
Received: 22 November 2024 | Revised: 7 February 2025 | Accepted: 25 February 2025 | Published online: 8 April 2025

Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1–12

DOI: 10.47852/bonviewJCCE52024884
RESEARCH ARTICLE

Optimizing Software Fault Prediction Using
Atomic Orbital Search for Sustainable
Software Development

Somya Rakesh Goyal1,* and Sunil Kumar1,*

1Department of Computer and Communication Engineering, Manipal University Jaipur, India

Abstract: Software fault prediction (SFP) refers to the early identification of faults that can pose significant challenges to sustainable
software development (SSD) goals, primarily through resource waste, increased energy consumption, and extended development cycles.
SFP allows testing efforts to focus on fixing issues before they escalate, minimizing wasted time and effort. SFP models facilitate high-
quality end-products with reduced environmental impact and optimal resource utilization by enabling organizations to minimize failures
and align their software development efforts with sustainability objectives. Machine learning-based predictors are skyrocketing in the
SFP domain. This work proposes the optimization of the AdaBoost SFP model through the selection of optimal feature subsets using
the atomic orbital search (AOS) algorithm to enhance SSD. The proposed model improves the performance of the AdaBoost-based SFP,
having an area under the receiver operating characteristic (ROC) curve (AUC) of 83.56% by 8.85% on average. The impact of AOS on the
SFP is assessed by making a comparison with four other optimization algorithms over 10 public datasets, and empirical metrics such as
accuracy and AUC are utilized. The experimental findings embark on the usefulness of the proposed SFP model as it brings about an AUC
improvement of 6.8%, 2.6%, 5.02%, and 3.6% and an accuracy raise of 7.7%, 4.7%, 5.8%, and 4.2% for whale optimization algorithm,
particle swarm optimization, FireFly, and sine cosine, respectively. The statistical validation of the work upholds the proposed SFP model
for the improvement in software quality to achieve more sustainable practices in the software industry.

Keywords: software fault prediction (SFP), sustainable software development (SSD), atomic orbital search (AOS), feature selection (FS),
area under the receiver operating characteristic (ROC) curve (AUC), sustainable development goal 12 (SDG 12)

1. Introduction

Software fault prediction (SFP) is a crucial aspect of software
development that directly impacts quality, resource allocation, and
overall sustainability [1]. By effectively predicting and managing
defects, software teams can reduce waste, enhance efficiency, and
improve the longevity of their products [2]. This focus on defect
prediction aligns with the principles of sustainable software devel-
opment (SSD), which seeks to minimize environmental impact and
optimize resource use [3]. SFP plays an important role in sus-
tainability in the following ways [4]: (1) Accurate fault prediction
allows teams to allocate resources more effectively. By identifying
potential problem areas early, teams can focus their efforts on fix-
ing issues before they escalate, minimizing wasted time and effort.
(2) Reducing defects leads to higher-quality software. High-quality
products require less maintenance and fewer updates, decreasing the
resource consumption associated with post-release fixes. It results
in a more maintainable product. (3) Fewer defects resulting in

*Corresponding author: Somya Rakesh Goyal, Department of Computer
and Communication Engineering, Manipal University Jaipur, India. Email:
somya.goyal@jaipur.manipal.edu and Sunil Kumar, Department of Computer
and Communication Engineering, Manipal University Jaipur, India. Email:
kumar.sunil@jaipur.manipal.edu

better-quality software lead to less need for additional computing
resources, which reduces energy consumption and carbon footprint.

Early fault prediction utilizing learning machines has always
had a high influx of research [2]. Historical data from previous
projects, including metrics such as code complexity, commit his-
tory, and test results, are used to build predictive models, and
machine learning (ML) models are deployed to analyze patterns in
the data and identify areas with a higher likelihood of defects [5].
Ensembles are effective in handling skewed datasets for SFP [6].
AdaBoost is one of the most prominently used ensembles among
researchers in the SFP domain [7].

Software failures badly threaten the software development pro-
cess and the sustainability goals [8]. Now, as organizations are
increasingly prioritizing sustainability, understanding the relation-
ship between software quality and environmental impact becomes
crucial. Early fault prediction can save the following situations
that may be caused by failures in the future if left undetected
[9]: (1) Software failures lead to excessive resource consumption,
including time, computing power, and human effort. Fixing defects
often requires additional iterations, which can increase energy use
and waste resources. (2) Inefficient software that fails to perform
as intended may require more server resources, leading to higher
energy consumption and a larger carbon footprint. This contra-
dicts sustainability goals aimed at reducing environmental impact.
(3) Frequent failures can prolong development cycles, delaying

Pdf_Fol io:1

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://doi.org/10.47852/bonviewJCCE52024884
https://orcid.org/0000-0002-0113-7733
https://orcid.org/0000-0003-4617-704X
http://somya.goyal@jaipur.manipal.edu
mailto:kumar.sunil@jaipur.manipal.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

product releases. This not only affects productivity but can also lead
tomissed opportunities for more sustainable solutions, as teamsmay
revert to older, less efficient technologies. (4) Software failures can
diminish user trust and satisfaction, prompting organizations to allo-
cate more resources to support and maintenance instead of investing
in innovative, sustainable practices.

The defect datasets of the past projects are high dimensional
with a few or more irrelevant features that detriment the predic-
tion power of SFP models. The selection of optimal feature subsets
enhances the performance of SFP models [10]. However, selecting
the feature subset from the significant number of original features in
software data requires some sort of exhaustive search, which leads
to the NP-hard problem. Metaheuristic algorithms are proven to be
a boon in this scenario [11], and the employment of such optimiza-
tion algorithms, like Genetic Evolution [12], Firefly Search [13],
and Lion Optimization [14], for the reduction of high-dimensional
datasets, improves the accuracy of SFP models.

To align software quality with sustainability goals, an effective
SFP mechanism is required to foster quality. SFP foresees poten-
tial software failures, allowing teams to address issues proactively.
Feature selection (FS) can enhance the performance of SFP models,
hence improving overall software quality [15].

Green Software Engineering and SFP intersect in that both aim
to improve software quality. Reducing defects can indirectly con-
tribute to greener software by ensuring that software runs more
efficiently and requires less computational power. Software that has
fewer defectsmay require lessmaintenance,which in turn can reduce
resource and energy usage over time. Explicitly, Green Software
Engineering emphasizes optimization of resources and energy effi-
ciency tomake softwaremore environmentally sustainable [16], and
SFP focuses on predicting and identifying defects or bugs in software
early in the development process, utilizing statistical and ML mod-
els to identify parts of the software most likely to contain defects,
enabling developers to prioritize testing and maintenance.

This study proposes a novelmodel namedAB-AOS-SSDbased
on the AdaBoost (AB) with Atomic Orbital Search (AOS) optimiza-
tion [17] for SSD. AOS offers a better balance between exploration
and exploitation, adapting to dynamic optimization landscapes for
improved search and convergence in comparison to other meta-
heuristic algorithms. Its atomic-based model helps avoid local
minimum and premature convergence. By incorporating quantum
principles, AOS provides a more sophisticated search mechanism.

To date, we have not identified any studies on AOS deployed
in the SFP domain. This model combines the AOS algorithm for
feature reduction with the AdaBoost learning algorithm that handles
the class imbalance of the dataset. The proposed synergism of AOS
and AdaBoost leads to the overall improvement in SFP accuracy.
The following research questions (RQs) have been framed to steer
the research in a guided direction:

RQ1.Howefficient is theSFPmodeldevelopedusingAdaBoost
with and without AOS FS?

RQ2.How effective is the SFPmodel developed using the pro-
posed hybrid model AB-AOS-SSD in comparison to other models
from the literature?

RQ3. Does statistical evidence exist in support of the effective
performance of the proposed model?

The major contributions of this study are as follows:

1) A hybrid fault predictor based on AdaBoost that integrates the
feature reduction mechanism using AOS has been proposed and
built.

2) The hybrid model is evaluated on 10 software defect datasets
obtained from NASA and Promise repositories to reflect upon
the generalizability of our proposed model.

3) Multiple performance metrics – area under ROC curve (AUC)
and accuracy – are computed for the validation and analysis of
our classification performance of the proposed model.

4) The predictive capability of the proposed model is compared to
the other four state-of-the-art hybrid algorithms present in the
literature to depict that our model has produced better results
across all the datasets.

5) For statistical analysis, we have used the Friedman test to prove
the validity of our results.

The structure of the study is as follows: Section 2 dis-
cusses the relevant work from current research trends. Section 3
describes the materials and methods used for experimental work.
Section 4 reports the results and inferences drawn from the exper-
imental work. Section 5 summarizes the contribution of the study
and concludes the work.

2. Literature Review

From the literature relevant to the SFP with metaheuristics to
improve the predictions in support of SSD, some latest and relevant
studies are handpicked for setting the background tone of the paper
and to get into the enhancements achieved by them.

Goyal [12] used genetic evolution with a support vector
machine-based SFP. Goyal [13] proposed a FireFly (FF) algorithm
for FS and compared the performance of FF-based SFP against the
genetic algorithm (GA) and particle swarm optimization (PSO)-
based SFPs. FF-based SFP returned better results with statistical
validation. Goyal and Bhatia [14] applied a Lion-based optimization
algorithm with an Artificial Neural Network-based SFP model.

Rhmann [15] employed a modified PSO for SFP and ended
up with promising results. Mafarja et al. [18] presented a fusion
of whale optimization and random forests to predict software qual-
ity. Das et al. [19] deployed golden jackal optimization algorithms
for SFP. Nasser et al. [20] developed a framework for ensemble-
based SFP models using advanced FS based on the sine cosine
(SC) algorithm. Harikiran et al. [21] developed ensemble models
for SFP. Zivkovic et al. [22] developed boosting SFP models with
the application of metaheuristics for FS. Potharlanka [23] demon-
strated the necessity and positive impact of metaheuristics-based FS
for ensemble-based SFP models.

Metaheuristic algorithms are prominently used for either the
hyperparameter tuning of the SFP model or to obtain reduced fea-
ture subsets for building the SFP model. In either case, the objective
is to improve the prediction power of ML-based SFP models to
reduce the chances and hence the adverse impact of software faults
on the SDLC schedule, manpower, budget, and environment. The
summary of the related work is tabulated in Table 1.

3. Research Methodology

The methodology adopted for experimentation and the princi-
ples behind the AB-AOS-SSD model are deliberated with the flow
graph of the working model within this section hereunder.

Experiments are carried out using MATLAB R2024 on 13th
Gen Intel(R) Core (TM) i5-1345U (1.60 GHz) with 32GB RAM.
The proposed model AB-AOS-SSD is the hybridization of AOS-
based dimensionality reduction with AdaBoost for SSD by devising
an accurate SFPmodel. The uniqueness of the model lies in the AOS
algorithm customized for maximizing the AUC of the AdaBoost
SFP model by selecting the optimal feature subset.

The working principle behind the proposed framework is the
quantum theory of atoms that covers electron density configuration
and energy absorption or emission.

Pdf_Fol io:202

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Table 1
Summary of related literature works

S. No. Literature Data corpus Metrics Metaheuristics SFP model Advantages Limitations
1 Goyal [12] NASA AUC Genetic

Evolution
(GE)

Support Vec-
tor Machine
(SVM)

Improved performance
of SVM classifier
using GE by 16.80%
(AUC)

Limited scope
due to a lack
in comparative
analysis with
other FS filters

2 Goyal [13] NASA AUC Firefly
Optimization
(FOFS)

Artificial
Neural
Networks
(ANN)

Improvement in ANN-
based SFP by 19.6%
(AUC) achieved

No comparison
with other FS
methods

3 Goyal and
Bhatia
[14]

NASA AUC Lion
Optimization
(Li-Op-FS)

Artificial
Neural
Networks
(ANN)

Better performance
achieved via
FS; 19.8% AUC
improvement over
GE

Generalization
of results over
datasets lacking

4 Rhmann [15] NASA Precision,
recall

ACO, PSO AdaBoost Optimized the hyperpa-
rameters and attained
high values for recall
and precision of
91.6% and 98.3%

No statistical evi-
dence reported.
AUC metric is
missing

5 Mafarja
et al. [18]

NASA TPR, TNR,
AUC

Binary whale
optimization
algorithm
(BWOA)

Random
Forest

Novel BWOA
enhanced with gray
wolf optimizer +
Harris Hawks opti-
mization with F-test
Rank 1.81

The model is too
complex to be
traceable and
causes high
computational
cost

6 Das et al.
[19]

NASA Accuracy Golden Jackal
Optimization

KNN, DT, NB Better performance
achieved via FS,
showing 88.9%
accuracy

Parameter value
setting is
complicated

7 Nasser et al.
[20]

NASA AUC,
accuracy

Sine cosine
algorithm
(SCA)

Ensem-
bles (RF,
bagging,
boosting)

Adaptive SCA with
Linear Discriminant
Analysis (LDA)
proposed showing
accuracy of 90.5%
and AUC of 87.7%

Generalization
of results is
lacking as only
three datasets
are deployed;
computationally
complex

8 Harikiran
et al. [21]

NASA Accuracy,
precision,
recall

Whale opti-
mization +
FireFly

Ensemble Feature selection
improved the
performance of
ensemble-based SFP
with 91% accuracy

No statistical
validation is
done

9 Zivkovic
et al. [22]

PROMISE Accuracy Reptile Search,
Shapley

XGBoost Metaheuristic search
for optimization of
classifier parameters

Shapley-based
local feature
importance
assessments

10 Potharlanka
[23]

PROMISE AUC,
precision

PSO + FA +
WOA

Deep-Q Improved SFP Model
with 8.5%, 4.3%
raise in accuracy and
AUC, respectively

Tuning the hyper-
parameter for
the model is
tedious

The problem formulation is as follows: The search space com-
prises several solution candidates that are called the population, and
this population represents the electrons in the surroundings of a
nucleus. The electrons are assumed to exist in the form of a cloud,
which is further divided into orbits. Each electron represents a can-
didate solution represented as Xi, where i = 1, 2, . . ., m (m is the

total number of electrons in the cloud). An electron is represented
with a binary string of length “d” denoted as < x

j
i > where j =

1, 2, . . . , , d; “d” denotes the dimensionality (i.e., number of fea-
tures) in the original defect dataset. x

j
i ∈ {0, 1} |“0” denotes the

exclusion of the jth feature, and “1” denotes the inclusion of the jth
feature in Xi.

Pdf_Fol io:3 03

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Each electron has a state energy Ei associated with it, which
is the objective function for the SFP optimization problem. Ei is
the negated AUC of AdaBoost for that particular feature subset rep-
resented by the binary string of Xi. As per the atomic theory, the
electron with the lowest energy has the highest probability density
and is considered the best solution. The SFP problem is a maximiza-
tion problem, so the AUC is negated to fit into the atomic theory.
(The higher the magnitude of AUC, the lower the energy of the can-
didate electron.) As per the atomic theory, the electrons in the close
vicinity of the nucleus have lower energy and higher probability of
availability, as shown in Figure 1.

Figure 1
Electron probability density around

nucleus within atom

The model with N orbits has electrons or population (say solu-
tions) Xk, where k denotes the respective layer [24]. Xk can be
represented, as shown in Equation (1).

Xk =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xk
1

Xk
2...

Xk
i..

Xk
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x21 . . . xj1 . . . xd1

x12 x22 . . . xj2 . . . xd2.
x1i x2i . . . xji . . . xdi.
x1p x2p xjp . . . xdp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where Xk
i is the ith electron s.t. 1 ≤ i ≤ p and p is the total

number of electrons at the kth orbit. 1 ≤ k ≤ n denotes the orbits.
An individual electron Xk

i represents a candidate solution that can
be mathematically shown as a position vector, where xji denotes
the jth feature of the ith electron and 1 ≤ j ≤ d and d denotes the
total number of dimensions (say features) in the original dataset.
xji can have the value of 1 or 0 for inclusion or exclusion of the
respective jth feature in the ith candidate solution electron.

The objective function that is the energy levels of electrons at
level-k can be modeled as a vector shown in Equation (2), where
Eki is the energy value of ith electron at kth level, that is, negated
magnitude of the AUC obtained from AdaBoost SFP model built
with that electron (feature subset).

The original defect dataset is fed to the AOS algorithm for FS,
where the AUC of AdaBoost model for candidate electron is the

objective function. The reduced feature subset is used for the final
predictions of fault-prone modules leading to SSD.

The model’s uniqueness lies in the quantum atomic theory of
how the energy levels affect the movement of electrons among the
atomic orbits.

The movement of electrons to achieve a stable state is mapped
as an optimization problem that has not yet been practiced in SSD
using SFP optimization.

Ek =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ek1
Ek2...
Eki..
Ekp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (−)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AUCk
1

AUCk
2...

AUCk
i..

AUCk
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

The mathematical equations for computing the binding energy and
binding state at kth level (or orbit) are given as Equation (3a) and
(3b), respectively:

BE k = p∑
i=1Eki/p (3a)

BS k = p∑
i=1Eki/p (3b)

where 1 ≤ i ≤ p (population at kth level) and 1 ≤ k ≤ n (orbits).
Similarly, the mathematical equations for computing the bind-

ing energy and binding state of the atom are given as Equation (3c)
and (3d), respectively:

BE = m∑
i=1Xi/m (3c)

BS = m∑
i=1Xi/m (3d)

where
m∑
i=1Ei/m (electrons in an atom, say, the search space).

The emission and absorption of energy result in an update in
the position of an electron that can be modeled as Equations (4) and
(5), respectively:

Xk
i+1 = Xk

i + [(α × (β × LE − γ × BS))/k] (4)

Xk
i+1 = Xk

i + (𝛼 × (𝛽 × LE − 𝛾 × BS)) (5)

where 1 ≤ i ≤ p (population at kth level), 1 ≤ k ≤ n (orbits), and𝛼, 𝛽, and 𝛾 are random numbers from [0,1].

Pdf_Fol io:404

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

3.1. Research design

The work of the proposed model AB-AOS-SDD is based on
the following algorithm. The flow graph of the proposed working
model is shown in Figure 2.

The NASA and Promise datasets are being considered for
experimentation. These datasets are appropriate for experimenta-
tion as the literature has used these datasets for benchmarking
various SFP models. NASA datasets have defect data from NASA
projects, and the Promise repository comprises data from industry
projects. Availability and acceptance are two major reasons for

selecting these datasets, and they are large enough to carry out
the experiments. Further, it allows us to compare our results with
existing work carried out using the same datasets. Holdout valida-
tion with an 80–20 ratio is adopted. It serves well in this case as the
available datasets are large enough. On a trial-and-error basis, the
authors observed that hold-out is adequate for this experimenta-
tion without adding any additional computational overhead, as the
case of cross validation, which does not add any substantial value.
It is quicker and bears lesser computational cost. Furthermore,
it is in direct association with SSD with reduced computational
cost.

Figure 2
Flow graph of AB-AOS-SSD algorithm

1 2

1 0 1 1 1

1 1 0 1DEFECT DATASET

Initialize the Electrons’ Positions and Evaluate the Fitness Values

Compute Binding Energy, Binding State, and Lowest Energy of the Atom

Generate 5 Orbits

(Gaussian PDF)

Determine Binding

Energy (),

Binding State, Lowest

Energy of each Orbit

Generate α, β, γ Randomly Set PR = 0.1

Is ≥ ??Is ≥ ??
YES NO

Emission Absorption

Determine Binding Energy, Binding State, and Electron () with Lowest Energy of

the Atom

Update Accordingly using equation (4) and (5)

Max Iterations

(50) Reached??

YES

REDUCED

DATASET

NO

SFP Model

AdaBoost
AUC

SFP Model

AdaBoost
REDUCED

<x1, x2, …., xd>

Faulty or

Not Faulty

Distribute Electrons

Pdf_Fol io:5 05

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

The training set is pre-processed with AOS, and then the
reduced dataset is used to build and train the AdaBoost ensemble-
based SFP model. Adaboost is an ensemble learning technique that
combines weak learners to form a strong classifier, making it a
powerful tool for improving classification performance and yielding
high accuracy. AdaBoost has an implicit ability to handle high-
dimensional datasets and to focus on important features. Further, it
is computationally efficient and easy to tune and resistant to overfit-
ting [22]. Later, the testing set is used to make the final predictions
about the fault-prone modules.

The use of metaheuristics in comparison to other available
methods for FS (e.g., filter, wrapper, embedded methods) offers
multiple benefits that are as follows: (1) facilitates the excellent
handling of complex relationships among the features, unlike filter
methods that are capable of learning only linear relationships; (2)
allows faster processing in comparison to wrapper methods and less
prone to overfitting; and (3) offers higher scalability, flexibility, and
model independence in comparison to embedded methods [19].

Algorithm: AB-AOS-SDD Algorithm

Input: Original Defect Dataset; ADABoost Model; Parameter-
Value Settings: Base:= C4.5; Number of estimators:=180; Learn-
ing Rate:=0.01; Grid Search; Hold-Out Validation; Ratio:=80–20;
Number of Solutions:=25; Max_Iterations:=50; n:=5; m:=25; p:=5;
Output: AUC and accuracy of ADABoost optimized with AOS for
SDD
Steps:

1. Determine the initial position Xi of the candidate solution
(electrons) in cloud with i = 1, 2, . . ., m;

2. Evaluate the fitness of electrons Ei by computing −AUCi of
AdaBoost SFP for that respective solution;

3. Computebindingenergy(BE)andbindingstate(BS)of theatom;
4. Identify the electron with the lowest energy level;
5. while (iteration_number<Max_Iterations)
6. Generate n orbits;
7. Sort the electrons in ascending order;
8. Distribute the electrons in orbits with a Gaussian PDF;
9. for k:=1 to n
10. Compute binding energy BE k and binding state

BS k at kth orbit;
11. Identify the electron with the lowest energy level in

the kth orbit;
12. for i:=1 to p
13. Generate 𝛼, 𝛽, and 𝛾 random numbers

from[0,1];
14. Set PR:=0.1; // Photon Ratio
15. Test if 𝑬𝒌𝒊 ≥ 𝑩𝑬𝒌
16. updateXk

i+1=Xk
i + [(α × (β×LE−γ×

BS))/k];
17. else
18. update Xk

i+1= Xk
i + (𝛼 × (𝛽 × LE −𝛾 × BS));

19. end if;
20. end for;
21. end for;
22. Update binding energy (BE) and binding state (BS) of the

atom;
23. Update the electron with the lowest energy level;
24. end while;

25. Assess the electron with the lowest energy level for the
optimized feature subset;

26. Train the AdaBoost SFP with the reduced training set;
27. Test the AdaBoost SFP with the reduced test bench;
28. return the ROC, AUC, and accuracy for the optimized SFP

model as Output;

Multiple metrics are recorded for performance evaluation over
all 10 datasets, including SO2, ROC, AUC, and accuracy. The
recorded results are further empirically compared with state-of-the-
art algorithms, namely, FireFly (FF), whale optimization algorithm
(WOA), particle swarm optimization(PSO), and sine cosine (SC.
The selection of these algorithms for comparison with AOS is
grounded in their prominence and effectiveness in the field of SFP.
These algorithms represent different nature-inspired approaches,
each with its own strengths. The comparison allows for a detailed
evaluation of AOS’s performance relative to state-of-the-art opti-
mization algorithms, shedding light on its potential advantages for
improved FS in SFPmodels. Parameter settings of all the algorithms
used in experimentation are given in Table 2.

Table 2
Parameter settings for SFP model

Classification
Algorithm AdaBoost

Base = C4.5; Number of estima-
tors = 180; Learning Rate =
0.01; Grid Search; Hold-Out
Validation; Ratio = 80–20;

Metaheuristic Algo-
rithm (Dimension
Reduction)

Number of Solutions = 25; Max.
Number of Iterations = 50;

n = 5; 𝛼, 𝛽, and 𝛾 are random
numbers from [0,1]; PR = 0.1;

FireFly (FF) thres = 0.5; alpha = 1; beta = 1;
gamma = 1; theta = 0.97;

Whale Optimization
Algorithm (WOA)

b = 1;

Particle Swarm
Optimization(PSO)

thres = 0.5; c1 = 2; c2 = 2; w =
0.9; Vmax = (ub – lb) / 2;

Sine Cosine (SC) thres = 0.5; alpha = 2;

4. Results and Discussions

After conducting the experiments, the observations and infer-
ences are reported under this section. The discussions address the
RQs of this work.

4.1. Impact of AB-AOS-SDD on software fault
prediction

Addressing RQ#1: How efficient is the SFP model
developed using AdaBoost with and without AOS FS?

To measure the impact of the AOS on the performance of
the AdaBoost SFP model, the experiments are repeated twice:
first, AdaBoost SFP without AOS-based FS and, second, AdaBoost
SFP with AOS (AB-AOS-SDD). During the experimentation, AUC
score was recorded over all 10 datasets. The results are plotted in
Figure 3. AdaBoost without FS is showing AUC of 84.7% for CM1,
71.2% for JM1, 84.8% for KC1, 87.4% for KC2, 83.3% for Camel,
80.5% for JEdit, 82.6% Lucene, 88.0% for Synapse, and 82.5% for

Pdf_Fol io:606

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 3
AUC of AdaBoost SFP with and without AOS

Xalan, whereas AB-AOS-SDD-based SFP has AUC of 93.1% for
CM1, 81.2% for JM1, 90.0% for KC1, 93.0% for KC2, 94.0% for
Camel, 92.3% for JEdit, 93.4% Lucene, 91.2% for Synapse, and
91.3% for Xalan.

On average, AdaBoost has 82.5% AUC, and the proposed AB-
AOS-SDD has 91.3% AUC over the selected 10 datasets. It shows
that the AB-AOS-SDD-based SFP model has an 8.8% better AUC
score than the simple AdaBoost SFP model. It is inferred that the
AB-AOS-SDD is more effective than the simple AdaBoost SFP
model.

4.2. Comparison of AB-AOS-SDD with models
from literature

Addressing RQ#2: How effective is the SFP model devel-
oped using the proposed hybrid model AB-AOS-SSD in
comparison to the other models from the literature?

To address this question, four FS techniques have been cho-
sen for hybridization with AdaBoost Classifier, namely, WOA [18],
FF [13], PSO [15], and SC [20]. The convergence of all these four
models and AB-AOS-SDD is plotted in Figure 4. For FF, PSO, and

Figure 4
Convergence of AB-AOS-SDD and competing models

Pdf_Fol io:7 07

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 5
ROC of AB-AOS-SDD and competing models

SC, the convergence is not stable with increasing iterations. Conver-
gence of AB-AOS-SSD is very stable, and with very few iterations,
it reaches the convergence point. Only WOA reaches convergence
earlier thanAB-AOS-SDD, but it is not optimal. Among all themod-
els, only AB-AOS-SDD reaches the most optimal solution with a
lesser number of iterations.

From the convergence plot, it can be inferred that the proposed
model is the best performer among all the competing models. Next,
the ROCs are plotted for all five models in Figure 5.

The ROC plot reflects the prediction performance of the model
by plotting the TPR against false positive rate (FPR). The ideal curve
passes through (0,0), (1,0), and (1,1,) covering a unit square area.

From Figure 5, the curve for AB-AOS-SDD is the closest one
to the upper left corner of the plot (1,0). That represents a good TPR
with low FPR. The comparative analysis shows better performance

of AB-AOS-SDD over other competing models. Next, the AUC
recorded in Table 3 and plotted in Figure 6. WOA shows 89.0% for
CM1, 78.5% for JM1, 86.0% for KC1, 89.4% for KC2, 91.2% for
PC1, 83.6% for Camel, 80.0% for JEdit, 79.1% for Lucene, 89.0%
for Synapse, and 85.6% for Lucene.

The proposed AB-AOS-SDD has an AUC of 93.1% for CM1,
81.2% for JM1, 90.0% for KC1, 93.0% for KC2, 94.0% for PC1,
90.1% for Camel, 92.3% for JEdit, 93.4% for Lucene, 91.2% for
Synapse, and 91.3% for Lucene.

In terms of AUC measure, the AB-AOS-SDD has 6.8%
improvement over WOA, 2.9% improvement over PSO, 5.0%
improvement over FF, and 3.6% improvement over the SC model.

Another metric is chosen for comparison, that is, accuracy. The
accuracy of the predictions made by all five models is recorded in
Table 4 and plotted as Figure 7.

Table 3
Performance of AB-AOS-SDD versus state-of-the-art models (in terms of AUC)

AUC WOA PSO FF SC AB-AOS-SDD
CM1 0.89 0.91 0.88 0.88 0.93
JM1 0.79 0.80 0.77 0.75 0.81
KC1 0.86 0.87 0.89 0.85 0.90
KC2 0.89 0.89 0.87 0.89 0.93
PC1 0.91 0.92 0.90 0.92 0.94
Camel 0.84 0.89 0.87 0.85 0.90
Edit 0.80 0.89 0.86 0.89 0.92
Lucene 0.79 0.90 0.89 0.92 0.93
Synapse 0.89 0.88 0.90 0.90 0.91
Xalan 0.86 0.88 0.84 0.92 0.91
Average 0.85 0.88 0.87 0.88 0.91

Pdf_Fol io:808

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 6
AUC of AB-AOS-SDD and competing models

Table 4
Performance of AB-AOS-SDD versus state-of-the-art models (in terms of accuracy)

Accuracy WOA PSO FF SC AB-AOS-SDD
CM1 0.88 0.91 0.90 0.92 0.94
JM1 0.81 0.85 0.79 0.82 0.92
KC1 0.89 0.92 0.92 0.90 0.97
KC2 0.88 0.90 0.89 0.93 0.98
PC1 0.91 0.92 0.89 0.91 0.93
Camel 0.84 0.89 0.87 0.85 0.90
Edit 0.86 0.89 0.88 0.92 0.97
Lucene 0.89 0.90 0.91 0.92 0.96
Synapse 0.91 0.92 0.91 0.93 0.97
Xalan 0.87 0.89 0.91 0.92 0.95
Average 0.87 0.90 0.89 0.91 0.95

Figure 7
Accuracy of AB-AOS-SDD and competing models

Pdf_Fol io:9 09

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Table 5
Performance of AB-AOS-SDD versus state-of-the-art models (in terms of computation time)

Computation time (in seconds) AB-AOS-SDD FF PSO SC WOA
CM1 0.59 8.80 1.38 1.32 1.28
JM1 6.96 102.03 21.92 7.12 12.96
KC1 4.88 20.09 2.02 2.06 2.18
KC2 1.02 9.05 1.25 1.54 1.49
PC1 1.22 10.04 1.56 2.19 1.40
Camel 1.75 8.24 2.41 2.21 2.31
Edit 0.53 8.33 1.30 1.02 1.15
Lucene 0.50 9.12 1.20 1.18 1.19
Synapse 0.33 8.01 1.47 1.01 1.06
Xalan 1.70 8.01 1.47 1.01 1.06
Average 1.95 19.17 3.60 2.07 2.61

Figure 8
P-statistic for Friedman test

On average, the performance of WOA, PSO, FF, SC, and AB-
AOS-SDD in terms of accuracy is 87.0%, 90.0%, 88.9%, 90.5%,
and 94.5 %, respectively.

It is evident that the AB-AOS-SDD has a 7.7% improvement
over WOA, 4.7% improvement over PSO, 5.8% improvement over
FF, and 4.2% improvement over the SC model.

The comparison of the proposed method with the state-of-the-
art models is made over the computational time taken by them to
make the predictions. The results are recorded in Table 5. That
clearly shows that the proposed model is computationally efficient
in comparison to competing models. The measurements of time are
taken in unit of second.

From Table 5, it is observed that the proposed model AB-AOS-
SDD is better than competing models in terms of computational
complexity, as it takes less time than the competing models. Further,
it scales gracefully with large-sized data as it does well with JM1
(i.e., one of the largest datasets). It performs equally well with the
real-life project datasets (Camel, Edit, Lucene, Synapse, andXalan).

From experimental results, it is inferred that the proposed AB-
AOS-SDD model performs better than the state-of-the-art models.
Next, we seek the statistical evidence for the results we brought here.

4.3. Statistical evidence of results

Addressing RQ#3: Does statistical evidence exist in support
of the effective performance of the proposed model?

It is necessary to validate the experimental results statistically.
The authors run the statistical tests over the recorded performance
of WOA, PSO, FF, SC, and AB-AOS-SDD in terms of AUC. Our

data are matched groups (multiple) and nonparametric. Hence, the
Friedman test is considered for statistical evidence [24–26] as it
is a nonparametric method that allows for the analysis of repeated
measures or matched data without the stringent assumptions of
parametric tests. Hence, the Friedman test is suitable for statistical
validation of results here. Figure 8 shows the result of the test at a
95% confidence level.

The value for p-statistic obtained is 0.0002, which shows the
statistical evidence for the better performance of AB-AOS-SDD
over theWOA, FF, SC, and PSOmodels. It is inferred that statistical
evidence in support of the effective performance of the proposed
model does exist.

5. Conclusions

Enhancing the accuracy of the defect prediction models is
a vital strategy for promoting SSD. By leveraging data-driven
approaches, ML, and optimization techniques, software teams
can not only improve software quality but also contribute to
more sustainable practices in the tech industry. This approach
helps in minimizing waste, optimizing resource use, and reduc-
ing the environmental footprint of software development activities.
Contributions to the proposed work are as follows:

1) Early identification of defects using the proposed AB-AOS-
SDD model leads to significant cost savings, as fixing defects
early in the development process is typically less expensive than
addressing them after deployment.

2) By focusing on high-risk areas, development teams can work
more efficiently, reducing the time spent on less critical issues.

Pdf_Fol io:1010

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

3) High-quality software that requires fewer resources for mainte-
nance supports long-term sustainability goals by reducing the
overall environmental impact of software development.

4) The proposed model shows an AUC of 90.9% and improves
the performance of the AdaBoost-based SFP, having an AUC of
83.56% by 8.85% on average.

5) The proposed model is empirically compared with four state-
of-the-art models, namely, WOA [18], FF [13], PSO [15], and
SC [20], and determined that the proposed is the best performer
among all the competing models.

6) The comparison is made over 10 datasets from NASA and
Promise Repository, which ensures the generalizability of the
model.

7) The proposed SFP model brings about an AUC improvement of
6.8%, 2.6%, 5.02%, and 3.6% and an accuracy raise of 7.7%,
4.7%, 5.8%, and 4.2% for WOA, PSO, FF, and SC, respectively.

8) The results are statistically validated by conducting the Fried-
man Test. The p-statistic is less than 0.5, which validates the
experimental results at the confidence level of 95%.

The authors propose to extend the work for real-time industry
data for determining the defect density by counting the number of
defects in the currently developing software at various industries.
Furthermore, the utilization of evolving metaheuristics algorithms
will be considered for extending the study, along with a focus on
the prediction of energy bugs dedicatedly in direct support of Green
Software Engineering.

Funding Support

This work is sponsored by the Manipal University Jaipur,
Jaipur-303007, Rajasthan, India.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

The data that support the findings of this study are openly avail-
able in GitHub at https://github.com/feiwww/PROMISE-backup/
tree/master/bug-data. The data that support the findings of this
study are openly available in the GitHub at https://github.com/
ApoorvaKrisna/NASA-promise-dataset-repository.

Author Contribution Statement

Somya Rakesh Goyal: Conceptualization, Methodology, Val-
idation, Formal analysis, Writing – original draft, Writing – review
& editing, Visualization, Funding acquisition, Project administra-
tion. Sunil Kumar: Conceptualization, Writing – review & editing,
Visualization.

References

[1] Li, Z., Niu, J., & Jing, X. Y. (2024). Software defect pre-
diction: Future directions and challenges. Automated Software

Engineering, 31(1), 19. https://doi.org/10.1007/s10515-024-
00424-1

[2] Zhao, Y., Damevski, K., & Chen, H. (2023). A systematic sur-
vey of just-in-time software defect prediction. ACM Computing
Surveys, 55(10), 201. https://doi.org/10.1145/3567550

[3] Leong, J., May Yee, K., Baitsegi, O., Palanisamy, L., &
Ramasamy, R. K. (2023). Hybrid project management between
traditional software development lifecycle and agile based prod-
uct development for future sustainability. Sustainability, 15(2),
1121. https://doi.org/10.3390/su15021121

[4] Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O.,
Asmael, M., & Safaei, B. (2020). Machine learning in pre-
dictive maintenance towards sustainable smart manufacturing
in Industry 4.0. Sustainability, 12(19), 8211. https://doi.org/10.
3390/su12198211

[5] Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse,
M. (2023). Software defect prediction analysis using machine
learning techniques. Sustainability, 15(6), 5517. https://doi.org/
10.3390/su15065517

[6] Chen, L. Q., Wang, C., & Song, S. L. (2022). Software defect
prediction based on nested-stacking and heterogeneous feature
selection. Complex & Intelligent Systems, 8(4), 3333–3348.
https://doi.org/10.1007/s40747-022-00676-y

[7] Yuan, Z., Chen, X., Cui, Z., & Mu, Y. (2020). ALTRA:
Cross-project software defect prediction via active learning and
tradaboost. IEEE Access, 8, 30037–30049. https://doi.org/10.
1109/ACCESS.2020.2972644

[8] Rathor, K., Kaur, J., Nayak, U. A., Kaliappan, S., Maranan,
R., & Kalpana, V. (2023). Technological evaluation and soft-
ware bug training using genetic algorithm and time convolution
neural network (GA-TCN). In 2023 Second International Con-
ference on Augmented Intelligence and Sustainable Systems,
7–12. https://doi.org/10.1109/ICAISS58487.2023.10250760

[9] Kumar, K., Pande, S. V., Kumar, T. C. A., Saini, P., Chaturvedi,
A., Reddy, P. C. S., & Shah, K. B. (2023). Intelligent controller
design and fault prediction usingmachine learningmodel. Inter-
national Transactions on Electrical Energy Systems, 2023(1),
1056387. https://doi.org/10.1155/2023/1056387,

[10] Saeed, M. S. (2023). Role of feature selection in cross project
software defect prediction-A review. International Journal of
Computations, Information and Manufacturing, 3(2), 37–56.

[11] Kaur, K., & Kumar, A. (2023). MCDM-EFS: A novel
ensemble feature selection method for software defect pre-
diction using multi-criteria decision making. Intelligent Deci-
sion Technologies, 17(4), 1283–1296. https://doi.org/10.3233/
IDT-230251

[12] Goyal, S. (2022). Genetic evolution-based feature selection for
software defect prediction using SVMs. Journal of Circuits,
Systems and Computers, 31(11), 2250161. https://doi.org/10.
1142/S0218126622501614

[13] Goyal, S. (2022). FOFS: Firefly optimization for feature
selection to predict fault-prone software modules. InData Engi-
neering for Smart Systems: Proceedings of SSIC 2021, 479–487.
https://doi.org/10.1007/978-981-16-2641-8_46

[14] Goyal, S., & Bhatia, P. K. (2021). Software fault prediction
using lion optimization algorithm. International Journal of
Information Technology, 13(6), 2185–2190. https://doi.org/10.
1007/s41870-021-00804-w

[15] Rhmann, W. (2020). Cross project defect prediction using
hybrid search based algorithms. International Journal of Infor-
mation Technology, 12(2), 531–538. https://doi.org/10.1007/
s41870-018-0244-7

Pdf_Fol io:11 11

https://github.com/feiwww/PROMISE-backup/tree/master/bug-data
https://github.com/feiwww/PROMISE-backup/tree/master/bug-data
https://github.com/ApoorvaKrisna/NASA-promise-dataset-repository
https://github.com/ApoorvaKrisna/NASA-promise-dataset-repository
https://doi.org/10.1007/s10515-024-00424-1
https://doi.org/10.1007/s10515-024-00424-1
https://doi.org/10.1145/3567550
https://doi.org/10.3390/su15021121
https://doi.org/10.3390/su12198211
https://doi.org/10.3390/su12198211
https://doi.org/10.3390/su15065517
https://doi.org/10.3390/su15065517
https://doi.org/10.1007/s40747-022-00676-y
https://doi.org/10.1109/ACCESS.2020.2972644
https://doi.org/10.1109/ACCESS.2020.2972644
https://doi.org/10.1109/ICAISS58487.2023.10250760
https://doi.org/10.1155/2023/1056387
https://doi.org/10.3233/IDT-230251
https://doi.org/10.3233/IDT-230251
https://doi.org/10.1142/S0218126622501614
https://doi.org/10.1142/S0218126622501614
https://doi.org/10.1007/978-981-16-2641-8_46
https://doi.org/10.1007/s41870-021-00804-w
https://doi.org/10.1007/s41870-021-00804-w
https://doi.org/10.1007/s41870-018-0244-7
https://doi.org/10.1007/s41870-018-0244-7

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

[16] Valmohammadi, C., & Hejri, F. M. (2023). Designing a con-
ceptual green process model in software development: A mixed
method approach. International Journal of Information Man-
agement Data Insights, 3(2), 100204. https://doi.org/10.1016/j.
jjimei.2023.100204

[17] Azizi, M. (2021). Atomic orbital search: A novel metaheuris-
tic algorithm. Applied Mathematical Modelling, 93, 657–683.
https://doi.org/10.1016/j.apm.2020.12.021

[18] Mafarja, M., Thaher, T., Al-Betar, M. A., Too, J., Awadallah, M.
A., Abu Doush, I., & Turabieh, H. (2023). Classification frame-
work for faulty-software using enhanced exploratory whale
optimizer-based feature selection scheme and random forest
ensemble learning. Applied Intelligence, 53(15), 18715–18757.
https://doi.org/10.1007/s10489-022-04427-x

[19] Das, H., Prajapati, S., Gourisaria, M. K., Pattanayak, R.
M., Alameen, A., & Kolhar, M. (2023). Feature selection
using golden jackal optimization for software fault pre-
diction. Mathematics, 11(11), 2438. https://doi.org/10.3390/
math11112438

[20] Nasser, A. B., Ghanem, W. A. H., Saad, A. M. H., Abdul-
Qawy, A. S. H., Ghaleb, S. A., Alduais, N. A. M.,..., &
Ghetas, M. (2024). Depth linear discrimination-oriented feature
selection method based on adaptive sine cosine algorithm for
software defect prediction. Expert Systems with Applications,
253, 124266. https://doi.org/10.1016/j.eswa.2024.124266

[21] Harikiran, J., Chandana, B. S., Srinivasarao, B., Raviteja, B., &
Reddy, T. S. (2023). Software defect prediction based ensem-
ble approach. Computer Systems Science & Engineering, 46(1),
2313–2331.

[22] Zivkovic, T., Nikolic, B., Simic, V., Pamucar, D., & Bacanin,
N. (2023). Software defects prediction by metaheuristics tuned
extreme gradient boosting and analysis based on shapley addi-
tive explanations.Applied Soft Computing, 146, 110659. https://
doi.org/10.1016/j.asoc.2023.110659

[23] Potharlanka, J. L. (2024). Feature importance feedback with
Deep Q process in ensemble-based metaheuristic feature selec-
tion algorithms. Scientific Reports, 14(1), 2923. https://doi.org/
10.1038/s41598-024-53141-w

[24] Lehmann, E. L., & Romano, J. P. (2005). Testing statistical
hypothesis. USA: Springer.

[25] Ross, S. M. (2017). Introductory statistics. Netherlands:
Elsevier.

[26] Pham, H. (2023). Springer handbook of engineering statistics.
UK: Springer.

How to Cite: Goyal, S. R., & Kumar, S. (2025). Optimizing Software
Fault Prediction Using Atomic Orbital Search for Sustainable Software
Development. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonviewJCCE52024884

Pdf_Fol io:1212

https://doi.org/10.1016/j.jjimei.2023.100204
https://doi.org/10.1016/j.jjimei.2023.100204
https://doi.org/10.1016/j.apm.2020.12.021
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.3390/math11112438
https://doi.org/10.3390/math11112438
https://doi.org/10.1016/j.eswa.2024.124266
https://doi.org/10.1016/j.asoc.2023.110659
https://doi.org/10.1016/j.asoc.2023.110659
https://doi.org/10.1038/s41598-024-53141-w
https://doi.org/10.1038/s41598-024-53141-w
https://doi.org/10.47852/bonviewJCCE52024884

	Introduction
	Literature Review
	Research Methodology
	Research design

	Results and Discussions
	Impact of AB-AOS-SDD on software fault prediction
	Comparison of AB-AOS-SDD with models from literature
	Statistical evidence of results

	Conclusions

