail. This method 
allows for the most effective training and adaptation of the model with 
the help of quantum mechanics for the best of the pattern recognition by 
cybersecurity applications.

The performance of QNN effectively process complex datasets. 
Quantum computing principles allow QNNs to execute operations 
in multidimensional spaces, thus making them stand out from other 
models. QNN helps to identify complex patterns and hidden data beyond 
traditional neural network detection capabilities. The importance 
of QNNs increases significantly while performing cybersecurity 
operations. Their feature detection allows them to discover dangerous 
URL patterns that conventional networks would not notice.

3.4. Optimization techniques
To enhance the stability and accuracy of QML models, various 

optimization methods were used. These optimization methods were 
aimed at suppressing noise in NISQ devices and minimizing the 
computational expense of quantum kernels. The following strategies 
were used to enhance classification performance and overall model 
efficiency.

3.4.1. Noise mitigation
Measurement errors were minimized by quantum circuit output 

probability calibration, making classification results more accurate. 
Errors in gates were minimized through randomized execution of 
circuits, where averaging across several runs reduced the level of 
inconsistencies created by quantum noise. The observed probability 
𝑃noisy(𝑦∣𝑥) was corrected using a calibration matrix M, ensuring that 
the estimated probability 𝑃corrected(𝑦∣𝑥) closely aligned with the ideal 
probability 𝑃ideal(𝑦∣𝑥). This noise mitigation strategy enhanced the 
stability and reliability of QML models in cybersecurity application.

Circuits were optimized to reduce gate depth and alleviate 
decoherence effects, thereby reducing the impact of quantum noise 
during computations. By executing circuits 𝑛 times with randomized 

(7)

(8)
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gates, errors were averaged out, leading to improved computational 
stability. The denoised estimation of the output probabilities was 
computed as shown below:

where  is the denoised estimate of the output probabilities.

3.4.2. Custom quantum kernels
Quantum kernels were mainly designed to match the 

characteristics of the datasets, for phishing detection and malicious 
URL classification. These kernels transformed classical data into 
high-dimensional quantum feature spaces, enhancing class separately 
with reduced computational complexity. Optimization techniques 
were applied to streamline kernel computations, reducing resource 
usage while ensuring scalability for handling large-scale cybersecurity 
datasets.

3.4.3. Hyperparameter tuning
Learning rates were selected to prevent oscillations during 

parameter updates, ensuring stable training. The number of layers in 
quantum circuits was optimized to enhance model capability while 
considering the hardware constraints of NISQ devices. The gradient-
based optimization learning rate η was adjusted to ensure smooth 
convergence:

θ θ η θ

where L(θ) represents the loss function.
Variational ansatz structures, which define the layout of quantum 

gates, were refined for VQC and QNN models to maximize training 
efficiency and minimize error propagation.

3.4.4. Hybrid optimization strategies
Classical optimizers were combined with quantum computations 

for robust parameter tuning. The Adam optimizer was used in gradient-
based methods to ensure smooth and rapid convergence for larger 
datasets, especially in QNN and VQC models. 

β β θ

β β θ

θ θ

COBYLA was used for models like QSVC to handle non-smooth 
loss landscapes, which are common in quantum learning tasks. This 
hybrid approach allows the models to achieve better performance while 
mitigating the limitations of noisy quantum environments.

Subject to: cj (θ) ≤ 0 ∀j.
This ensured robust classification while maintaining the 

constraints required for cryptographic key validation.

3.4.5. Scalability enhancements
This research implemented optimized ansatz designs 

for conducting parallel quantum circuit operations, which met 
computational needs. The flexible approach to quantum hardware 
design allowed the implemented strategies to boost the efficiency of 
quantum classification operations. The optimized techniques enhanced 
performance metrics for accuracy and F1 score across all cybersecurity 
application tests of QML models.

The experimental results proved that these approaches produced 
effective results. Noise mitigation techniques produced 20% better 
accuracy results, and hybrid optimization methods stabilized training 
through swift convergence with fewer iterations. The quantum kernel 
development together with parameter optimization was specialized 
in complex cybersecurity data to achieve additional performance 
improvements. The proposed optimization framework demonstrates 
practical use because it achieves successful implementation on current 
NISQ devices.

Figure 7 depicts a general outline of the QML architecture, 
showing the combination of data preprocessing, cryptographic 
security, and quantum-amplified learning models. This framework 
utilizes QML models like VQC, QSVC, and QNN in combination with 
quantum-resistant cryptographic protocols to enhance the resilience 
of cybersecurity. Utilizing cutting-edge preprocessing methods 
and quantum feature mapping, the approach strengthens anomaly 
detection on various cybersecurity datasets. Optimization methods 
further enhance the scalability and efficiency of these models while 
ensuring their resilience in NISQ settings. Further, incorporating the 
BB84 protocol allows for a quantum-secure key exchange system with 
inherent eavesdropping detection, adding strength to security against 
both classical and quantum cyber threats.

4. Results and Discussion
This section provides the experimental findings of the QML 

models, evaluating their effectiveness across critical cybersecurity tasks. 
The discussion about these results within the study’s research objectives 
highlights performance improvements, strengths, and potential challenges.

4.1. Performance evaluation metrics
The QML models received their evaluation using three essential 

cybersecurity datasets: HIKARI Flow for intrusion detection, 
phishing, and malicious URL datasets. The evaluation process relied 
on standard classification metrics, which included precision, recall, 
F1 score, and accuracy. The evaluation of the model effectiveness in 
detecting cyber threats can be achieved through the combination of 
these metrics.

(9)

(10)

(11)

(12)

(13)

(14)
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QML architecture
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The proportion of actual correct positive cases among all model 
predictions for positive outcomes demonstrates precision that indicates 
how well the model performs without creating unjust alarms. The 
ability of a model to identify genuine threats serves as the focus of recall 
measurements, which emphasizes its capacity to detect security risks. 
The F1 metric serves as a balanced performance indicator for models 
because it computes the precision-recall harmonic mean to evaluate 
results during unbalanced class problems.

All the evaluation metrics make sure that the strengths and 
weaknesses of QML models are rigorously measured across various 
cybersecurity tasks.

4.1.1. Task-specific insights
The section demonstrates the model’s performance in specific 

tasks.

1)  The VQC produced a detection accuracy of 95.12% to detect traffic 
patterns through its utilization of quantum feature maps.

2)  The QSVC reached a detection accuracy rate of 97.75% due to 
quantum kernels, which improved the separation of feature space.

3)  The QNN model achieved 95.62% F1 score when identifying 
malicious URLs through its quantum-enhanced neural layers, which 
processed high-dimensional data effectively.

The achieved outcomes indicate that QML models present 
exceptional capabilities for solving advanced cybersecurity problems. 

4.2. Comparative analysis
The performance of QML models was evaluated by comparing 

their results to random forest, gradient boosting, and standard neural 
networks classical ML algorithms. The QML models delivered superior 
performance compared with that of classical models during every 
evaluation task especially when processing high-dimensional datasets 
to detect complex nonlinear patterns.

The QSVC delivered an outstanding performance in phishing 
detection through its quantum kernel processing system, which 
effectively handled intricate datasets; the security datasets used in this 
study consisted of authentic attack conditions during their evaluation 
process.

In this study, four cybersecurity datasets that proved their threat 
validity during testing were evaluated.

1)  The HIKARI Flow dataset serves as a dataset that mixes both 
encrypted synthetic attack traffic and benign network flows to assist 
intrusion detection tasks.

2)  The phishing dataset unites parameters extracted from network 
systems with email metadata components and links each entry to 
phishing or legitimate status.

3)  The Malicious URL dataset consists of a collection of malicious 
URLs, which security analysts commonly used for threat analysis.

4.3. Performance on HIKARI Flow dataset
The HIKARI Flow dataset, which is employed for intrusion 

detection, was evaluated using several traditional ML models to create 
a performance baseline. Among those, the Decision Tree classifiers 
and gradient boosting performed well, with near-perfect accuracy. 
Their high performance is due to their capacity for modeling nonlinear 
relationships and the detection of less apparent patterns in network 
traffic. Naive Bayes, on the other hand, performed poorly because of 
the feature independence assumption. The high-dimensionality of the 
dataset and correlated dependencies between features complicated 

the classification of network traffic by Naive Bayes. From Figure 8, 
ensemble-driven models outperformed the rest consistently, reflecting 
their capability to tackle complex intrusion detection processes. These 
findings point to the inadequacies of traditional classifiers in dealing 
with intricate network traffic, affirming the necessity of QML models 
that utilize quantum feature spaces for improved classification accuracy 
and scalability.

4.3.1. Performance on Phishing dataset (network parameters)
For network parameter-based phishing detection, traditional 

ML algorithms like gradient boosting and random forest performed 
with highest accuracy and improved further through hyperparameter 
tuning, making gradient boosting the best classifier for this data. 
Figure 9 indicates that ensemble models like gradient boosting and 
random forest performed the best at every time point in phishing 
classification. In contrast, Naive Bayes did not perform well because 
it could not accurately depict feature dependencies, which are essential 
in detecting phishing patterns. These results highlight the weakness 
of probabilistic models for phishing detection, further confirming the 
need for QML models that utilize quantum-boosted kernels to enhance 
feature separability and accuracy in classification.

4.4. Performance on phishing dataset (email content)
For email content-based phishing detection, powerful ensemble 

classifiers like CatBoost and XGBoost (XGB) proved to be the best, 
with accuracy rates over 98%. These models were able to capture 
fine differences in phishing emails, rendering them extremely robust 
for classification. As shown in Figure 10, ensemble models like extra 
trees and random forest proved to be the most effective in phishing 

 Figure 8
Performance of classical models on HIKARI Flow dataset

 Figure 9
Performance of classical models on phishing dataset (network pa-

rameters)
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email detection, utilizing heterogeneous decision trees for better 
generalization. Conversely, Gaussian Naive Bayes underperformed 
because it is based on naive probabilistic assumptions, which are not as 
effective at modeling the intricate structures and relationships present 
in phishing email datasets. These findings emphasize the strengths of 
ensemble learning for phishing detection and support the potential of 
QML models to further improve classification accuracy by applying 
quantum feature mapping methods.

4.5. Performance on Malicious URL dataset
For the malicious URL classification task, extra trees and random 

forest were the leading classical models that provided the highest 
accuracy and F1 scores. The ensemble-based classifiers are very efficient 
at capturing intricate patterns in the dataset and were consequently very 
reliable at classifying malicious URLs. CatBoost and XGB also proved 
very effective at the classification task, as can be seen from Figure 11, 
by utilizing gradient boosting to improve decision boundaries. Random 
forest and extra trees also confirmed their strength by accurately 
separating benign and malicious URLs. The results emphasize the 
efficiency of ensemble models in URL classification and the potential 
of QML models to further improve detection using quantum-improved 
feature mapping and kernel-based separability.

4.6. Comparison with QML models
Results showed that the QML model performed better than 

traditional ML approaches across all examined datasets with consistent 
results. Quantum feature mapping in high dimensions enabled their 
effective operational capability, which resulted in better cybersecurity 
threat detection capabilities. The quantitative results from the QML 
assessment showed that QSVC delivered the best outcomes with an 
average output accuracy of 97.75%. Phishing and malicious URL 

detection tasks benefited greatly from quantum kernels because they 
produced better class separability, which led to improved performance.

The core model architecture of QML models received essential 
support from various optimization techniques that improved both 
accuracy and model resistance. The development process included fine-
tuning hyperparameters along with suitable noise mitigation techniques 
for NISQ hardware and adaptive kernel configuration implementation. 
The listed improvements in Table 2 delivered enhanced precision and 
robustness to the proposed security framework based on QML while 
surpassing traditional methods.

As shown in Table 2, optimization techniques, including 
hyperparameter tuning and noise mitigation, significantly improved the 
performance of QML models. VQC and quantum convolutional neural 
network achieved near-perfect scores in most tasks, highlighting the 
effectiveness of optimization in enhancing quantum model.
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 Figure 11
Performance of classical models on Malicious URL dataset

 Figure 10
Performance of classical models on phishing dataset (email 

content)

Dataset QML model
Score before 
optimization

Score after 
optimization

HIKARI 
Flow

Variational quantum 
classifier

0.64 0.99

Quantum support vector 
classifier

0.53 0.97

Quantum neural network 0.78 0.95
QSVC with Pegasos 

algorithm
0.63 0.98

Quantum convolutional 
neural network

0.57 0.99

Phishing 
(email 
content)

Variational quantum 
classifier

0.61 0.97

Quantum support vector 
classifier

0.66 0.98

Quantum neural network 0.67 0.93
QSVC with Pegasos 

algorithm
0.59 0.98

Quantum convolutional 
neural network

0.68 0.99

Phishing 
(network 
parameters)

Variational quantum 
classifier

0.66 0.96

Quantum support vector 
classifier

0.79 0.96

Quantum neural network 0.69 0.99
QSVC with Pegasos 

algorithm
0.57 0.89

Quantum convolutional 
neural network

0.79 0.94

Malicious 
URL

Variational quantum 
classifier

0.73 0.99

Quantum support vector 
classifier

0.77 0.96

Quantum neural network 0.65 0.99
QSVC with Pegasos 

algorithm
0.65 0.97

Quantum convolutional 
neural network

0.73 0.94

Table 2
Performance of QML models before and after optimization 

across datasets
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The results in Figure 12 confirm the advantage of QML models 
over classical approaches in handling high-dimensional datasets. The 
enhanced capability of QML models in quantum-safe cryptographic 
frameworks highlights their potential for future advancements in 
cybersecurity applications.

4.7. Discussion
The study proves that QML models perform better than traditional 

cybersecurity methods. The models tested their ability to detect intrusion 
attacks, phishing threats and malicious URLs. The QSVC obtained the 
best results with 97.75% average accuracy during phishing detection 
tasks. The quantum kernel technology delivers strong performance 
in phishing detection because it effectively separated classes for 
identifying subtle distinctions in phishing data. The VQC and QNN 
achieved competitive results by detecting intrusions and malicious 
URLs. Through quantum techniques, these systems achieved superior 
capabilities to find hidden patterns and this advantage gave them an 
advantage over traditional ML models.

Optimization methods were necessary in improving model 
performance. Before optimization, QML models were hindered by 
noise in quantum computation, which reduced accuracy. Further the 
implementation of methods like the reduction of noise, hyperparameter 
adjustment, and enhancement of circuit design, the models witnessed 
a good improvement in accuracy. In Table 2, both the VQC and QNN 
achieved near-perfect accuracy upon optimization, which confirms the 
efficiency of quantum error correction approaches.

When comparing QML and traditional ML approaches, clear 
advantages were observed. Classical models like gradient boosting and 
random forest performed well when working with structured datasets 
that had fewer feature dependencies. However, these models struggled 
with datasets containing complex relationships between features. 
In phishing detection using email content, for example, the QSVC 
outperformed gradient boosting, achieving an accuracy of 98.75%. This 
reveals the power of quantum-enhanced feature processing, which can 
capture complex relationships that classical methods might not.

Although these results are promising, there still exists significant 
hurdles in the real-world  implementation of quantum-enhanced 
cybersecurity infrastructures. For heuristic methods, current quantum 
devices are at  the NISQ era, with current devices having noisiness that 
introduces inconsistency during the training phase. Moreover, quantum 
kernel methods carry computationally intensive resources,  making it 
challenging for large-scale implementations. Table 3 highlights  these 
challenges alongside possible data mitigation strategies.

Three main strategic developments are required for solving current 
challenges involving quantum hardware improvements, quantum noise 
control and hybrid quantum-classical system design (Table 3). System 
stability and application scalability will be achieved through the required 
system enhancements. System security protection against threats 
represents the main purpose in quantum-safe cybersecurity. Scientists 
protect sensitive quantum model-processed data by implementing FHE 
as a privacy-protecting method; this framework should be applied to 
existing applications. Research on quantum security requires both 
enhanced error correction protocols and optimized techniques, as well 
as improved QML security systems for real-world implementation.

5. Conclusion
Quantum computing continues to evolve quickly, which 

exposes security threats to the cybersecurity domain. Cryptography 
using traditional mathematical algorithms becomes weaker during 
the quantum development of new computing algorithms. Research on 
quantum-secure cybersecurity methods has gained high priority due to 
the current security environment. This framework was developed by 
merging BB84 QKD protocol with QML models to secure the data 
more effectively.

The study shows that QSVC, together with VQC and QNN, 
surpassed classical ML models across all cybersecurity operations. This 
performs three cybersecurity operations: intrusion detection, phishing 
classification, and malicious URL detection. The QSVC achieved the 
highest accuracy rate of 97.75% for phishing detection. The accuracy 
of classification improves through quantum feature representations, 
which enable better distinction between genuine and malicious activity. 
The model performance received significant improvements from 
optimization techniques that included quantum kernel adjustment and 
noise removal, and hyperparameter tuning. The current limitations of 
quantum hardware do not reduce the fact that QML proves itself as an 
effective cybersecurity solution.

 Figure 12
Average performance of quantum models

Challenge Description Impact
Potential 
solutions

Hardware 
limitations 
[20]

Limited qubits 
and high error 
rates in NISQ 
cause instability

Unreliable 
computations 
and unstable 
QKD

Error correction, 
noise mitigation, 
and hybrid 
quantum-classical 
models

Lack of 
standardization 
[32]

No universal 
PQC and QKD 
protocols 
hinder uniform 
deployment

Capability 
issues with 
existing 
systems

Global standard 
and hybrid en-
cryption 

Integration 
with existing 
security 
systems [41]

QML and QKD 
protocols do not 
easily work with 
classical security

Hard to 
switch from 
classical to 
quantum 
security

Development of  
Quantum-safe 
Transport Layer 
Security (TLS) 
and middleware 
solutions

Computational 
and energy 
costs [37]

Quantum 
hardware 
requires lot of 
cooling

Expensive 
and hard to 
scale

Energy-efficient 
photonic 
processors

Table 3
Challenges in adopting quantum-safe cybersecurity
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Research work in the field should concentrate on developing 
QML models that can process advanced cybersecurity datasets with 
larger dimensions. The main obstacle in quantum kernel methods is to 
minimize their computational requirements for better performance. This 
study focuses on integrating QML with PQC protocols to enhance the 
security system that defends against both classical and quantum threats. 
Hybrid quantum-classical models serve as a solution to achieve the best 
combination of computational speed and quantum learning advantages. 
Real-world cybersecurity infrastructure implementations of these 
models will be essential for assessing their operational effectiveness 
under dynamic and evolving cyber threat conditions.
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Appendix

Glossary of Acronyms
BB84: Bennett-Brassard 1984 protocol for Quantum Key Distribution
VQC: Variational quantum classifier
QSVC: Quantum support vector classifier
QNN: Quantum neural network
NISQ: Noisy intermediate-scale quantum
ML: machine learning
AI: artificial intelligence
ECC: elliptic curve cryptography
QKD: quantum key distribution
QML: quantum machine learning
IDS: intrusion detection systems
COBYLA: Constrained Optimization By Linear Approximations
QCNN: Quantum convolutional neural network
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