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Abstract: The criticality of shipping operations in global trade requires a comprehensive understanding of its sustainability. This depends on
the integrity/performance of the ship structure and vital systems, such as the ship propulsion engine. The current research paper presents the
application of an adaptive machine learning formalism, the Bayesian network, for failure assessment of a ship propulsion engine considering
nonlinear and nonsequential failure interactions. The model captures critical failure influencing factors and their complex interactions to
predict the failure probability of the ship energy system. Sensitivity and uncertainty analysis was carried out to establish the degree of
influence of vital failure influencing factors as they affect the ship propulsion engine’s reliability and the associated uncertainty in the
prior data processing. The model is tested on the propulsion engine of an ocean going vessel to forecast the likelihood of failure based
on the logical dependencies among failure causative factors. Two scenarios were analyzed based on canonical probabilistic algorithms,
and the results show that upon evidence on the three critical failure modes, the ship propulsion engine failure likelihood increased by
11.8%, 8.2%, and 9.4%, respectively. The model shows an adaptive/dynamic capability to capture new failure information and update
the system’s failure probability. The proposed approach provides a condition monitoring tool and early warning guide for integrity
management of critical ship energy systems.
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1. Introduction

The tremendous gains from maritime transport have served as a
catalyst for civilization and intercontinental trade’s lifeline. Though
numerous regional and international regulatory bodies have safety
conventions in place, major failures/accidents continue to be
reported every year for marine vessels (Adumene et al., 2022;
Aziz et al., 2019). The ship propulsion power system is a critical
system of the ship structure. As such, failure for any reason may
result in substantial economic loss or loss of life. Heavy-duty
diesel power plants and gas turbine plants are widely used in ship
propulsion (Lion et al., 2019). Recently, diesel or diesel hybrid
engines have been used in marine propulsion systems to generate
mechanical energy from thermal forces. Most vessel types, such
as small boats and recreational yachts, use a hybrid energy system
for propulsion. The common propulsion engine in the shipping
industry is the diesel engine; the diesel engine converts thermal
energy to mechanical energy used to exert kinetic force. It is
general knowledge that voyages from Port of departure to Port of
destination should be completed on time; as such, reducing the
potential for failure in the propulsion system is of great

importance. Marine diesel engine failure is an operational failure
that might result in damage both to the ship and crew members on
board (Cicek & Celik, 2013).

The complexity of the marine operations and energy system
performance could affect their failure prediction and risk. There
exist multidimensional dependency and interdependency among
its subsystems during operation. This results in nonlinear and
nonsequential failure interactions among subsystems. A better
understanding of these failure modes and their interrelationship is
crucial for the system’s time-dependent failure prediction.
Moreover, the system failure’s stochastic nature could require a
dynamic and robust probabilistic tool that could capture and
integrate all causative factors for a reliable failure forecast. The
reviewed literature (Arzaghi et al., 2020; Aziz et al., 2019; Carroll
et al., 2015; Hatti, 2018; Ossai et al., 2016; Zahraee et al., 2016)
has demonstrated the application of probabilistic tools in energy
systems reliability and failure analysis. However, they are limited
to the dynamic modeling of ship energy systems under complex
dependencies.

The Bayesian network (BN) is a machine learning (ML) tool
that captures the conditional dependencies among random
variables to analyze a given phenomenon. Its inferential reasoning
is based on Bayes’ theorem. The BN model has shown promise
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for complex system failure modeling under uncertainty (Khakzad
et al., 2013). It adopts a logical acyclic directed graph to represent
the cause–effect analysis of a given phenomenon. The reviewed
literature (Cicek & Celik, 2013; Faturachman et al., 2018; Golub
Medvešek et al., 2014), modeled the ship energy reliability based
on qualitative and semiquantitative methods. These methods are
limited to capturing the interactions among the subsystems. This
reveals the weaknesses of the existing model for ship energy
system modeling under complex failure modes interactions.
Moreover, the interaction and complex dependence among critical
failure influential factors in a dynamic ocean environment have
not been captured for ship propulsion engine failure. It is essential
to adopt an algorithm that could capture the dynamic interactions
among failure modes for a reliable system failure prediction under
uncertainty.

The current study presents an approach that integrates the
failure modes with the ML formalism (the BN) to model the
nonlinearity and dependencies among the ship energy systems’
failure contributing factors. The model is able to i) apply a data
updating algorithm that will update the failure data for real-time
risk modeling of ship operations and ii) capture the complex
dependencies among failure influential factors for a dynamic
failure assessment framework. The energy system’s critical failure
modes are identified and classified based on their level of
importance and functionality. The essential predisposing factors
(causative factors) are described based on a logical framework to
estimate their probability of occurrence. The formulated
frameworks are mapped into the BN to dynamically capture the
effects of the subsystem interactions and stochasticity on the ship
power plant’s failure characteristic. This is intended to capture the
variability and uncertainty in the failure initiating parameters and
the effects of the dynamic ocean environments. The approach is
demonstrated on a ship propulsion engine. It logically represents
the various causative factors to capture their interdependency and
stochasticity for a robust failure assessment. The likely impact of
the subsystems’ performance based on a sensitivity analysis was
established to identify their vulnerability path for critical decision
making.

2. Marine Energy Systems Failure Assessment

The system’s reliability defines the performance characteristic
of an engineering system for the period of operation. This can be
expressed in terms of the failure rate or hazard function for a
defined period. Failure of the marine energy system could be
catastrophic in extremely harsh ocean environments. Their failure
modes could classify the dependency/functionality of the
subsystems that characterized the overall system performance.

Several researchers have proposed various failure modes
assessment techniques for marine energy systems in the open
sources (Banks et al., 2001; Faturachman et al., 2018; Hadiya,
2011; Kang et al., 2017; Lau et al., 2012; Leimeister & Kolios,
2018; Pfaffel et al., 2017). For example, Failure Mode and Effect
Analysis (FMEA), HAZOP, FMECA, and What If Analysis are
common qualitative approaches widely adopted to analyze the
severity, detection, and occurrence of failure events. Recently,
Kang et al. (2017) and Pfaffel et al. (2017) proposed the
application of FMEA and Correlations-FMEA for marine energy
system failure assessment in the ocean environment. The authors
identify five fundamental subsystems that define the functionality
of the energy system. The critical subsystems could include the
structural support system, electrical, turbine generator,
transmission, and auxiliary systems. The qualitative approach

provides great insight into the system’s failure influential factors;
however, they are limited to quantitatively predicting the failure
likelihood and the complex interactions among basic elements of
the plant.

To further capture the logical dependency among the
subsystems, a quantitative approach, such as the fault tree analysis
(FTA), has been demonstrated for marine system failure
assessment (Aziz et al., 2019; Golub Medvešek et al., 2014;
Kabir, 2017; Nitonye et al., 2017). The FTA is a method that
captures possible failure root causes through a logical relationship.
It provides an in-depth structure for failure prediction that results
in loss of system integrity (Márquez et al., 2016). Typically, FTA
is adapted to predict the top event (failure event) failure
probability based on the associated system failure modes and
basic events. Furthermore, the basic failure events are not
exhaustive; they are dependent on the analyst’s knowledge and
interaction among the various subsystems (Ta et al., 2017). It is
used to deduce the interaction between intermediate events; these
interactions could be in the form of a combination of elements
with the use of Boolean (“AND/OR”) logic gates. Márquez et al.
(2016) used the failure modes technique to identify critical failure
influential factors and the logical dependencies of marine wind
energy systems. The model captures the structural, wear,
electrical, and mechanical causative factors as their interplay
affects the plant’s performance. Ta et al. (2017) recently
employed the FTA for the marine propulsion reliability analysis.
The intent is to predict the likelihood of propulsion system failure,
considering the basic causative factors. The model could predict
the failure of the propulsion system upon the availability of the
failure characteristics (probability) of the basic events for the
period under consideration. However, the Boolean logic gates
present a static feature that limits the fault tree’s application,
especially for a real-life ocean operation/scenarios where the
failure characteristic is stochastic and dynamic.

Adumene and Okoro (2020) applied a stochastic Markovian
process for marine energy system reliability analysis. The authors
captured the stochasticity associated with the failure of the energy
systems through a time- and space-dependent framework. The
probability of failure over time was predicted, given the failure
rate as transition intensity based on the Markovian assumption.
Further application of artificial intelligence in ship systems and
offshore energy systems analysis has been demonstrated by the
researchers (Arzaghi et al., 2020; Carroll et al., 2015; Hatti, 2018;
Ossai et al., 2016; Zahraee et al., 2016).

The increasing need for digitization in the marine industry and
data mining have created more opportunities to develop advanced
data science and ML techniques for the maritime. Recent works
that explore the application of ML for marine energy system
forecast and other aspects of the maritime operations are detailed
in the referenced literature (Cheliotis et al., 2020; Kim et al.,
2021; Peng et al., 2020; Planakis et al., 2022; Tay et al., 2021;
Uyanık et al., 2020). For instance, Peng et al. (2020) applied the
ML formalism to predict ships’ energy consumption at Port. The
authors adopt 15 modeling features, consisting of inherent ship
property and external Port features. The result shows that
deadweight tonnage, facilities efficiency, net tonnage, and actual
ship weight critically affect the amount of energy consumption of
ships at Port. Similarly, Tay et al. (2021) highlighted the pros and
cons of applying ML techniques, such as artificial neural
networks, hidden Markov model, and Bayesian inference for ship
energy efficiency prediction. However, there is no conclusive
study on the application of these models for marine energy system
failure prediction.
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The dynamic and variability in marine energy systems’ failure
variables require a probabilistic and ML formalism that is dynamic and
adaptive, such as the BN. The BN could capture the multidimensional
complexity in the energy system configuration to predict its effect on
the overall plant performance and failure. Such a benefit is needed to
develop a robust failure-based framework for critical ship energy
systems during operations. It could also provide a dynamic tool that
updates the failure probability upon the availability of new evidence
and/or the effect of maintenance on the system performance.

3. Proposed Methodology and Its Application

This section presents the proposed integrated ML algorithm for
the failure analysis of marine energy systems. The algorithm is
summarized in Figure 1, and the subsequent sections describe the
methodological procedure.

3.1. System performance and failure modes

The marine system of study is defined and classified based on its
performance/functionality. This is followed by identifying the
subsystems and their failure mode. The failure modes assessment

tool, such as FMEA, could be adopted to classify the subsystems’
level of importance and their role in the entire plant’s failure during
operation. The interaction among these basic failure influential
factors is examined to develop a logical framework for the various
failure modes.

3.2 Logical interactive framework for failure modes

The failure modes of marine propulsion engine failure study are
presented in Figure 2. Figure 2 shows a schematic of the logical
framework of the significant failure modes. It captures the interaction
among the identified failure modes for the study scenario. Critical
factors that influence the systemand their basic predisposing elements are
further studied for a robust failure framework for the ship propulsion
engine systems. However, a comprehensive logical structure is
presented in section 4 for the demonstration of the proposed approach.

3.3. Mapping of logical framework into the ML
formalism

Figure 2 shows the developed logical representation of the vital
failure modes. This is elaborated andmapped into the BN structure in

Figure 1
Algorithm for dynamic failure assessment methodology

Define the 
marine energy 
system and its 
characteristic 
performance

Assess the 
system failure 
modes & their 
functionality

Develop a 
logical 
interactive 
framework 
among failure 
modes

The logical 
framework is 
mapped into the 
AI (BN) 
formalism 

Predict the 
system failure 
and develop a 
failure profile 
for decision 
making

Simulate the 
formulated BN 
structure by 
inputting the 
basic events 
probabilities

Figure 2
A schematic of the main and intermediate failure modes
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section 4. The logical structure used by FTA mapped the basic
events, intermediate events, and top events as the root nodes,
intermediate nodes, and pivot node of the BN formalism,
respectively. More information on the mapping procedures
adopted for the research analysis can be found in the referenced
literature (Bobbio et al., 2001; Khakzad et al., 2013). For more
information on the use of BN formalism, interested readers are
referred to the work of Daly et al. (2011).

The BN is a directed probabilistic dependence graph that
captures or represents uncertain knowledge in ML (Bobbio et al.,
2001; Pearl, 1988). It is applicable for discrete and continuous
random variables modeling of a given phenomenon. The BN
modeling can identify both the qualitative and quantitative
topologies, which in most cases are based on the d-separation
notion and direct dependence among random variables. Its
advantages range from its graphical decoding of conditional
independence to joint probability representation among random
variables. The BN formalism presents modeling flexibility that
accommodates various statistical dependencies and dynamic
interdependencies among failure causative factors. The BN
formalism shows great merits over the fault tree technique.

For a given set of basic random variables X1;X2; . . . . . . :; Xnð Þ,
the joint conditional probability distribution, P Uð Þ, gives

P Uð Þ ¼ P X1;X2;X3; . . . ::; Xn½ � ¼
Yn

i¼1

P XijParent Xið Þð Þ½ � (1)

where P Uð Þ is the joint probability distribution, and Parent Xið Þ is the
parent of the set of random variables, Xi.

The BN consists of various algorithms for inference and
computing of the posterior probability distribution on a set of
query variables designated as Q, for a given evidence called E
(i.e., P QjEð ÞÞ. Figure 3 represents a conventional BN structure for
random variablesY1;Y2; Y3; Y4. Also, the BN formalism can update
the probabilities for new information or change in the characteristic
variables. For example, given an observed variableY3 to be in state e,
the joint probability distribution can be updated based on the Bayes’
theorem, as shown in equation (2).

P Y1;Y2;Y4jeð Þ ¼ P Y1;Y2;Y4jeð ÞP
Y1;Y2;Y4

P Y1;Y2;Y4; eð Þ (2)

3.4. Structural and parametric learning of BN
structure for decision making

Structural learning methods of the BN from the dataset have
been demonstrated in the literature. The two common learning
methods include the score-based and constraint-based approaches.
These methods considered learning the dataset based on the
conditional independence relationship among the data points and

maximizing the likelihood of the model (Beretta et al., 2017;
Chickering, 2002; Daly et al., 2011). In the constraint-based
approach, the Incremental Association Markov Blanket (IAMB)
algorithm and PC algorithm have proven effective in learning the
BN model, while the score-based approach adopted the maximum
likelihood estimation algorithm. For instance, the learning process
based on the likelihood maximizer L of a set of failure data D for
a given model G can be expressed by equation (3) (Beretta et al.,
2017).

LL G; Dð Þ ¼ Q
dɛD

P djGð Þ (3)

The common algorithm for the score-based approach is the Bayesian
information criteria (BIC). The algorithm adopts the log-likelihood
and regularization terms to define the model structure from the
failure/observed dataset, D: It can be expressed by equation (4).

BIC G; Dð Þ ¼ LL G; Dð Þ � logm
2

dim Gð Þ (4)

whereD denotes the dataset,m indicates the number of samples, and
dim Gð Þ is the number of parameters in the BN model.

The formulated ML formalism is learned based on the score-
based approach for the basic events (root nodes) probability of
occurrence and the conditional probabilities that describe the
dependencies. This is quantified as a conditional probability table
(CPT). The root nodes’ probabilities are numerical values from
historical failure data, expert opinions, and literature. This defined
the initial state of the systems and the belief about their
performance. For this analysis, n-array variables are adopted to
depict the component behavior in a real-life case. This captures
the possible presence of multifailure modes and their probabilities
between 0 and 1. The CPT is defined based on the Noisy gates’
principles for the likely multifailure. When changes occur due to
the system’s environmental dynamics and stochasticity, the BN
can be updated based on the new information. For the parametric
learning of the BN structure, the nodes are categorized into
success and failure. The probability of failure of the pivot node
(ship propulsion engine failure) can be simulated for multiple
scenarios for the period under consideration.

Furthermore, the sensitivity analysis examines the degree of
influence of the basic failure influencing factors on the pivot
node. The essence is to identify the critical input parameters that
significantly impact the energy system’s failure profile and
provide safety barriers/measures. It also propagates the uncertainty
for the random input dataset to the output of the model. The
variance reduction technique is adopted for the sensitivity analysis
of the BN model’s output for this research. The technique is based
on the expected reduction in the variance of the characterized
value Q given the evidence R. It is mathematically represented by
equation (5) (Pearl, 1988; Shabarchin & Tesfamariam, 2016).

V qjrð Þ ¼
X

q

P qjrð Þ Xq � E Qjrð Þ� �
2 (5)

where q is the state of the query nodeQ; r is the state of varying node
R, P qjrð Þ is the conditional probability of q when node R is given to
be in state r, Xq is the numerical value corresponding to state q, and
E Qjrð Þ is the expected real value of Q due to a finding of the state r in
node R.

The quantification andmodel learning of the failure data present
some uncertainty due to randomness and errors. To evaluate the
associated error and uncertainty in the dataset due to the

Figure 3
Schematic of a conventional BN structure

Y1 
Y3 

Y2 Y4 
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randomness for the study phenomenon, equations (6) and (7) are
adopted

SEx̄ ¼
Sffiffiffi
n

p (6)

UD̄ ¼ � t � Sffiffiffi
n

p (7)

where S is the deviation of the mean, n is the total number of ele-
ments, SEx̄ is the standard error of the sample mean, UD̄ is the uncer-
tainty randomness in the dataset, and t is the t-test statistic at 95%
confidence level.

For the current study, multiple scenarios are developed to
demonstrate different failure profiles and vulnerability paths under
various operational decision-making scenarios. All BN structures
in this study are modeled in the GeNIe™ software environment.

3.5. Methodology application

The proposed approach is demonstrated with a case study of
ship propulsion engine failure (Aziz et al., 2019; Kum & Sahin,
2015; Lion et al., 2019). This provides validation and
demonstrates the applicability of the ML formalism in ship energy
system failure analysis. As presented in the referenced literature
(Aziz et al., 2019), the logical framework is used to apply ML
formalism in this research. The probabilistic failure dataset
presented by Kum and Sahin (2015) was used for the proposed
model’s structural learning (training), while Table 1 shows the
prior probabilities dataset of the principal events for the model test
and validation (Aziz et al., 2019).

The proposed approach’s computational procedure is applied to
the case study based on the system’s data, as shown in Table 1. The
results outcome is shown in Section 4.

4. Results and Discussion

The current research objective is to demonstrate the application
of the ML formalism (the BN), for failure prediction of the ship
propulsion energy system under uncertainty. This is shown by i)
utilizing the data updating algorithm in the ML formalism to
update the failure data for real-time failure modeling in ship
operations and ii) capturing the complex dependencies among
failure influential factors for dynamic failure assessment. The BN
captures the various failure influencing factors dynamically and
predicts their dependencies’ effect on the ship power plant’s
probability of failure. The critical failure modes were represented
and evaluated based on the prior probabilities, as shown in
section 3. The ML formalism captures both the parametric and
structural learning of the parametric interactions among crucial
failure influential parameters of the ship energy system. The
parameter learning result of the BN structure is shown in
Figure 4. The result shows that for the given failure data, as
indicated in Table 1, the ship propulsion engine failure’s
likelihood is 0.9999 based on the Boolean logic (0 1]. This is
adopted for the CPT formation based on a deterministic logical-
OR gate analysis. It implies that for a state of affirmation on the
subsystems’ failure states, the learning of the structure confirmed
that the ship propulsion engine would fail. This is due to
the logical interrelationship of the main engine failure, propulsion

trip failure, and failure to start modes. The interdependency
demonstrated in parametric learning shows that one failure mode’s
occurrence causes the ship engine’s failure. However, in many
real-case scenarios, there exist different failure states or latent
failure/faults that may influence the CPT formation based on the
belief of the degree of interactions/dependency among failure
causative factors. To capture this scenario, the canonical noisy-OR
gate is introduced, as shown in Figure 5.

Figure 5 shows the result of the ship propulsion engine failure
profile under noisy-OR configuration. The essence is to capture
scenarios when latent failure/faults in the system affects the
system’s functionality but does not result in total failure. This
represents cases where there exists a nonsequential failure
process as well (Adedigba et al., 2016). The noisy-OR model
demonstrates the ability to consider a reconfigured system
performance in the presence of latent failure/faults. As shown
in Figure 5, the likelihood of failure for the propulsion engine
fails start node in comparison with the result in Figure 4
increases by 55.6% under the noisy-OR gate configuration.
While that of the main engine failure and the propulsion engine
trip failure nodes probabilities decreases by 89.9% and 20%,
respectively.

To further analyze the failure state’s effect of the failure modes
on the ship propulsion engine failure likelihood, the evidence is
placed on the “Yes” state for the main engine node, propulsion
engine trip node, and propulsion engine fail to start node.
Learning the structure under evidence shows that the ship
propulsion engine failure probability increases by 11.8%, 8.2%,
and 9.4%, respectively. The work demonstrates the BN’s adaptive
nature to capture any change(s) in belief or information on the
state of failure of the influential critical factors to predict the pivot
node’s performance state. This reflects the real case scenarios
where common cause failure and latent faults are predominant.

Sensitivity analysis examines the influence of the most critical
failure influential parameters on the pivot node failure state. In this
case, the nodes’ failure data variance is evaluated based on the
method presented in Shabarchin & Tesfamariam (2016). The
sensitivity analysis result is shown in Figure 6.

The normalized percentage of the ship propulsion engine failure
parameters, as shown in Figure 6, indicates that the pneumatic start
system failures show more significant effects. This represents over
15% influence on the frequency of failure of the ship propulsion
plant. This is followed by the air system failure that results in a
lack of starting air for the demonstrated case study. The drive
(shaft) line functionality is crucial in the sustainable operation of
the power plant. Its frequency of failure accounted for 4.7% of the
total system failure. The degree of inference of the other
parameters can be deduced from Figure 6. Understanding the
effect of the variations in the vital basic elements on ship
propulsion engine performance will aid parametric integrity
management, especially in harsh ocean conditions, where
environmental constraints pose additional load effect on the ship
propulsion. The energy need in harsh weather ship operation and
the interdependencies among the critical subcomponents could
create degradation and fatigue-related failure of the system. This
provides an initial validation to the model application.

The modeling of the uncertainty in the dataset and the proposed
models’ epistemic uncertainty is based on the test statistic. The
epistemic is inherent in the assigned/learned CPT of the BN
structure and is propagated to the output. The analysis result
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Table 1
Principal events of ship propulsion engine failure

Main event Main intermediate events Codes Subintermediate events Codes Basic events Codes Basic events probability

Ship propulsion Engine failure Main engine (M/E) failure XA Mechanical failure X1 Scaled or worn valves X001 0.133
Propulsion engine trip XB Drive malfunction X2 Cylinder wear X002 0.128
Propulsion engine fails to start XC Mechanical seizure X3 Bearing overheat X003 0.075

Human failures X4 Loss of lubrication X004 0.349
External failures X5 Stern tube and gearbox fails X005 0.409
Main engine compressor X6 Coupling failure X006 0.017
Main engine control system X7 ECU/hydraulics X007 0.173
Combustion air system failure X8 FIVA and speed governor X008 0.249
Cooling system failure X9 Air compressor failure X009 0.393
Fuel oil system failure X10 Control air supply failure X010 0.209
Lube oil system failure X11 CCU/ACU control X011 0.370
Electrical system failure X12 M/E blower fail X012 0.487
Power outage/blackout X13 M/E Turbocharging fail X013 0.133
Pneumatic start system failures X14 Scaled cooler X014 0.982
Lack of start air X15 Fuel injector failure X015 0.474
Start-up hydraulic pressure X16 Poor quality of fuel X016 0.400
Low flow of lube oil X17 Fuel filter block X017 0.221
Lube oil pressure drop X18 F/O booster fails X018 0.160
Fuel oil supply X19 L/O leakage X019 0.002
Poor fuel oil quality X20 L/O purifier fails X020 0.623
Low flow of cooling water X21 L/O pump fails X021 0.077
Pneumatic controller failure X22 Pneumatic L/O supply fails X022 0.213
Cylinder mechanics failure X23 Short circuit X023 0.010

M/E sensor failures X024 0.133
Trip signal malfunction X025 0.503
Service air compressor failure X026 0.632
Start-up hydraulics X027 0.865
Bottled air pressure low X028 0.057
Compressor fails X029 0.300
Cracking of cylinder block X030 0.020
Deadlocking of piston ring X031 0.050
Breakage of piston X032 0.030
cracking of liner X033 0.112

M/E, main engine; CCU, cylinder control unit; ECU, engine control unit; ACU, actuator control unit; F/O, fuel oil; L/O, lube oil.
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indicates that the standard error associated with the deviation from
the mean is �0:0418. However, the deviation effects for each data
point may show some diversity in the errors as predicted. This is
crucial considering the failure data learning/partitioning process
for prior probability estimation of the various ship engine subsys-
tems. The uncertainty due to dataset randomness at a 95% confi-
dence level is �0:0855. The essence is to understand the
characteristic nature of the input data (prior probability) and the
assigned/learned CPT of the basic influential factors on the model
outcome. Upon the prediction of the uncertainty, it is propagated
into the predicted output. This process of uncertainty propagation
or casual error propagation is crucial in the model validity. This is
an important measure of the proposed model’s performance in fail-
ure analysis. The proposed method offers better performance in
ship energy system modeling in comparison with the works of
Cicek & Celik (2013), Faturachman et al. (2018), and Golub
Medvešek et al. (2014). The ability to capture multidimensional
dependencies enhances the model application in complex system
analysis.

The proposed approach has shown the capacity to capture
influential critical factors and the various failure modes for ship
propulsion engine failure analysis. The dynamic and updating
strength of the ML formalism is of practical importance for ship
operations in unstable ocean environments. The approach benefits

the maritime industry as a tool for condition monitoring and
integrity management of critical marine energy systems against
total failure.

5. Conclusions

The current study has shown the application of an adaptive ML
formalism, the BN, for failure analysis of a ship propulsion energy
system. The approach explores the vital influencing factors and their
criticality for the overall plant failure prediction. The model captures
the effects of dependencies and interdependencies among failure
influential factors and predicts the ship energy system’s dynamic
state. It is observed that the pneumatic start system, starting air
system, and drive system significantly affect the frequency of
failure of the plant. The model captures the uncertainty in the
dataset and propagates through the structural learning process for
a reliable output prediction. This provides validation to the model
application in ship energy system modeling. The following are
vital findings of the current research study:

• The applicable model provides a useful tool for dynamic failure
analysis of ship energy systems.

• The approach captures the nonlinear and nonsequential inter-
actions among key failure influential factors for ship energy

Figure 4
Result of the parametric learning of the BN structure
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system failure prediction and demonstrates it updating/adapting
capacity upon the availability of new failure information.

• The approach could capture the effect of critical systems’ soft
failure and their interaction on the overall plant failure under
diverse belief systems based on the OR-gate and the noisy-OR
gate configurations.

• That the model could propagate the casual error and uncertainty in
the prior probability estimation of the basic events to the top event
failure prediction.

• The approach captures the effect of the variation in variance
through the sensitivity analysis to predict the parametric degree
of influence on the overall failure prediction.

Figure 5
Parameter learning of the BN structure under noisy-OR gate configuration

Figure 6
Sensitively analysis of influential parameters on the pivot node
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• The maritime industry stands to benefit from the approach’s
capability to monitor and manage critical energy systems during
marine operations. This provides a guide/early warning against
total failure of the critical ship systems.

The application of the adaptive/dynamic model confirms its
advantages in failure assessment of ship energy systems under
uncertainty. Nevertheless, the proposed approach could be
improved in future study with the inclusion of safety barriers
modeling and the integration of loss function technique for
economic risks prediction in shipping/marine operations.
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in the reliability of heavy fuel oil supply. Transactions on
Maritime Science, 3(2), 131–136. https://doi.org/10.7225/
toms.v03.n02.004

Hadiya, M. (2011). Case study of offshore wind farm integration to
offshore oil and gas platforms as an isolated system-system
topologies, Steady State and Dynamic Aspects. Master’s
Thesis, Norwegian University of Science and Technology.

Hatti, M. (2018). Renewable energy for smart and sustainable cities:
Artificial intelligence in renewable energetic systems.
Germany: Springer Nature.

Kabir, S. (2017). An overview of fault tree analysis and its
application in model based dependability analysis. Expert
Systems with Applications, 77, 114–135. https://doi.org/
10.1016/j.eswa.2017.01.058

Kang, J., Sun, L., Sun, H., & Wu, C. (2017). Risk assessment of
floating offshore wind turbine based on correlation-FMEA.
Ocean Engineering, 129(154), 382–388. https://doi.org/
10.1016/j.oceaneng.2016.11.048

Khakzad, N., Khan, F., & Amyotte, P. (2013). Dynamic safety
analysis of process systems by mapping bow-tie into
Bayesian network. Process Safety and Environmental
Protection, 91(1–2), 46–53. https://doi.org/10.1016/j.psep.
2012.01.005

Kim, Y. R., Jung, M., & Park, J. B. (2021). Development of a fuel
consumption prediction model based on machine learning
using ship in-service data. Journal of Marine Science and
Engineering, 9(2), 137. https://doi.org/10.3390/jmse9020137

Kum, S., & Sahin, B. (2015). A root cause analysis for arctic marine
accidents from 1993 to 2011. Safety Science, 74, 206–220.
https://doi.org/10.1016/j.ssci.2014.12.010

Lau, B. C. P., Ma, E. W.M., & Pecht, M. (2012). Review of offshore
wind turbine failures and fault prognostic methods.
Proceedings of IEEE 2012 Prognostics and System Health
Management Conference, 1–5. https://doi.org/10.1109/PHM.
2012.6228954

Leimeister, M., & Kolios, A. (2018). A review of reliability-based
methods for risk analysis and their application in the offshore
wind industry. Renewable and Sustainable Energy Reviews,
91, 1065–1076. https://doi.org/10.1016/j.rser.2018.04.004

Lion, S., Taccani, R., Vlaskos, I., Scrocco, P., Vouvakos, X., &
Kaiktsis, L. (2019). Thermodynamic analysis of waste heat
recovery using organic Rankine cycle (ORC) for a two-
stroke low speed marine diesel engine in IMO tier II and tier
III operation. Energy, 183, 48–60. https://doi.org/10.1016/j.
energy.2019.06.123

Journal of Computational and Cognitive Engineering Vol. 2 Iss. 4 2023

320

https://doi.org/10.1016/j.cherd.2016.04.013
https://doi.org/10.1016/j.cherd.2016.04.013
https://doi.org/10.1016/j.ergon.2022.103293
https://doi.org/10.1002/eng2.12128
https://doi.org/10.1002/eng2.12128
https://doi.org/10.1016/j.renene.2019.08.099
https://doi.org/10.1016/j.renene.2019.08.099
https://doi.org/10.1016/j.ress.2019.01.002
https://doi.org/10.1155/2018/1591878
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1016/j.oceaneng.2020.107968
https://doi.org/10.1016/j.oceaneng.2020.107968
https://doi.org/10.1162/153244302760200696
https://doi.org/10.1016/j.ssci.2012.06.003
https://doi.org/10.1016/j.ssci.2012.06.003
https://doi.org/10.1017/S0269888910000251
https://doi.org/10.1017/S0269888910000251
https://doi.org/10.7225/toms.v03.n02.004
https://doi.org/10.7225/toms.v03.n02.004
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1016/j.oceaneng.2016.11.048
https://doi.org/10.1016/j.oceaneng.2016.11.048
https://doi.org/10.1016/j.psep.2012.01.005
https://doi.org/10.1016/j.psep.2012.01.005
https://doi.org/10.3390/jmse9020137
https://doi.org/10.1016/j.ssci.2014.12.010
https://doi.org/10.1109/PHM.2012.6228954
https://doi.org/10.1109/PHM.2012.6228954
https://doi.org/10.1016/j.rser.2018.04.004
https://doi.org/10.1016/j.energy.2019.06.123
https://doi.org/10.1016/j.energy.2019.06.123


Márquez, F. P. G., Pérez, J. M. P., Marugán, A. P., & Papaelias, M.
(2016). Identification of critical components of wind turbines
using FTA over the time. Renewable Energy, 87(2), 869–883.
https://doi.org/10.1016/j.renene.2015.09.038

Nitonye, S., Adumene, S., & Howells, U. U. (2017). Numerical
design and performance analysis of a tug boat propulsion
system. Journal of Power and Energy Engineering, 5(11),
80–98. https://doi.org/10.4236/jpee.2017.511007

Ossai, C. I., Boswell, B., & Davies, I. J. (2016). A Markovian
approach for modelling the effects of maintenance on
downtime and failure risk of wind turbine components.
Renewable Energy, 96, 775–783. https://doi.org/10.1016/j.
renene.2016.05.022

Pearl, J. (1988). Probabilistic reasoning in intelligent systems:
Networks of plausible inference. USA: Morgan Kaufmann
Publishers.

Peng, Y., Liu, H., Li, X., Huang, J., & Wang, W. (2020). Machine
learning method for energy consumption prediction of ships in
port considering green ports. Journal of Cleaner Production,
264, 121564. https://doi.org/10.1016/j.jclepro.2020.121564

Pfaffel, S., Faulstich, S., & Rohrig, K. (2017). Performance and
reliability of wind turbines: A review. Energies, 10(11),
1904. https://doi.org/10.3390/en10111904

Planakis, N., Papalambrou, G., & Kyrtatos, N. (2022). Ship energy
management system development and experimental evaluation
utilizing marine loading cycles based on machine learning
techniques. Applied Energy, 307, 118085. https://doi.org/10.
1016/j.apenergy.2021.118085

Shabarchin, O., & Tesfamariam, S. (2016). Internal corrosion hazard
assessment of oil & gas pipelines using Bayesian belief
network model. Journal of Loss Prevention in the Process
Industries, 40, 479–495. https://doi.org/10.1016/j.jlp.2016.
02.001

Ta, T. V., Thien, D. M., & Cang, V. T. (2017). Marine propulsion
system reliability assessment by fault tree analysis.
International Journal of Mechanical Engineering and
Applications, 5(4), 1–7. https://doi.org/10.11648/j.ijmea.s.
2017050401.11

Tay, Z. Y., Hadi, J., Chow, F., Loh, D. J., & Konovessis, D. (2021).
Big data analytics and machine learning of harbour craft
vessels to achieve fuel efficiency: A review. Journal of
Marine Science and Engineering, 9(12), 1351. https://doi.
org/10.3390/jmse9121351

Uyanık, T., Karatuğ, Ç., & Arslanoğlu, Y. (2020). Machine learning
approach to ship fuel consumption: A case of container vessel.
Transportation Research Part D: Transport and Environment,
84, 10238. https://doi.org/10.1016/j.trd.2020.102389

Zahraee, S. M., Khalaji Assadi, M., & Saidur, R. (2016). Application
of artificial intelligence methods for hybrid energy system
optimization. Renewable and Sustainable Energy Reviews,
66, 617–630. https://doi.org/10.1016/j.rser.2016.08.028

How to Cite: Chuku, A. J., Adumene, S., Orji, C. U., Johnson, K. T., & Nitonye, S.
(2023). Dynamic Failure Analysis of Ship Energy Systems Using an Adaptive
Machine Learning Formalism. Journal of Computational and Cognitive
Engineering, 2(4), 312–322, https://doi.org/10.47852/bonviewJCCE3202491

Journal of Computational and Cognitive Engineering Vol. 2 Iss. 4 2023

321

https://doi.org/10.1016/j.renene.2015.09.038
https://doi.org/10.4236/jpee.2017.511007
https://doi.org/10.1016/j.renene.2016.05.022
https://doi.org/10.1016/j.renene.2016.05.022
https://doi.org/10.1016/j.jclepro.2020.121564
https://doi.org/10.3390/en10111904
https://doi.org/10.1016/j.apenergy.2021.118085
https://doi.org/10.1016/j.apenergy.2021.118085
https://doi.org/10.1016/j.jlp.2016.02.001
https://doi.org/10.1016/j.jlp.2016.02.001
https://doi.org/10.11648/j.ijmea.s.2017050401.11
https://doi.org/10.11648/j.ijmea.s.2017050401.11
https://doi.org/10.3390/jmse9121351
https://doi.org/10.3390/jmse9121351
https://doi.org/10.1016/j.trd.2020.102389
https://doi.org/10.1016/j.rser.2016.08.028
https://doi.org/10.47852/bonviewJCCE3202491

	Dynamic Failure Analysis of Ship Energy Systems Using an Adaptive Machine Learning Formalism
	1. Introduction
	2. Marine Energy Systems Failure Assessment
	3. Proposed Methodology and Its Application
	3.1. System performance and failure modes
	3.2 Logical interactive framework for failure modes
	3.3. Mapping of logical framework into the ML formalism
	3.4. Structural and parametric learning of BN structure for decision making
	3.5. Methodology application

	4. Results and Discussion
	5. Conclusions
	References


