
Received: 20 December 2024 | Revised: 10 March 2025 | Accepted: 3 April 2025 | Published online: 12 May 2025

Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1–12

DOI: 10.47852/bonviewJCCE52025053
RESEARCH ARTICLE

Utilizing Gray Wolf Optimization Algorithm in
Malware Forensic Investigation

Mosleh Mohammd Abualhaj1,*, Sumaya Al-Khatib2 , Nida Al Shafi3 , Iyas Qaddara2 and Abdallah Hyassat3

1Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Jordan
2Department of Computer Science, Al-Ahliyya Amman University, Jordan
3Department of Data Science and Artificial Intelligence, Al-Ahliyya Amman University, Jordan

Abstract: Malware forensic investigation plays a critical role in cybersecurity, aiming to unveil malicious activities, decipher their tac-
tics, and bolster defense mechanisms. This article introduces an innovative approach to malware forensic investigation, harnessing the
capabilities of the Gray Wolf Optimization (GWO) algorithm in conjunction with a range of machine learning classifiers. These classi-
fiers include naive Bayes, random forests (RF), decision trees, support vector machines, and K-nearest neighbors. The study leverages the
CIC-MalMem-2022 dataset, which comprises memory-based data, and employs the Python programming language for model develop-
ment. Research findings highlight the superiority of the RF classifier, achieving an impressive 75.6% accuracy in a multiclass classification
scenario involving 16 classes. Notably, our proposed approach consistently exhibits higher accuracy when compared to existing models
applied to different datasets, reaching 99.2% in binary classification. Furthermore, on the same dataset, our model outperforms the compe-
tition by achieving 86.34% and 75.64% accuracy in multiclass classification scenarios involving four classes and 16 classes, respectively.
These results underscore the promising potential of our proposed model in the domain of malware forensic investigation, particularly when
analyzing data extracted from memory. By combining the strength of the GWO algorithm with RF, this study aids in the progression of
robust and accurate malware forensic investigation methods, thereby enhancing cybersecurity efforts in an ever-evolving threat landscape.

Keywords: malware, Gray Wolf Optimization, machine learning, feature selection, random forest

1. Introduction

Cybersecurity protects internet-connected systems from attack,
damage, and illegal access. It entails using various technologies,
processes, and practices to protect networks, devices, and sensi-
tive data against cyber threats like hacking, malware, phishing, and
ransomware [1–3]. As we become more dependent on digital tech-
nologies and the internet, this becomes more critical. The number of
cyberattacks is increasing rapidly; for instance, there were an esti-
mated 500 million cyberattacks in 2021. In addition, cyberattacks
cost organizations huge amounts of money; for instance, there were
an estimated $6 trillion spent on cyberattacks in the same year [4].

Accordingly, organizations have to implement defense tech-
niques to prevent cyberattacks. Different approaches are used for the
identification and prevention of cyberattacks, including the retro-
spective approach. The retrospective approach consists of methods
that investigate the factors that lead to attacks, as well as containing,
repairing, eradicating, and recovering from the harm that an attack
has caused to the target network. Cyberattack investigation (digital
forensics) involves identifying the cause, preventing future attacks,
and prosecuting the perpetrators [5–7]. The success of digital foren-
sics relies on the quality and timeliness of the data collected, as well

*Corresponding author: Mosleh Mohammd Abualhaj, Department of
Networks and Cybersecurity, Al-Ahliyya Amman University, Jordan. Email:
m.abualhaj@ammanu.edu.jo

as the skills and experience of the investigators. There are several
digital forensics techniques, including imaging, data recovery, file
system analysis, etc. Each of these techniques uses several tradi-
tional tools (software and hardware) to support the various stages of
the digital forensics process [8, 9].

Apart from digital forensics, machine learning (ML) is a
subfield of artificial intelligence concentrating on developing tech-
niques and systems that can automatically analyze data, detect
patterns, and predict future behaviors [10, 11]. In digital forensics,
techniques from ML can be utilized to automate a variety of oper-
ations, hence accelerating the investigation process. For example,
ML techniques can be used to automate triage and categoriza-
tion and recover data that has been lost or deleted from a digital
device. The integration ofML and digital forensics will significantly
enhance the capabilities of digital forensics. By leveraging ML
techniques, digital forensics investigations can be more efficient,
accurate, and cost-effective [12, 13]. However, it’s vital to under-
stand that the adoption of ML in digital forensics is not widely used,
and numerous obstacles require attention, such as the risk of false
positives and the need to ensure the acceptance and effectiveness of
evidence in court cases [12, 13].

One critical area where ML can enhance digital forensics
investigations is by reducing false positives through effective
dimensionality reduction, specifically via feature selection tech-
niques. Feature selection chooses a subset of key features (inputs)
for model creation. Before developing an ML model, feature

Pdf_Fol io:1

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://doi.org/10.47852/bonviewJCCE52025053
https://orcid.org/0000-0001-9322-369X
https://orcid.org/0000-0001-5652-1890
https://orcid.org/0009-0003-4404-3432
https://orcid.org/0009-0002-7270-2629
mailto:m.abualhaj@ammanu.edu.jo
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

selection can increase performance, prevent overfitting, and lower
training costs [14, 15]. There are several methods for performing
feature selection in ML. Ultimately, choosing a feature selection
method varies based on the nature of the problem, the type of data,
and the learning algorithm being used. One of the most recently
used methods in feature selection is optimization methods. Meta-
heuristic optimization algorithms could be utilized to determine the
optimal set of features by treating the feature selection process as
an optimization challenge. The optimization algorithm searches for
the subset of features that leads to the highest performance of an
ML model, such as the highest accuracy or lowest error [16, 17].
The Gray Wolf Optimization (GWO) algorithm is one of the vigor-
ous meta-heuristic optimization algorithms [17, 18]. In this paper,
a Digital Forensics Investigation (DFI) model will be proposed to
improve the performance of malware digital forensics applications.
The proposed DFI model uses the GWO algorithm to select the key
features that help reduce the dimensions of malware data. Thus, it
reduces the false positives and improves the digital forensics pro-
cess. In addition, the DFImodel will evaluate severalML classifiers,
and the best one will be used with the DFI model.

This article is structured as follows: Section 2 highlights
some of the related works regarding digital forensic applications.
Section 3 discusses the suggested digital forensics investigation
model. Section 4 assesses the efficiency of the suggested model.
Section 5 provides the conclusion of the article.

2. Literature Review

Ali et al. [19] proposed an automatic authentication method
that successfully distinguishes between genuine and forged audio.
The system’s design philosophy is built upon three psychoacous-
tic concepts of hearing, enabling it to categorize sounds recorded
with the same microphone in multiple environments. By lever-
aging calculated features based on psychoacoustic principles, the
system performs audio authentication and environment classifica-
tion using aGaussianmixturemodel for automatic decision-making.
To test its performance, the system was evaluated with audio sam-
ples indistinguishable from human hearing, and three human judges
subjectively assessed the quality of the forged audio. The results
were impressive, with the suggested system achieving a remark-
able categorization accuracy of 99.2% ± 2.6. Moreover, it attained
a flawless 100% accuracy rate in various scenarios, including text-
dependent and text-independent voice authentication. Overall, the
proposed automatic authentication system exhibits extraordinary
accuracy in classifying diverse recording situations and effectively
differentiating between authentic and fabricated audio.

Ahmed et al. [20] propose a deep learning-based method to
determine the acquisition date of digital photos, which proves
valuable in temporal forensics analysis. The approach involves
establishing the digital image acquisition time to create a chrono-
logical sequence for unknown pictures by comparing them with a
collection of pictures from the same source with known timestamps.
Convolutional neural networks (CNNs), specifically the AlexNet
and GoogLeNet architectures, are employed for feature extraction
and transfer learning. The researchers conducted experiments using
the extensive NTIF database, specifically designed for temporal pic-
ture forensics. They utilized two existing CNN multiclass models
to estimate the timeline of digital photos. The AlexNet CNN with
transfer learning demonstrated impressive performance, accurately
classifying over 85% of test images into the appropriate period
classes. Overall, across all CNN models, the estimation accuracy of
the digital image acquisition time ranged from about 80% to 88%.

Hina et al. [21] developed a content-based multi-label email
classification technique to distinguish between spam and non-spam

emails. This method was specifically tailored for forensic investi-
gations involving large-scale email data. To achieve this goal, they
compared various ML techniques. They found that logistic regres-
sion (LR) outperformed naive Bayes (NB), Stochastic Gradient
Descent (SGD), random forest (RF), and support vector machine
(SVM) in terms of accuracy. When utilizing bi-gram features, LR
exhibited the highest performance, achieving an impressive accu-
racy of 91.9% in tests using benchmark datasets. On the other hand,
SGD showed the lowest accuracy due to perfect parameter learning.

Kachavimath et al. [22] used two separate ML algorithms,
K-nearest neighbors (KNN) and NB, to detect DDoS attacks in
network forensics. They utilized the NSL-KDD and KDD Cup
99 datasets, which contain information about network traffic, as
input for their model. The ML model processed the refined data
to extract high-level features and identify patterns in network
traffic sequences. To streamline the process, they retained eight
highly correlated features essential for DDoS attack identification
and removed the remaining features by evaluating the correlation
between all 41 features. Experimental results demonstrated that both
KNN and NB algorithms outperformed traditional learning models.
The model’s efficiency was assessed utilizing different measures
derived from the confusion matrix. KNN exhibited superior perfor-
mance over NB across almost all criteria, achieving an impressive
accuracy of 98.51% compared to NB’s 93.95%.

Al Banna et al. [23] have introduced a forensic investiga-
tion model for assessing image authenticity without relying on
embedded security measures. The model utilizes a CNN and trans-
fers learning approaches to extract features from an image dataset,
resulting in reduced training time by retaining MobileNet feature
extractor weights from ImageNet. An open image dataset of 3900
images was captured using three camera models. SVM, LR, and RF
classifiers were utilized to measure the usefulness of the model. The
SVM classifier achieved the highest accuracy at 98.82%, closely
followed by the LR classifier at 98.54%, while the RF classifier
attained a marginally lower accuracy of 97.16%. This research
demonstrates a promising approach to image authenticity verifica-
tion in forensic investigations, with the suggested model offering
valuable contributions to the field of image forensics.

Shafin et al. [24] propose an efficientmulticlassmalware detec-
tion method that identifies recent malware and is well-suited for
execution on embedded devices. This innovative approach inte-
grates the feature-learning capabilities of CNNs with the temporal
modeling advantages of Bidirectional Long Short-Term Memory
(BiLSTM) networks, resulting in two distinct models: Com-
pact CNN-BiLSTM (CompactCBL) and Robust CNN-BiLSTM
(RobustCBL). These models stand out for their compact size and
fast processing speed, making them particularly appropriate for
implementation on resource-constrained embedded devices. Several
tests performed on the recent CIC-Malmem-2022 dataset showcase
the greater achievement of the proposed method when compared to
other ML-based models proposed in the literature. In binary attack
scenarios, both the RobustCBL and CompactCBL models achieved
impressive accuracy rates of 99.96% and 99.92%, respectively.
When dealing with malware family attacks, the RobustCBL and
CompactCBL models demonstrated accuracy rates of 84.56% and
84.22%, respectively. Furthermore, in individual malware attacks
within the family attack category, the RobustCBL and CompactCBL
models achieved accuracy rates of 72.6% and 71.42%, respectively.

Carrier et al. [25] propose an effective framework to address
the problem of advancedmalware that utilizes obfuscation and other
evasion techniques to avoid known detection approaches. Within
this novel framework, they are extending VolMemLyzer, which is
among the most cutting-edge solutions with regard to learning sys-
tems’ memory feature extraction. This extension focuses on the

Pdf_Fol io:202

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

detection of obfuscated and concealed malware. It uses a stacked
ensemble ML framework to come up with a good way to find
malware. The researchers use the MalMemAnalysis-2022 malware
memory dataset to mimic hidden malware settings in order to make
the proposed framework work better. The results show that this
suggested method of memory feature engineering works very well
at finding malware that has been hidden or obfuscated in a short
amount of time (99.02% accuracy).

Mezina and Burget [26] present a new approach for tackling
the problem of obfuscated malware with the use of memory infor-
mation. They used the CIC-MalMem-2022 dataset in their study to
get a better idea of how well a dilated CNN (DCNN) finds hid-
den malware. As will be shown, DCNNs have become effective
tools for this task due to their capacity to perform a correlation
analysis of wide data fields, which is essential for the detection
of concealed malware. It enlarges the dilation space and contains
all-encompassing capabilities in the feature range with the same
size of parameters. The research provides a thorough evaluation of
the proposed scheme, including binary classification and multiclass
classification. Notably, the presented results are highly effective,
with 99.92% and 83.53% accuracy rates for binary and multiclass
tasks, respectively. The proposed model architecture comprises four
layers, with each of the two layers in each layer having 32 to 256
neurons. However, it is important to mention that the size of the
model creates a problem with implementation in resource-limited
devices due to the high computational overhead.

The studies above have introduced various forensic inves-
tigation models tailored to different attack types and datasets.
Table 1 presents a concise overview of the accuracy attained by
these models, focusing on binary classification, as reported in their
respective studies. Similar to [24–26], the current study focuses
on malware attacks, utilizing data extracted from memory dumps.
Table 2 summarizes the accuracy achieved for the primary mal-
ware categories, involving a 4-class multiclass classification, within
the CIC-MalMem-2022 dataset. Additionally, Table 3 summarizes
the accuracy achieved for subcategories of malware, encompassing
a 16-class multiclass classification within the CIC-MalMem-2022
dataset.

Table 1
Binary classification with different datasets

Ref Model Accuracy
Proposed DFI model (RF) 99.93%
[19] Gaussian mixture 99.20%
[20] AlexNet CNN 85.00%
[21] LR 91.90%
[22] KNN 98.51%
[23] SVM 98.82%
[25] Stacking 99.02%

3. Digital Forensics Investigation (DFI) Model

This section discusses the suggested model used in the DFI.
First, the CIC-MalMem-2022 dataset used to evaluate the proposed
DFI model will be discussed. Then, the steps used to prepare the
CIC-MalMem-2022 dataset for the DFI model will be described.
After that, the GWO optimizer will be discussed in light of digital
forensics. The ML classifiers utilized in the proposed DFI model

Table 2
Multiclass classification (4 classes) with MalMem dataset

Ref Model Accuracy
DFI model (RF) 86.34%

[24] RobustCBL 84.56%
[24] CompactCBL 84.22%
[25] Stacking N/A
[26] DCNN 83.53%

Table 3
Multiclass classification (16 classes) with MalMem

dataset

Ref Model Accuracy
Proposed DFI model (RF) 75.64%
[24] RobustCBL 72.60%
[24] CompactCBL 71.42%
[25] Stacking N/A
[26] DCNN N/A

will be discussed next. Finally, the entire DFI model processes will
be shown.

3.1. CIC-MalMem-2022 dataset

The CIC-MalMem-2022 dataset will be used in this work. It is
built to represent as close to a real-world situation as possible. The
CIC-MalMem-2022 dataset uses debug mode for the memory dump
process to avoid the dumping process showing up in the memory
dumps. The dataset contains a total of 58,596 records, with 29,298
benign and 29,298 malicious, which makes it a balanced dataset.
The malicious records are divided into three main categories and 15
subcategories, as presented in Table 4. The number of features in

Table 4
Obfuscated-MalMem-2022 malware categories

Malware Main
Categories

Malware
Subcategories-#
of Samples # of Records

Ransomware MAZE-1958. 9791
Pysa-1717.
Shade-2128.
Conti-1988.
Ako-2000.

Spyware TIBS-1410. 10020
Gator-2200.
180Solutions-2000.
Transponder-2410.
Coolwebsearch-
2000.

Trojan Horse Refroso-2000. 9487
Reconyc-1570.
Zeus-1950.
Scar-2000.
Emotet-1967.

Total 29,298

Pdf_Fol io:3 03

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Table 5
Obfuscated-MalMem-2022 features

Feature Name # Feature Name # Feature Name
1 pslist.nproc 20 handles.nmutant 39 psxview.not_in_eprocess_pool_false_avg
2 pslist.nppid 21 ldrmodules.not_in_load 40 psxview.not_in_ethread_pool_false_avg
3 pslist.avg_threads 22 ldrmodules.not_in_init 41 psxview.not_in_pspcid_list_false_avg
4 pslist.nprocs64bit 23 ldrmodules.not_in_mem 42 psxview.not_in_csrss_handles_false_avg
5 pslist.avg_handlers 24 ldrmodules.not_in_load_avg 43 psxview.not_in_session_false_avg
6 dlllist.ndlls 25 ldrmodules.not_in_init_avg 44 psxview.not_in_deskthrd_false_avg
7 dlllist.avg_dlls_per_proc 26 ldrmodules.not_in_mem_avg 45 modules.nmodules
8 handles.nhandles 27 malfind.ninjections 46 svcscan.nservices
9 handles.avg_handles_per_proc 28 malfind.commitCharge 47 svcscan.kernel_drivers
10 handles.nport 29 malfind.protection 48 svcscan.fs_drivers
11 handles.nfile 30 malfind.uniqueInjections 49 svcscan.process_services
12 handles.nevent 31 psxview.not_in_pslist 50 svcscan.shared_process_services
13 handles.ndesktop 32 psxview.not_in_eprocess_pool 51 svcscan.interactive_process_services
14 handles.nkey 33 psxview.not_in_ethread_pool 52 svcscan.nactive
15 handles.nthread 34 psxview.not_in_pspcid_list 53 callbacks.ncallbacks
16 handles.ndirectory 35 psxview.not_in_csrss_handles 54 callbacks.nanonymous
17 handles.nsemaphore 36 psxview.not_in_session 55 callbacks.ngeneric
18 handles.ntimer 37 psxview.not_in_deskthrd
19 handles.nsection 38 psxview.not_in_pslist_false_avg

the dataset is 55, excluding the category (output column) [24, 27].
Table 5 lists these features.

3.2. Preprocessing

When discussing ML, the term ”preprocessing” refers to the
processes that are carried out in order to get the input data ready for
utilization in an ML model. The primary goal of preprocessing is
to convert raw data into a format that aligns with the requirements
of training an ML model. This may require performing a wide
range of activities on data, including cleaning, transformation,
normalization, reduction, and splitting. Data cleaning is performed
when the dataset contains missing, inconsistent, or irrelevant data
[10, 28, 29]. Accordingly, the CIC-MalMem-2022 dataset does
require data cleaning. Data transformation is performed to convert
the data into an appropriate format, such as converting textual data
into numerical data. In the CIC-MalMem-2022 dataset, only the
category (output column) feature is represented as textual data [10,
29]. Therefore, the label-encoding technique is used to convert it
to a suitable format (i.e., numerical), as shown in Table 6. Data
normalization is performed to rescale the large numerical values
to values between 0 and 1 [10, 29]. Several features need to be
normalized in the CIC-MalMem-2022 dataset. Thus, the Min-Max
scaling method is used to rescale these features [10, 29]. Table 7
shows a sample of the data before and after normalization. Data
reduction is performed to remove irrelevant features that could
negatively impact an ML model. Feature selection is one of the
approaches utilized for data reduction. Feature selection is a key
pillar that impacts the performance of an ML model. Choosing
the right feature selection algorithm for the intended application
(i.e., forensic application) is crucial [16–18]. In this paper, the
GWO optimizer will be utilized and evaluated to select suitable

features for malware forensic applications. The GWO optimizer
will be discussed in the next section in detail.

Table 6
Label encoding

of Types Before Encoding After Encoding
Malware 02 Types
Benign 1
Trojan Horse 0
Spyware 1
Ransomware 2

4 Types

Benign 3
Emotet 0
Shade 1
Ako 2
Zeus 3
Gator 4
Pysa 5
Transponder 6
Conti 7
Refroso 8
TIBS 9
Coolwebsearch 10
180Solutions 11
Reconyc 12
MAZE 13
scar 14

16 Types

Benign 15

Pdf_Fol io:404

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Table 7
MalMem dataset normalization process

Before normalization After normalization
42, 16, 10.73809524, 0, 209.2142857, 1621, 38.5952381, 8787,
209.2142857

0.091743119, 0.125, 0.602767848, 0, 0.232847424, 0.307725139,
0.682017433, 0.168570919, 0.076448356

40, 16, 9.525, 0, 204.175, 1504, 37.6, 8167, 204.175 0.082568807, 0.125, 0.522309316, 0, 0.226113578, 0.257789159,
0.660305073, 0.140899759, 0.068341683

42, 16, 10.02380952, 0, 206.2619048, 1610, 38.33333333, 8663,
206.2619048

0.091743119, 0.125, 0.555392853, 0, 0.228902246, 0.303030303,
0.676303654, 0.163036687, 0.071698876

44, 17, 9.590909091, 0, 200.7954545, 1674, 38.04545455, 8835,
200.7954545

0.526680736, 0, 0.221597593, 0.330345711, 0.670023219,
0.170713202, 0.062905026

3.3. GWO optimizer for digital forensic applications

There are several purposes for DFI, including identifying the
source of the cyberattack, investigating allegations of fraud, and
recovering lost data. A key pillar for accurate DFI is the collected
data from the scene. The more relevant the collected data, the more
accurate the DFI. For this, the GWO optimizer will be used, which
is efficient in selecting the most relevant features among a large set
of features from the collected data, thus improving the accuracy of
the DFI model investigation [17, 18].

GWO is ameta-heuristic optimization algorithm that was influ-
enced by how gray wolves hunt. Numerous optimization issues,
such as feature selection in ML, have been solved using GWO.
GWO can be used in feature selection to look for the ideal subset
of features that gives an ML model (e.g., DFI model) the great-
est performance. GWO can manage a high number of features and
nonlinear correlations between features and the target variable, mak-
ing it a flexible and efficient method for feature selection [17, 18].
GWO was chosen for its superior exploration-exploitation balance,
computational efficiency, and strong convergence behavior com-
pared to other algorithms, such as Particle Swarm Optimization
(PSO) or Genetic Algorithm (GA). Unlike PSO, which may con-
verge prematurely, and GA, which requires complex operations,
GWO’s hierarchical hunting mechanism ensures efficient feature
selection. This helps identify themost discriminativememory-based
features for malware detection while reducing redundancy [30, 31].

3.3.1. Gray wolf’s key operations
The GWO algorithm optimizes a specified objective function

by simulating the social structure and hunting behavior of the gray
wolf pack. A pack of wolves is seen as a population of candidate
solutions in GWO, with each wolf standing in for a prospective
solution. Each iteration updates the positions of the wolves based
on those of the other wolves. The alpha, beta, and delta wolves are
the top three wolves in the pack, while the omega is considered
the scapegoat in the pack. The second and third-best solutions are
denoted by the beta and delta wolves, respectively, while the alpha
wolf represents the best option thus far. Figure 1 shows the social
hierarchy of gray wolves. The gray wolves follow certain behaviors
to hunt for prey. The GWO has modeled this behavior mathemati-
cally for optimization problems [17, 18, 30, 31]. The procedures for
this behavior and the issues that should be considered while finding
the optimal solution are discussed below.

At first, the GWO algorithm involves exploring the solution
space to find the optimal solution. This stage can bemodeled by gen-
erating a population of wolves randomly within the decision space.
Each wolf represents a candidate solution to the optimization issue.
The initial population can be generated randomly or utilizing some

Figure 1
Social hierarchy

other heuristic method. Then, the encircling behavior of gray wolves
is used to simulate the balance between exploration and exploita-
tion. This stage can be modeled by selecting the three best wolves
in the population: alpha, beta, and delta wolves. The other wolves
in the pack then update their positions toward the optimal solution.
After that, the attacking behavior of gray wolves is used to simu-
late the exploitation of the optimal solution found so far. This stage
can be modeled by updating the position of the alpha wolf toward
the optimal solution found by the pack so far. Finally, the hunting
behavior of gray wolves is used to simulate the overall search for
the optimal solution. This stage involves iterating through the encir-
cling and attacking stages for a fixed number of repetitions or until a
stopping condition is encountered. Overall, theGWOalgorithm uses
a combination of exploration and exploitation, communication and
coordination among the wolves in the pack, and simulations of the
hunting behavior of gray wolves to effectively explore the solution
space for the optimal solution [17, 18, 30, 31].

3.3.2. Selected features by GWO
As mentioned earlier, GWO has been successfully applied

in various optimization problems, including feature selection. The
GWO algorithm has been implemented to select the most relevant
and influential feature for the DFI model. GWO has several hyper-
parameters that need to be set to appropriate values to obtain good
performance in forensic applications. The hyperparameters and their
recommended values for forensic applications are population size
between 10 and 50, maximum number of iterations between 100 and
500, search range of [−1, 1], and crossover rate of 0.8. It is impor-
tant to note that the optimal values of these hyperparameters may
depend on the specific forensic application and the size and com-
plexity of the dataset. Figure 2 displays the pseudocode of the GWO
algorithm that has been used in the proposed DFI model [30–33].
Lines 2–4 initialize a population of gray wolves (solutions) with
random positions. Lines 7–11 update the locations of the wolves.
Line 12 finds the new position, which is a weighted sum of the cal-
culated positions. Line 13 checks if the new position is within the

Pdf_Fol io:5 05

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 2
Pseudocode of GWO algorithm

search space bounds. Line 14 evaluates the fitness of the new posi-
tion. Lines 15–23 update the alpha, beta, and delta wolves. Line 24
updates the position of wolf i to the new position. Line 25 returns the
best solution found. Based on the implementation of the GWO and
the values of the hyperparameters, the features have been reduced
from 55 to 4 for binary classification, 8 for 4-class multiclass classi-
fication, and 16-class multiclass classification. The selected features
are shown in Table 8. The GWO effectively selects the features that
minimize noise while retaining critical discriminative properties.
The selected features significantly influence the performance of our
model by enhancing its ability to distinguish between different mal-
ware types. These features provide essential behavioral patterns that
help classifiers achieve superior performance [30, 31].

Table 8
Selected features with different types of

classification

Type of classification Selected features
binary classification 2, 20, 23, and 46
4-class multiclass
classification

13, 14, 16, 18, 20, 24,
27, and 54

16-class multiclass
classification

6, 14, 18, 21, 28, and
29

3.4. Utilized classifiers

This section discusses the classifiers that are utilized in the DFI
model. Classifiers are an integral part of every model that is used
for ML. Every classification strategy has a unique set of advantages
and disadvantages that are unique to it. The nature of the issue that
needs to be handled is a major factor in determining which classifier
is going to be the most effective for a certain endeavor. Because of
this, it is essential to test multiple models and evaluate howwell they
perform before selecting the most effective one. In the DFI model,
the decision tree (DT), SVMs, RF, NB, and KNN classifiers will be
evaluated, and the best among them will be used for the DFI model.

3.4.1. DT classifier
DTs can address several classification and regression problems.

DTs have root, internal, and leaf nodes. Internal nodes represent
dataset features, while the root node represents the dataset. Each
internal node has branches representing feature values. The model’s
output is the leaf nodes’ choice. The DT technique iteratively par-
titions the dataset into subgroups based on the feature that best
classifies the data or lowers target variable variation. The algorithm
ends when the tree reaches its maximum depth, or the minimum
number of samples needed to split a node is not available. The steps
of building a DT are as follows: First, split the dataset based on the
most informative feature and threshold. Second, create a decision
node based on the chosen feature. Third, split the dataset into smaller
subsets based on the selected feature. Repeat the first three steps
for each subset. Then, form a leaf node when no further splitting is
needed. Finally, use the resulting DT for prediction [10, 29].

3.4.2. RF classifier
Several DTs are integrated into the RF ensemble learning

method to improve the classifier’s performance and robustness.
Both classification and regression issues can be solved with this
well-liked ML approach. Each DT in RF is built utilizing a ran-
dom subset of the training data along with a subset of the features.
This lessens overfitting and improves tree decorrelation. The major-
ity vote or the average of the different DTs’ predictions serves as
the foundation for the RF classifier’s final prediction. The steps of
building an RF are as follows: First, determine the number of trees
in the forest. Second, a subset of the training data will be randomly
selected to train each tree. Third, randomly select a subset of the
features to reduce the correlation between trees. Fourth, build a DT
based on the selected data and features. Repeat the first four to build
the predefined number of trees. Finally, the resulting RFwill be used
for prediction [10, 29].

3.4.3. SVMs classifier
SVMs are a form of supervised ML algorithms used in regres-

sion and classification. The objective of SVMs is to determine a
hyperplane that efficiently separates the different classes within the
training data. The hyperplane is chosen to optimize the margin,
which indicates the distance to the closest data points from each
class. SVMs have numerous merits, including their strong perfor-
mance in high-dimensional spaces, and they do not burden memory
because only a subset of the training data is utilized in the decision
function. However, training SVMs can be computationally costly,
particularly when dealing with large datasets. The steps performed
by the SVM classifier are as follows: First, select a kernel function
that transforms the input data into a higher-dimensional space. Sec-
ond, find the optimal hyperplane that maximizes themargin between
different classes. Third, optimize the hyperparameters to balance

Pdf_Fol io:606

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

complexity and generalization. Finally, the resulting SVM model is
used for predictions [10, 29].

3.4.4. NB classifier
The NB classifier is a probabilistic classification algorithm that

makes use of Bayes’ theorem to classify data into different classes.
It works by assuming that the features in the data are independent of
each other, given the class label. Because of its strong assumption
of feature independence, which may not hold true in many real-
world situations, the technique is known as ”naive.” Overall, the
NB is a straightforward yet effective classifier that works well for
high-dimensional datasets and has many features. However, its per-
formance may be limited by the independence assumption, and it
may not work well for datasets with correlated features. The steps
performed by the NB classifier are as follows: First, separate the
data by class. Second, compute the prior probabilities of each class.
Third, calculate feature and class statistics. Fourth, find the posterior
probability of a data point based on the observed features. Finally,
use the resulting NB for predictions [10, 29].

3.4.5. KNN classifier
KNN is a supervised learning algorithm employed for classifi-

cation and regression purposes. In the context of classification, KNN
is a form of instance-based learning, where the model learns to cat-
egorize new instances based on how similar they are to instances
that have already been seen in the training set. Each occurrence in
the training set is denoted as a vector in a multidimensional feature
space by the KNN algorithm. The method locates the k instances in
the feature space closest to the new instance. The class of the new
instance is decided by a majority vote among its k nearest neigh-
bors after the new instance’s k nearest neighbors have been found.
KNN is a straightforward and understandable algorithm that can be
applied to numerous classification jobs. But when working with big
datasets or high-dimensional feature spaces, it can be computation-
ally expensive. The steps performed by the KNN classifier are as
follows: First, determine the number of nearest neighbors (K) that
will be considered when making a classification decision. Second,
select a distance metric to quantify how close data points are to
one another. Third, the distance with all samples will be calculated.
Fourth, select the K samples with the shortest distance. Fifth, assign
the predicted class of the new data point. Finally, the resulting KNN
model is used for predictions [10, 29, 34].

3.5. Investigation processes using DFI model

Digital forensic investigations involve the process of analyz-
ing digital evidence to identify and recover information that can be
used in legal proceedings. ML can be used to assist in this process
by automating some of the repetitive tasks, reducing the workload
on the forensic investigator, and potentially uncovering hidden pat-
terns and insights in large volumes of data. There are several ways
in which ML can be applied in digital forensic investigation, includ-
ing malware analysis, log analysis, and file carving. For instance,
ML algorithms can be trained on large datasets of malware samples
to classify new samples as malicious or benign automatically. This
can help forensic investigators quickly identify malware and under-
stand its behavior. Though it is a general model, the effectiveness
of the suggested DFI model uses the CIC-MalMem-2022 dataset
(discussed in Section 3.1). In order to prepare it for the DFI model,
the data within CIC-MalMem-2022 has been transformed using
label-encoding and normalized using Min-Max scaling (discussed
in Section 3.2). The final step before running the ML algorithms

is to reduce the size of the data for better performance of the DFI
model. For this, the GWO optimizer will be utilized, as discussed in
Section 3.3.

The DFI model will use ML classifiers to examine the data
and determine its relevance to the investigation. ML algorithms
will classify and categorize the evidence, identify patterns, and flag
anomalies that may indicate suspicious activity. After analysis, the
evidence must be interpreted to determine its meaning and rele-
vance to the investigation. ML classifiers can be used to identify
relationships between different pieces of evidence and help inves-
tigators conclude. Then, the findings of the investigation will be
validated to make sure they are reliable and accurate. ML algorithms
can be used to cross-check the results obtained from different anal-
ysis techniques to ensure their consistency. Finally, the DFI model
will report the findings of the investigation and provide recommen-
dations for further action. Numerous ML classifiers will be tested
in the DFI model, and the one that gives the best result will be
put to use in the DFI model. Figure 3 demonstrates the flow of the
DFI model.

Figure 3
The DFI model

Pdf_Fol io:7 07

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

4. Performance Evaluation

This section evaluates the proposed DFI model. First, the tool
and environment used to implement the DFI model will be dis-
cussed. Then, the criteria used to evaluate the DFI model will
be described. Finally, the obtained results will be pretested and
analyzed.

4.1. Implementation tools and environment

The proposed DFI model was implemented using Python.
Python is a popular language for ML because it has a rich set of
libraries and frameworks that facilitate the implementation of ML
algorithms and techniques. TheDFImodel implementation has been
executed on a Core i7 PC. The specification of the PC is summarized
in Table 9. The K-fold cross-validation method will be employed
to evaluate the DFI model’s performance. The advantage of K-fold
cross-validation is that it ensures that all the available data can be
used for both training and evaluation, which can result in a more
precise assessment of the model’s performance.

Table 9
PC specification

Item Description
Processor Intel Core i7-12700

with speed of
2.1GHz up to
4.9GHz and 25MB
cache

Memory 32GB DDR5
Storage 1TB SSD M.2
Graphic NVIDIA GeForce

RTX 4060 8GB
Operating system Windows 10

Professional

4.2. The evaluation criteria

The proposed DFI model has been assessed based on the ele-
ments of the error matrix: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). TP is the proportion
of instances that were properly categorized as positive. FP is the
proportion of instances that were wrongly categorized as positive.
TN is the proportion of instances that were properly categorized as
negative. FN is the proportion of instances that were wrongly cate-
gorized as negative. Using these four elements, several metrics are
derived to evaluate the efficiency of the DFI model. These metrics
are the accuracy (Equation 1), the precision (Equation 2), the recall
(Equation 3), and the F1-score (Equation 4). As noticed from the
equations, accuracy measures the percentage of correctly classified
instances, precision tells how precise the positive predictions are,
recall indicates how many of the actual positives the model suc-
cessfully identified, while the F1-score is the harmonic mean of
precision and recall [35–37].

Accuracy = (TP + TN)(TP + TN + FP + FN) (1)

Precision = TP(TP + FP) (2)

Recall = TP(TP + FN) (3)

F1 − score = 2 × Precision × Recall
Precision + Recall

(4)

4.3. Results analysis

This section first evaluates the proposed DFI model using DT,
RF, SVM, NB, and KNN classifiers. Then, it compares the DFI
model results against other forensic investigation models on differ-
ent datasets and data. Finally, the DFI model results are compared
against other models on the same dataset.

Figures 4–7 show the accuracy, precision, recall, and F1-score
of the DFI model, respectively. The RF classifier has achieved the
highest results among the five tested classifiers with all four metrics.
Meanwhile, the RF algorithm has attained the same accuracy, preci-
sion, and recall of 75.6% and the highest F1-score with 75.4%. This
result is achieved with the 16 types of classes (multiclass classifica-
tion) in the CIC-MalMem-2022 dataset. It is important to mention
that certain malware categories had lower detection rates due to
imbalanced data distribution within the CIC-MalMem-2022 dataset.

Figure 4
Accuracy of the DFI model with 16 classes

Figure 5
Precision of the DFI model with 16 classes

Pdf_Fol io:808

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 6
Recall of the DFI model with 16 classes

Figure 7
F1-score of the DFI model with 16 classes

In addition, some classes had significantly fewer samples, which
may have hindered themodel’s ability to learn their distinct patterns.

Figure 8 shows the accuracy of the DFI model with the RF
classifier (DFI-RF) compared to other forensic investigation mod-
els across several datasets. The DFI-RF model demonstrated a

maximum accuracy of 99.93%, surpassing the accuracy of the near-
est model [19], which obtained 99.2%, resulting in an improvement
of 0.71%. This outcome is attained using binary classification,
relying on the outcomes presented by similar systems.

Figure 9 displays the accuracy of the DFI-RF compared to
other forensic investigation models on the identical dataset (CIC-
MalMem-2022). TheDFI-RFmodel demonstrated the best accuracy
rate of 86.34%, surpassing the nearest model, RobustCBL (R-CBL)
[24], which attained an accuracy rate of 84.56%. This indicates an
improvement of 1.87%. The four types of classes (multiclass clas-
sification) in the CIC-MalMem-2022 dataset are responsible for
achieving this outcome.

Figure 9
The DFI-RF model accuracy versus other forensic models

using CIC-MalMem-2022 dataset (four classes)

Figure 10 illustrates the comparative accuracy of the DFI-RF
model in relation to various forensic investigation models using the
identical dataset (CIC-MalMem-2022). The DFI-RF model demon-
strated a maximum accuracy of 75.64%, surpassing the accuracy
of the R-CBL model [24] by 3.06%, which reached an accuracy of
72.60%. This result is obtained by utilizing the 16 distinct types of
classes (multiclass classification) present in the CIC-MalMem-2022
dataset.

Figure 8
The DFI-RF model accuracy versus other forensic models across several datasets (binary classification)

Pdf_Fol io:9 09

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 10
The DFI-RF model accuracy versus other forensic models

using CIC-MalMem-2022 dataset (16 classes)

4.4. The DFI complexity theoretical analysis

The complexity of the GWO feature selection is O (T×N × d),
where T is the number of iterations, N is the population size,
and d is the feature dimension. Compared to other meta-heuristic
algorithms, GWO offers a balanced trade-off between search effi-
ciency and computational cost. In addition, the RF classifier, which
achieved the best performance, has a worst-case complexity of O(m× n log n), where m is the number of trees and n is the dataset
size. Despite these computational demands, the proposed method
remains feasible due to GWO’s efficient search strategy and RF’s
parallel processing capabilities, which optimize training time.

5. Conclusion

This article introduces an innovative malware forensic inves-
tigation (DFI) model that leverages the GWO algorithm and a
comprehensive array of ML classifiers. Utilizing the memory-
centric CIC-MalMem-2022 dataset and implementing Python for
rigorous computational implementation, our research underscores
the exceptional prowess of the RF classifier, achieving an impres-
sive 75.6% accuracy in multiclass classification across 16 classes.
Importantly, our model DFI-RF consistently outperforms com-
peting approaches, achieving a remarkable 86.34% accuracy in
multiclass classification involving four classes and maintaining its
superiority on the same dataset with an accuracy of 75.64% in mul-
ticlass classification across 16 classes. These results underline the
transformative perspective of our DFI model, particularly concern-
ing memory-resident data and its capacity to advance the field of
malware forensic investigation, fortifying cybersecurity endeavors
in an ever-evolving threat landscape. In future work, we plan to
explore hybrid optimization techniques to enhance feature selection
and classification accuracy further. In addition, we plan to include a
more thorough evaluation by incorporating comparisons with base-
line algorithms such as PSO, GA, and traditional feature selection
methods. We will also evaluate our approach on diverse datasets
to ensure its robustness across various malware types and forensic
scenarios.

Acknowledgment

The authors would like to acknowledge Al-Ahliyya Amman
University for its support and resources provided throughout the
course of this research.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

Data are available on request from the corresponding author
upon reasonable request.

Author Contribution Statement

Mosleh Mohammd Abualhaj: Conceptualization, Methodol-
ogy, Investigation, Writing – original draft, Writing – review &
editing, Supervision. Sumaya Al-Khatib: Conceptualization, Soft-
ware, Validation, Resources, Data curation, Writing – original draft,
Visualization.Nida Al Shafi: Software, Validation, Resources, Data
curation, Writing – review & editing. Iyas Qaddara: Methodology,
Formal analysis, Writing – original draft, Visualization. Abdallah
Hyassat: Methodology, Formal analysis.

References

[1] Bokan, B., & Santos, J. (2022). Threat modeling for enterprise
cybersecurity architecture. In Systems and Information Engi-
neering Design Symposium, 25–30. https://doi.org/10.1109/
SIEDS55548.2022.9799322

[2] Abualhaj, M. M., Al-Shamayleh, A. S., Munther, A., Alkhatib,
S. N., Hiari, M. O., & Anbar, M. (2024). Enhancing spyware
detection by utilizing decision trees with hyperparameter opti-
mization. Bulletin of Electrical Engineering and Informatics,
13(5), 3653–3662. https://doi.org/10.11591/eei.v13i5.7939

[3] Won, D. O., Jang, Y. N., & Lee, S. W. (2023). PlausMal-GAN:
Plausible malware training based on generative adversarial
networks for analogous zero-day malware detection. IEEE
Transactions on Emerging Topics in Computing, 11(1), 82–94.
https://doi.org/10.1109/TETC.2022.3170544

[4] SonicWall. (2022). 2022 SonicWall cyber threat report. [White
Paper]. Retrieved from: https://www.sonicwall.com/resources/
white-papers/2022-sonicwall-cyber-threat-report

[5] Rao, A. R. (2020). A three-year retrospective on offering an
embedded systems course with a focus on cybersecurity. In
IEEE Integrated STEM Education Conference, 1–8. https://doi.
org/10.1109/ISEC49744.2020.9280671

[6] Tiwari, A., Mehrotra, V., Goel, S., Naman, K., Maurya, S., &
Agarwal, R. (2021). Developing trends and challenges of dig-
ital forensics. In 5th International Conference on Information
Systems and Computer Networks, 1–5. https://doi.org/10.1109/
ISCON52037.2021.9702301

[7] Cook, M., Marnerides, A., Johnson, C., & Pezaros, D. (2023).
A survey on industrial control system digital forensics: Chal-
lenges, advances, and future directions. IEEE Communications

Pdf_Fol io:1010

https://doi.org/10.1109/SIEDS55548.2022.9799322
https://doi.org/10.1109/SIEDS55548.2022.9799322
https://doi.org/10.11591/eei.v13i5.7939
https://doi.org/10.1109/TETC.2022.3170544
https://www.sonicwall.com/resources/white-papers/2022-sonicwall-cyber-threat-report
https://www.sonicwall.com/resources/white-papers/2022-sonicwall-cyber-threat-report
https://doi.org/10.1109/ISEC49744.2020.9280671
https://doi.org/10.1109/ISEC49744.2020.9280671
https://doi.org/10.1109/ISCON52037.2021.9702301
https://doi.org/10.1109/ISCON52037.2021.9702301

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Surveys & Tutorials, 25(3), 1705–1747. https://doi.org/10.1109/
COMST.2023.3264680

[8] Pallavi, V., &Bharti, . (2022). A comprehensive review of cloud
forensics and blockchain-based solutions. In 6th International
Conference on Electronics, Communication and Aerospace
Technology, 749–754. https://doi.org/10.1109/ICECA55336.
2022.10009188

[9] Ding, F., Zhu, G., Alazab, M., Li, X., & Yu, K. (2022). Deep-
learning-empowered digital forensics for edge consumer elec-
tronics in 5G HetNets. IEEE Consumer Electronics Magazine,
11(2), 42–50. https://doi.org/10.1109/MCE.2020.3047606

[10] Abualhaj, M. M., Abu-Shareha, A. A., Hiari, M. O., Alra-
banah, Y., Al-Zyoud, M., . . . , & Alsharaiah, M. A. (2022).
A paradigm for DoS attack disclosure using machine learn-
ing techniques. International Journal of Advanced Computer
Science and Applications, 13(3), 192–200.

[11] Yang, Y., Du, H., Xiong, Z., Niyato, D., Jamalipour, A.,
& Han, Z. (2024). Enhancing wireless networks with atten-
tion mechanisms: Insights from mobile crowdsensing. arXiv
Preprint:2407.15483.

[12] Liu, X., Fu, X., Du, X., Luo, B., & Guizani, M. (2023).
Machine learning-based non-intrusive digital forensic service
for smart homes. IEEE Transactions on Network and Service
Management, 20(2), 945–960. https://doi.org/10.1109/TNSM.
2022.3224863

[13] Rizvi, S., Scanlon, M., Mcgibney, J., & Sheppard, J. (2022).
Application of artificial intelligence to network forensics:
Survey, challenges, and future directions. IEEE Access,
10, 110362–110384. https://doi.org/10.1109/ACCESS.2022.
3214506

[14] Wang, Z., Xiao, X., & Rajasekaran, S. (2020). Novel and effi-
cient randomized algorithms for feature selection. Big Data
Mining and Analytics, 3(3), 208–224. https://doi.org/10.26599/
BDMA.2020.9020005

[15] Almomani, O. (2021). A hybrid model using bio-inspired meta-
heuristic algorithms for network intrusion detection system.
Computers, Materials & Continua, 68(1), 409–429. https://doi.
org/10.32604/cmc.2021.016113

[16] Abualhaj, M. M., Al-Khatib, S. N., Al-Allawee, A., Munther,
A., & Anbar, M. (2024). Enhancing network intrusion detection
systems through dimensionality reduction. In Recent Advances
on Soft Computing and Data Mining: Proceedings of the Sixth
International Conference on Soft Computing and Data Mining,
244–253. https://doi.org/10.1007/978-3-031-66965-1_24

[17] Xu, L., Zhou, X., Fu, Y., Jiang, G., Yu, M., ..., & Guizani,
M. (2022). Accurate and efficient performance prediction for
mobile IoV networks using GWO-GR neural network. IEEE
Internet of Things Journal, 9(17), 16463–16471. https://doi.org/
10.1109/JIOT.2022.3152739

[18] Sun, X., Zhang, Y., Tian, X., Cao, J., & Zhu, J. (2022). Speed
sensorless control for IPMSMs using a modified MRAS with
gray wolf optimization algorithm. IEEE Transactions on Trans-
portation Electrification, 8(1), 1326–1337. https://doi.org/10.
1109/TTE.2021.3093580

[19] Ali, Z., Imran, M., & Alsulaiman, M. (2017). An automatic
digital audio authentication/forensics system. IEEE Access, 5,
2994–3007. https://doi.org/10.1109/ACCESS.2017.2672681

[20] Ahmed, F., Khelifi, F., Lawgaly, A., & Bouridane, A. (2020).
Temporal image forensic analysis for picture dating with deep
learning. In International Conference on Computing, Electron-
ics & Communications Engineering, 109–114. https://doi.org/
10.1109/iCCECE49321.2020.9231160

[21] Hina, M., Ali, M., Javed, A. R., Srivastava, G., Gadekallu, T.
R., & Jalil, Z. (2021). Email classification and forensics anal-
ysis using machine learning. In IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Internet of People
and Smart City Innovation, 630–635. https://doi.org/10.1109/
SWC50871.2021.00093

[22] Kachavimath, A. V., Nazare, S. V., & Akki, S. S. (2020). Dis-
tributed denial of service attack detection using naïve Bayes
and k-nearest neighbor for network forensics. In 2nd Inter-
national Conference on Innovative Mechanisms for Industry
Applications, 711–717. https://doi.org/10.1109/ICIMIA48430.
2020.9074929

[23] Al Banna, M. H., Haider, M. A., Al Nahian, M. J., Islam,
M. M., Taher, K. A., & Kaiser, M. S. (2019). Camera model
identification using deep CNN and transfer learning approach.
In International Conference on Robotics, Electrical and Sig-
nal Processing Techniques, 626–630. https://doi.org/10.1109/
ICREST.2019.8644194

[24] Shafin, S. S., Karmakar, G., & Mareels, I. (2023). Obfuscated
memory malware detection in resource-constrained IoT devices
for smart city applications. Sensors, 23(11), 5348. https://doi.
org/10.3390/s23115348

[25] Carrier, T., Victor, P., Tekeoglu, A., & Lashkari, A. H. (2022).
Detecting obfuscated malware using memory feature engi-
neering. In Proceedings of the International Conference on
Information Systems Security and Privacy, 177–188. https://doi.
org/10.5220/0010908200003120

[26] Mezina, A., & Burget, R. (2022). Obfuscated malware detec-
tion using dilated convolutional network. In 14th International
Congress on Ultra Modern Telecommunications and Con-
trol Systems and Workshops, 110–115. https://doi.org/10.1109/
ICUMT57764.2022.9943443

[27] Fakhouri, H. N., Al-Shamayleh, A. S., Ishtaiwi, A., Makhad-
meh, S. N., Fakhouri, S. N., & Hamad, F. (2024). Hybrid
four vector intelligent metaheuristic with differential evolu-
tion for structural single-objective engineering optimization.
Algorithms, 17(9), 417. https://doi.org/10.3390/a17090417

[28] Bijoy, M. B., Pebbeti, B. P., Manoj, A. S., Fathaah, S. A., Raut,
A., Pournami, P. N., & Jayaraj, P. B. (2023). Deep cleaner—
A few shot image dataset cleaner using supervised contrastive
learning. IEEE Access, 11, 18727–18738. https://doi.org/10.
1109/ACCESS.2023.3247500

[29] Al Hwaitat, A. K., Manaseer, S., Al-Sayyed, R. M. H., Almaiah,
A., & Almomani, O. (2020). An investigation of digital foren-
sics for Shamoon attack behaviour in FOG computing and threat
intelligence for incident response. Journal of Theoretical and
Applied Information Technology, 98(7), 977–990.

[30] Zhang, C., Zhou, Y., Bi, Y., Wang, J., Liang, F., & Song,
Z. (2022). Aerial target motion feature selection based on
improved grey wolf optimization algorithm. In 2nd Interna-
tional Conference on Algorithms, High Performance Computing
and Artificial Intelligence, 154–159. https://doi.org/10.1109/
AHPCAI57455.2022.10087564

[31] Purushothaman, R., Rajagopalan, S. P., & Dhandapani, G.
(2020). Hybridizing Gray Wolf optimization (GWO) with
Grasshopper optimization algorithm (GOA) for text feature
selection and clustering. Applied Soft Computing, 96, 106651.
https://doi.org/10.1016/j.asoc.2020.106651

[32] Almomani, O. (2020). A feature selection model for network
intrusion detection system based on PSO, GWO, FFA and

Pdf_Fol io:11 11

https://doi.org/10.1109/COMST.2023.3264680
https://doi.org/10.1109/COMST.2023.3264680
https://doi.org/10.1109/ICECA55336.2022.10009188
https://doi.org/10.1109/ICECA55336.2022.10009188
https://doi.org/10.1109/MCE.2020.3047606
https://doi.org/10.1109/TNSM.2022.3224863
https://doi.org/10.1109/TNSM.2022.3224863
https://doi.org/10.1109/ACCESS.2022.3214506
https://doi.org/10.1109/ACCESS.2022.3214506
https://doi.org/10.26599/BDMA.2020.9020005
https://doi.org/10.26599/BDMA.2020.9020005
https://doi.org/409%E2%80%93429.10.32604/cmc.2021.016113
https://doi.org/409%E2%80%93429.10.32604/cmc.2021.016113
https://doi.org/10.1007/978-3-031-66965-1_24
https://doi.org/10.1109/JIOT.2022.3152739
https://doi.org/10.1109/JIOT.2022.3152739
https://doi.org/10.1109/TTE.2021.3093580
https://doi.org/10.1109/TTE.2021.3093580
https://doi.org/10.1109/ACCESS.2017.2672681
https://doi.org/10.1109/iCCECE49321.2020.9231160
https://doi.org/10.1109/iCCECE49321.2020.9231160
https://doi.org/10.1109/SWC50871.2021.00093
https://doi.org/10.1109/SWC50871.2021.00093
https://doi.org/10.1109/ICIMIA48430.2020.9074929
https://doi.org/10.1109/ICIMIA48430.2020.9074929
https://doi.org/10.1109/ICREST.2019.8644194
https://doi.org/10.1109/ICREST.2019.8644194
https://doi.org/10.3390/s23115348
https://doi.org/10.3390/s23115348
https://doi.org/10.5220/0010908200003120
https://doi.org/10.5220/0010908200003120
https://doi.org/10.1109/ICUMT57764.2022.9943443
https://doi.org/10.1109/ICUMT57764.2022.9943443
https://doi.org/10.3390/a17090417
https://doi.org/10.1109/ACCESS.2023.3247500
https://doi.org/10.1109/ACCESS.2023.3247500
https://doi.org/10.1109/AHPCAI57455.2022.10087564
https://doi.org/10.1109/AHPCAI57455.2022.10087564
https://doi.org/10.1016/j.asoc.2020.106651

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

GA algorithms. Symmetry, 12(6), 1046. https://doi.org/10.3390/
sym12061046

[33] Hou, Y., Gao, H., Wang, Z., & Du, C. (2022). Improved grey
wolf optimization algorithm and application. Sensors, 22(10),
3810. https://doi.org/10.3390/s22103810

[34] Yang, Y., Du, H., Sun, G., Xiong, Z., Niyato, D., & Han,
Z. (2024). Exploring equilibrium strategies in network games
with generative AI. IEEE Network. Advance online publication.
https://doi.org/10.1109/MNET.2024.3521887

[35] Shambour, Q., Qandeel, N., Alrabanah, Y., Abumariam, A.,
& Shambour, M. K. (2024). Artificial Intelligence techniques
for early autism detection in toddlers: A comparative analysis.
Journal of Applied Data Sciences, 5(4), 1754–1764. https://doi.
org/10.47738/jads.v5i4.353

[36] Alraba’nah, Y., & Toghuj, W. (2024). A deep learning based
architecture for malaria parasite detection. Bulletin of Electrical

Engineering and Informatics, 13(1), 292–299. https://doi.org/
10.11591/eei.v13i1.5485

[37] Abu-Shareha, A. A., Qutaishat, H., & Al-Khayat, A. (2024).
A framework for diabetes detection using machine learning and
data preprocessing. Journal of Applied Data Sciences, 5(4),
1654–1667. https://doi.org/10.47738/jads.v5i4.363

How to Cite: Abualhaj, M. M., Al-Khatib, S., Shafi, N. A., Qaddara, I., &
Hyassat, A. (2025). Utilizing Gray Wolf Optimization Algorithm in Malware
Forensic Investigation. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonviewJCCE52025053

Pdf_Fol io:1212

https://doi.org/10.3390/sym12061046
https://doi.org/10.3390/sym12061046
https://doi.org/10.3390/s22103810
https://doi.org/10.1109/MNET.2024.3521887
https://doi.org/10.47738/jads.v5i4.353
https://doi.org/10.47738/jads.v5i4.353
https://doi.org/10.11591/eei.v13i1.5485
https://doi.org/10.11591/eei.v13i1.5485
https://doi.org/10.47738/jads.v5i4.363
https://doi.org/10.47852/bonviewJCCE52025053

	Introduction
	Literature Review
	Digital Forensics Investigation (DFI) Model
	CIC-MalMem-2022 dataset
	Preprocessing
	GWO optimizer for digital forensic applications
	Gray wolf’s key operations
	Selected features by GWO

	Utilized classifiers
	DT classifier
	RF classifier
	SVMs classifier
	NB classifier
	KNN classifier

	Investigation processes using DFI model

	Performance Evaluation
	Implementation tools and environment
	The evaluation criteria
	Results analysis
	The DFI complexity theoretical analysis

	Conclusion

