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Abstract: Recent innovations in satellite imaging have significantly improved the effectiveness of Earth observation through high-
resolution imagery used in environmental analysis, urban ecosystem, city planner mapping, and disaster management. Nevertheless,
with high-dimensional Landuse Landcover multispectral data available, the classification of satellite images remains a challenging task
due to the variability of the data. The conventional approaches to machine learning do well but fail at managing the intricacies of
multispectral data without shredding and feature extraction. This research presents a novel technique by applying the VGG-16 structure,
a deep convolutional neural network for image recognition, to classify the EuroSAT multispectral satellite image dataset, consisting of
various European terrains captured across multispectral bands, including visible and near-infrared, which are essential for environmental
analysis. The proposed technique presents a VGG-16 model enhanced with new convolutional blocks and dropout layers, specifically
designed to classify multiband satellite imagery data. The first phase of convolutions has been made to work with four spectral bands,
more specifically, RGB and near-infrared, to increase the capacity of distinguishing the type of ground cover. In addition, the output
layer has improved to provide a ten-class scene classification (forest, residential, industrial, highway, pasture, river, sea lake, herbaceous
vegetation, annual crop, permanent crop) for various landcover types, enhancing the model’s applicability. Augmentation techniques,
including rotation, flipping, and shifting, have been used to increase the diversity of the training dataset; additionally, transfer learning
leveraged the resultant augmented datasets. This adaptation not only enhances the mechanism for classifying the satellite images but
also decreases the time and computation resources needed, thereby making it applicable to big data. The proposed modifications to
the VGG-16 allow obtaining a higher classification accuracy rate of ±96.7%, which ensures the effectiveness of an automated system
for analyzing satellite imagery.

Keywords: urban ecosystem, city planner, deep learning, VGG-16, Landuse Landcover change detection, remote sensing, multi-spectral
analysis

1. Introduction

The improvement of satellite imagery has greatly impacted
the study of Earth observation, from environmental changes to
urban sprawl and agricultural growth. This technology provides
high-resolution imagery of the Earth’s surface, providing abundant
information on the numerous and variable landcovers at various
scales, wavelengths, and times. Previously, remote sensing image
classification relied on manual feature extraction combined with
machine learning techniques such as random forests, support vector
machines, artificial neural networks, and principal component anal-
ysis [1–6]. However, these methods, in practice, often have their
limitations based on the fact that the feature information is hand-
engineered and the methods are bound to specific conditions of
the environment that hinder scalability and robustness [7–10]. With
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increased satellite data complexity and volumes, a higher demand
exists for better methods to improve Landuse Landcover (LULC)
classification automation [11]. As such, deep learning methods, par-
ticularly convolutional neural networks (CNNs), have proved to be
instrumental [12–17]. These models’ special strengths are in deal-
ing with high-dimensional data. The authors exploit the way that
these models learn hierarchical features by themselves, thus avoid-
ing the need for manual feature extraction [18–20]. Thus, CNNs’
skill in training from raw data and malleability to datasets makes
them pertinent in remote sensing, where traditional means fail due
to the effect of atmospheric conditions on image quality, changes in
seasons, and variation in terrains.

2. Literature Review

Deep neural networks, including U-Net, VGG-Net, and
DeepLab, have proven to be instrumental in landcover change detec-
tion [21–23]. Out of all the recently proposed CNN architectures,
VGG-16, developed by Simonyan and Zisserman, is the simplest
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[24], but at the same time, it is efficient when applied to the tasks of
image recognition. Several recent studies [25–28] used VGG-16 for
remote sensing classification, proving its relevance. This model is
characterized by sequences of 3 × 3 filters and max pooling layers
and is good at perceiving detailed spatial hierarchies across multi-
ple scales, thus suitable for transformation into a satellite imagery
classifier [29–30]. This research intended to investigate the appli-
cability of VGG-16 in analyzing the EuroSAT dataset that contains
satellite images of different European regions with different kinds
of landcover features taken at multiple spectral bands, including
visible and near-infrared spectral bands, which are important for
environmental monitoring [31]. The goal of the proposed work is
to modify the VGG-16 structure in a way that it can properly clas-
sify multispectral data from the EuroSAT dataset. This entails a
change in inputs by extending the input layer to accommodate not
only images with more than three channels, as are the traditional
RGB images, but also the multispectral data channels acquired from
remote sensors. It is also applied to the output layer for the classifica-
tion of 10 diverse categories (forest, residential, industrial, highway,
pasture, river, sea lake, herbaceous vegetation, annual crop, perma-
nent crop) of LULC, thereby expanding the areas of remote sensing
application.

This paper contributes to the field by:

1) Modifications to VGG-16 for Multispectral Input: Enabling
the first convolution layer of VGG-16 to process four spectral
bands, including RGB and near-infrared bands, proves beneficial
for distinguishing various land classes, such as vegetation and
water.

2) Enhancing Classification with Deep Learning: Due to the depth
of feature extraction of VGG-16 in comparison with the previous
layers, the model can learn more enriched representations of the
data, and as a result, the classification rate increases, especially
for complex urban and natural image scenes [32, 33].

3) Integrating Advanced Training Techniques: About the prob-
lems associated with the large dataset size and the absence of
ground truth, the implementation of advanced training meth-
ods, data augmentation, and transfer learning solves the existing
difficulties. These also assist in averting the overfitting issue,
thereby enhancing the model’s versatility even when applied
in different environmental contexts [34, 35]. The application
of deep neural networks in the analysis of satellite images
adds a new and promising direction for the identification of
landuse types without the need for highly precise ground
referencing.

Hence, through fine-tuning and modifications of the VGG-
16 structure for this task, the research permits future discourse
on more expansive and efficient remote sensing methodologies.
Besides addressing some particular issues relevant to the analysis of
satellite imagery, this work contributes to the development of Earth
observation and remote sensing in general.

3. Research Methodology

The study utilizes CNNs as a proposed approach for process-
ing and classifying the satellite images. This research focuses on
the VGG-16 architecture, the CNN model, presenting the data pre-
processing techniques, architectural changes in the VGG-16 model,
training, and assessing the model strategies prepared and applied to
enhance the VGG-16 model for high-resolution satellite imagery to
classify and identify the images.

3.1. Dataset description

The primary dataset used in this study is the EuroSAT image
set (see Table 1), which comprises 27,000 classified images cap-
tured by the multispectral Sentinel-2 satellite. The EuroSAT dataset
is publicly available through its official repository. There are 10
spectral bands in the dataset, which comprises various geographical
regions like forest, residential, industrial, highway, pasture, river,
sea lake, herbaceous vegetation, annual crop, and permanent crop
for classification of the datasets.

Table 1
Dataset details

Feature Description
Source EuroSAT dataset based on Sentinel-2 imagery
Image Size 64 × 64 pixels
Channels 13 spectral bands, modified input to 4 channels
Classes 10 landuse categories
Samples Balanced set, 2000 images per class

3.2. Data characteristics

1) Image Dimensions: Both images have a footprint of 64 × 64
pixels in high resolution, although the data originally spans 13
spectral bands.

2) Classes: The LULC data used in the present study consists of
10 classes, comprising forest, residential, industrial, highway,
pasture, river, sea lake, herbaceous vegetation, annual crop, and
permanent crop.

3) Label Distribution: The proportionality of the datasets is
observed, whereby each category had similar numbers of
samples for training and validation.

3.3. Data preprocessing

All images are normalized and rescaled to a size of 64× 64 pix-
els for the input layer of the neural network (see Figure 1). However,
all picture arrays are preprocessed so that the final pixel values for
each picture are mean standardized to zero and variance standard-
ized to one (see Figure 2). This standardization assists in increasing
the speed at which the data is brought to the same level of measure-
ment during the training stage. To make the model more accurate
and more resistant to the issues of overfitting, the idea of data aug-
mentation is used, and for this purpose, the data is rotated, flipped,
and shifted. This also improves the ability of the model to general-
ize since the same object could be presented in different orientations
and presentations.

3.4. Model architecture

Hence, the VGG-16 is adopted due to its relative model sim-
plicity and demonstrated ability to capture very abstract qualities
from images contained in its many convolutional layers as follows
(see Figure 3 and Tables 2 and 3):

1) Input Layer: Modified to accept input images of the size of
64 × 64 and to be further extended toward multiple channels
associated with different spectral bands.
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Figure 1
Preprocessing of input images

Figure 2
Conversion in RGB image with labeling

2) Convolutional Layers: Contains several groups of convolutions
with three-by-three kernels and subsequent max pooling layers.
The number of filters used in each block increases by a factor of
2 from block 1 and block 2 to block 3 and block 4, with 64, 128,
256, 256, and 512, respectively.

3) Activation Functions: Leaky ReLU (Rectified Linear Unit)
introduces nonlinearity into the model, enabling it to capture
more complex patterns in subsequent learning iterations.

4) Fully Connected Layers: The FC layer has three 4096 units fol-
lowed by ReLU, and the final 1000 units followed by Softmax
to produce a 10-category output (forest, residential, industrial,
highway, pasture, river, sea lake, herbaceous vegetation, annual
crop, permanent crop).

3.5. Parameter details

1) Total Parameters: According to the result, the number of train-
able parameters, including weights and biases of all layers, is
138 million (see Table 4).

2) Optimizer: SGD m = 0.9, learning rate = 0.001
3) Loss Function: This is the case with categorical cross-entropy as

it is used in multiclass classification problems.

Figure 3
VGG-16 adaptation for multiband satellite image

classification: Model architecture
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Table 2
Model architecture overview

Layer type Configuration Description
Input Layer 64 × 64 pixels, multichannel Input layer to accommodate multispectral satellite images.
Convolutional Block Conv3 × 3, 64 filters × 2 Two convolutional layers with ReLU activation, followed by max pooling.
Convolutional Block Conv3 × 3, 128 filters × 2 Two convolutional layers with ReLU activation, followed by max pooling.
Convolutional Block Conv3 × 3, 256 filters × 3 Three convolutional layers with ReLU activation, followed by max pooling.
Convolutional Block Conv3 × 3, 512 filters × 3 Three convolutional layers with ReLU activation, followed by max pooling.
Convolutional Block Conv3 × 3, 512 filters × 3 Three convolutional layers with ReLU activation, followed by max pooling.
Fully Connected Dense, 4096 units First fully connected layer with ReLU activation.
Dropout 50% dropout Dropout layer to prevent overfitting.
Fully Connected Dense, 4096 units Second fully connected layer with ReLU activation.
Dropout 50% dropout Dropout layer to prevent overfitting.
Output Layer Dense, 10 units (Softmax) Softmax output layer for 10-class classification.

Table 3
VGG-16 modifications for satellite imagery

Layer Configuration Modification
Input Layer 64 × 64 × 4 Adapted to accept 4 spectral bands
Convolutional Multiple layers, 64 to 512 filters Standard VGG-16 architecture
Fully Connected 3 layers, up to 4096 units Adjusted the final layer to output 10 classes
Output Softmax activation Classification across 10 categories

Table 4
Model training parameters

Parameter Value Purpose/Description
Learning Rate 0.001 Initial learning rate for the SGD optimizer.
Momentum 0.9 Momentum factor for SGD to accelerate SGD in the right direction.
Batch Size 32 Number of training examples used to estimate the error gradient.
Epochs 100 Maximum number of passes through the entire training dataset.
Early Stopping Enabled (patience: 10 epochs) Prevents overfitting by stopping training if no improvement.
Regularization L2 (lambda = 0.0005) Penalizes large weights to prevent overfitting.
Loss Function Categorical cross-entropy Suitable for multiclass classification tasks.

Table 5
Novel adaptations for satellite imagery

Adaptation Implementation Rationale/Impact
Multispectral Input Adapted the input layer to handle 13

channels
Allows the model to process multispectral data directly,
capturing diverse spectral characteristics.

Increased Depth Additional convolutional layers Improves the model’s capacity to recognize intricate patterns
within high-resolution imagery.

Augmentation Rotations, shifts, flips Improves model generalizability by presenting diverse
scenarios during training.

Fine-tuning Custom Softmax layer for 10 classes Tailors the output layer to precisely match the number of
target classes in the satellite dataset.

Specialized Loss Categorical cross-entropy Optimizes the model for accurate probability distribution
across multiple classes.

These tables, when combined, offer a summary of the architec-
tural design for the satellite imagery classification by the adjusted
VGG-16 model (see Tables 2–5), the training procedures to enable
learning and new adaptations unique to the use of high-resolution

multispectral satellite images. This structured presentation helps to
comprehend the changes and the presumable improvement of per-
formance when it comes to the parameter determining the satellite
image analysis (see Table 6).
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Table 6
Training parameters

Parameter Value Description
Optimizer SGD Utilizes stochastic gradient descent
Learning Rate 0.001 Adjusted for optimal convergence
Momentum 0.9 Helps accelerate vectors in the right directions
Loss Function Cross-entropy Suitable for multiclass classification
Batch Size 16 Balances speed and learning stability
Epochs 100 Determined through early stopping

Table 7
Model performance on test data

Metric Value (%)
Test Accuracy 96.37
Test Precision 96.2
Test Recall 96.1
Test F1-Score 96.15

Table 8
Dropout and regularization effects

Parameter Dropout Rate L2 Lambda Effect on Loss

Configuration 0.5 0.0005
Reduced
Overfitting

The training procedure for the modified VGG-16 network for
satellite image recognition is planned in detail and is oriented toward
the model’s stability. As part of loss minimization, we constantly

track the validation loss and address issues of overtraining through
early stopping. This technique pauses training when the validation
error fails to improve for 10 iterations, making the model safe from
overfitting and ensuring the network generalizes well to unseen
data.

Furthermore, unlike most methods that focus solely on mini-
mizing loss, evaluation measures of accuracy, precision, recall, and
F1-score are computed after each training epoch to track and con-
trol training. All the measurements of these metrics give a rich
description of how well the model performs and give flexibility in
tweaking parameters to improve the classification of the 10 LULC
classes.

The proposedmodel framework is systematically validated and
conducted with a dataset split of 76% for training, 12% for vali-
dation, and 12% for testing. The performance of the model on the
test set is high, with a score of more than 95% (see Table 7). Fur-
thermore, between the two cross-tabulation techniques of confusion
matrices and classification reports, we accomplish the measurement
of the individual class performance, which helps to find any pos-
sible biases in the classification of the specific landcover type (see
Table 8 and Figure 4).

Figure 4
Accuracy analysis with respect to epochs
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As for the details of model training, the batch size is set as 32.
This size is considered optimal as it provides a sufficient number of
examples to be processed simultaneously without overloading the
available computational power to perform the modeling processes.
Regularization techniques are a key component of the algorithm,
including the dropout option at a regularization rate of 0.5 for fully
connected layers, to decrease overfitting, and have introduced L2
regularization with lambda of 0.0005 to consolidate that weights do
not overly fit in the noise of the training data.

Freedom and validation measures are strictly considered.
They are not limited by the split/second method only; instead, an
extra K-fold validation is applied to make results highly credible.
This renders well-tested confidence regarding the generalization
and stability of the classification system to any given data subset
since this method ensures consistency of the models’
performance.

4. Results

Subsequently, findings from the use of the adapted VGG-16
model for the classification of satellite imagery from the EuroSAT
dataset reveal improvements in the ability of CNNs for effective
classification of landcover. The assessment of the model includes
facets of training and validation accuracy, loss functions, and accu-
racymetrics (precision, recall, and theF1-score) of different epochs.
In particular, the training and validation sets score with high accura-
cies to show the proficiency of the model to learn from the EuroSAT
dataset (see Figure 4). The first detected accuracy was at a mere
65.4%, though it grew to 96.7% upon the 100 epoch (see Tables 9
and 10). Likewise, the validation accuracy increased from 64.8%
to 96.5% over the same period. Holding this in view, these find-
ings signify a steady increase in the generalization capability of the
learned model from the training data to the unseen validation data
without much overfitting, confirming the very strong architecture of
the VGG-16 model and the utility of the employed regularization
and dropout policies.

Table 9
Model accuracy over epochs

Epoch
Training

Accuracy (%)
Validation
Accuracy (%)

1 65.4 64.8
10 85.2 84.7
20 90.5 90.1
30 92.8 92.3
40 94.2 93.8
50 95.0 94.6
60 95.7 95.2
70 96.0 95.7
80 96.3 96.0
90 96.5 96.2
100 96.7 96.5

Table 10
Training and validation accuracy comparison

Metric
Training

Accuracy (%)
Validation
Accuracy (%)

Best Epoch 96.7 96.5

The amounts of training and validation loss can explain how the
model learns. The training loss had values that dropped from 0.850
to 0.098 (see Table 11), while the validation loss followed the same
pattern from 0.860 to 0.100. This is a clear sign of a reduction in loss
levels and a corresponding enhancement of the ability of the model
to assign correct labels to the training and validation datasets. The
fact that the training and validation loss curves are very close indi-
cates that the model is well optimized and not overfitting, making it
suitable for practical, real-world applications (see Figure 5).

Table 11
Model loss over epochs

Epoch Training Loss Validation Loss
1 0.850 0.860
10 0.400 0.415
20 0.260 0.275
30 0.210 0.220
40 0.180 0.185
50 0.160 0.162
60 0.140 0.142
70 0.125 0.130
80 0.115 0.118
90 0.105 0.108
100 0.098 0.100

These three metrics play a key role in assessing the model’s
ability to accurately classify various LULC types. The results of the
model foreseen in the next section, for instance, show a precision
(96%) and recall (96.4%) during the last epoch averages for both
(see Table 12). The F1-score showed equally high values, reflect-
ing the equal ratio of misuse detection between precision and recall
measures. This balance is quite useful in applications that require
both the accuracy of the positive class and the recall of the positive
samples.

The confusion matrix offered deeper information regarding the
ability of the chosen model to classify various classes of landcover
(see Figure 6). Most true positive values reaffirmed the high class-
specific accuracy (see Table 13); the convolutional layers appeared
to capture suitable multispectral and multispatial class features.
However, it was possible to obtain the minimum misclassifications,
which enhanced the model’s capability to distinguish between vari-
ous landcover types, which in turn proved that the features learned
by the network were excellent.

Predicted and actual labels are also presented as comparative
pictures for direct visual confirmation of the model’s efficiency in
translating multispectral patterns of satellite imagery between dis-
tinct types of landcover (see Figure 7). An evolutionary analysis of
accuracy and loss plots shows a representative and effective learn-
ing evolution. These two plots somehow depicted an increase in the
accuracy of the network; however, a reduction in the loss function,
which proved that the network was in the right process of learning
and optimizing throughout each iteration. These two factors include
the batch size and the number of epochs that influenced the best
model in this case.

Selecting a batch size of 32 ensures the most appropriate num-
ber for both computational learning and for the model to ensure
gradient estimation is achieved without straining the computational
resources. When training the model up to 100 epochs with the early
stopping method, it meant that training would be stopped just before
the model could be overtrained.
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Figure 5
Analysis of the loss function

Table 14 shows that the VGG-16 (proposed model) out-
performs other existing deep learning models in multispectral
image classification due to its adapted input layer, high accuracy
(96.7%), and efficient computational requirements. ResNet-50 and
EfficientNet perform well but lack multiband input adaptations,
making them less suitable for EuroSAT-based remote sensing tasks.
U-Net is designed for segmentation, making it less effective for
classification-based satellite image tasks. Vision Transformers offer
high accuracy but demand extensive computational power and pre-
training, making them impractical for scalable multiband remote
sensing applications.

Achieving a dropout of 0.5 and a lambda value of 0.0005
for L2 regularization paid off in minimizing overfitting, which is

indicated by low training and validation losses (see Table 8). These
methods were used to retain the broadness of the model so that
it would not be skewed by variations in the new unseen data.
As pointed out in the findings of this research, there is the pos-
sibility of using preprocessed models such as VGG-16 for the
classification of satellite imagery. A comprehensive performance
analysis further validates the efficacy of the proposed model in
dealing with the multispectral data inherent in many real-world
remote sensing and Earth observation applications (see Table 15).
This all-embracing assessment of the model, covering multiple
quantitative indices and qualitative visual assessments, reaffirms
the applicability of the proposed model toward more challeng-
ing tasks of remote sensing and opens up possibilities for the

Table 12
Precision, recall, and F1-score at final epoch

Class Precision (%) Recall (%) F1-Score (%)
Annual Crop 97.5 97.8 97.7
Forest 96.2 95.9 96.0
Highway 99.1 98.8 98.9
Industrial 95.4 95.1 95.2
Pasture 94.3 94.8 94.5
Permanent Crop 96.8 96.6 95.5
Residential 94.9 94.1 93.9
River 98.5 98.3 98.1
Sea Lake 96.8 96.5 96.1
Herbaceous Vegetation 95.6 96.3 95.8
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Figure 6
Confusion matrix for the proposed methodology

Table 13
Class-specific accuracy across different landcover

types

Class Accuracy (%)
Annual Crop 97.8
Forest 96.0
Highway 98.9
Industrial 95.3
Pasture 94.6
Permanent Crop 96.2
Residential 94.3
River 98.1
Sea Lake 96.2
Herbaceous Vegetation 95.1

subsequent development of the present automated satellite image
analysis applications in the future. The experiment conducted
in this study demonstrates the effectiveness of deep learning
models for classifying satellite images, with the modification of

the VGG-16 model for multispectral inputs further cementing this
capability in the context of the EuroSAT dataset. It is evident
from the accuracy measure that the model yields good accuracy
over all classes of interest, and this suggests the model’s capacity
to capture the spatial and spectral relationships within the data,
making this a useful tool in remote sensing analysis. Nonetheless,
close classes trigger misclassification issues and indicate that future
work can consider improving the frameworks, like the ResNet or
EfficientNet that can offer better feature extraction. Furthermore,
this study demonstrates the effectiveness of transfer learning in
classifying satellite images because this model requires much less
training time than the preceding one while still achieving high
accuracy. Possible directions for future work could involve testing
shallower models to ascertain if more in-depth models customized
for multispectral data could realize more of these problems for par-
ticular classes. Furthermore, if the dataset is made larger by adding
temporal values, the model’s performance appears resilient to
variations in seasonal or atmospheric conditions, making it well-
suited for practical applications. The research work presented in this
paper creates a strong baseline for large-scale and high-performance
satellite image classification that has potential applications in eco-
logical surveys, natural calamities mapping and monitoring, and
assessment of urban growth.
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Figure 7
Analysis of predicted versus actual labels

Table 14
Comparison of proposed and existing work

Model
Multi-Spectral
Adaptation

Classification
Accuracy

on EuroSAT
Computational
Efficiency

Suitability for Remote
Sensing

VGG-16 (Proposed) Yes (Modified input
layer for multiband
processing)

96.7% High (138 M parameters,
feasible for large-scale
remote sensing)

Very High (Optimized
for multiband satellite
image classification)

ResNet-50 [17] No (Standard
3-channel RGB input)

93.5% Moderate (25 M param-
eters, requires higher
computational power)

Moderate (Performs
well but lacks
multiband adaptations)

(Continued)
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Table 14
(Continued)

Model
Multi-Spectral
Adaptation

Classification
Accuracy

on EuroSAT
Computational
Efficiency

Suitability for Remote
Sensing

U-Net [20] No (Designed for
segmentation,
not multiband
classification)

92.1% Low (Higher memory and
processing demands for
segmentation tasks)

Low (Best suited
for segmentation
tasks rather than
classification)

EfficientNet [36] No (Limited support
for spectral bands,
optimized for RGB)

95.2% Low (Optimized for
small, high-resolution
datasets, requires more
computation)

Moderate (Performs
well on high-
resolution imagery
but lacks spectral
adaptability)

Vision Transformers [12] No (Requires extensive
pretraining and does
not support multiband
inputs)

94.0% Very Low (Requires
large-scale data
for training, high
computational cost)

Low (Requires exten-
sive labeled datasets
and pretraining)

Table 15
Performance metrics evolution over training

Epoch Accuracy (%) Precision (%) Recall (%) F1-Score (%)
1 65.4 64.9 64.7 64.8
50 95.0 94.8 94.9 94.9
100 96.7 96.5 96.5 96.5

5. Conclusion

The utilization of the developed or adapted VGG-16 model
in the classification of satellite images from the EuroSAT dataset
marks a milestone in remote sensing, especially toward enhancing
the automation in the identification of LULC. This research there-
fore goes further to show the reliability of deep learning approaches
in adapting a commonly image-based CNN for use in multispectral
satellite imagery. The first major contribution of this work consists
of transferring the VGG-16, a benchmark in visual recognition, to
satellite imagery. These are among the novel contributions made in
the current study:

1) Multispectral Adaptation: Different from prior works on using
VGG-16, where a convolutional input layer is optimized for
three-channel RGB images, this research modified the input
layer of the VGG-16 model to account for four spectral bands:
RGB and near-infrared. This change is important because the
near-infrared band is essential for vegetation studies, among
other things, as it enables the extraction of further insights into
the structure and physical features of the Earth’s surface.

2) Class-Specific Architectural Tuning: The modification of the
model’s last layer was done to classify 10 different types of
LULC, which specifically customized the CNN for LULC anal-
ysis. Such fine-tuning is critical for improving the applicability
of the model to applications such as environmental monitoring
and urban planning, where precise landcover classification is
essential.

3) Enhanced Training Techniques: The complexity of the model
trained in the study is enhanced by sophisticated training prac-
tices like the dropout and the ability to alter the learning rate
during training to avoid overfitting and underfitting common
with machine learning. These strategies have been found to

greatly enhance the degree of generality of the model to different
environmental conditions.

The successful deployment of this adapted VGG-16 model has
wide-ranging implications for various sectors reliant on accurate and
timely satellite data analysis:

1) Environmental Monitoring: The capability of correctly cate-
gorizing diverse landcovers can greatly enhance the chance
of observing alterations in the vegetation, water bodies, and
built-up regions that, in turn, would be very useful in working
against climate change, natural disasters, and the conservation
of endangered species.

2) Urban Planning: Due to the broad categories awarded by this
model, urban planners can enhance their knowledge of the lay-
out of landuse and the efficient planning of landuse. This is
especially dear to countries and regions where urbanization is
speeding up and where an effective use of the available space is
highly important for further development.

3) Agricultural Management: The classification of the type and
condition of agricultural land is crucial for the improvement of
the yield on that land, for water supply and demand, and for
the overall agricultural prediction. The development and utiliza-
tion of accurate satellite data in the analysis of context enable
precision agriculture practices.

4) Disaster Management: Better image analysis of satellite images
can be helpful in disaster response to floods, fires in forests,
and hurricanes by about the impact caused. This capability is
important for the proactive formulation of an action plan and the
reduction of disaster effects on the people and the environment.

While the research applies a modified VGG-16 model, its
novelty lies in the adaptation of VGG-16 for multiband satel-
lite image classification through several key enhancements. First,
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multispectral adaptation has been introduced, allowing the model
to process four spectral bands (RGB + NIR) instead of the tra-
ditional three-channel RGB input. This extension is crucial for
accurately distinguishing different landcover types such as vege-
tation, water bodies, and urban areas, which often exhibit distinct
spectral characteristics in the near-infrared range. Second, class-
specific architectural tuning has been implemented by modifying
the output layer to accommodate 10 distinct landcover categories,
making the model highly suitable for LULC analysis. Further-
more, the study employs optimized training strategies, incorporating
advanced data augmentation techniques such as shifting, rotation,
and flipping, alongside transfer learning to enhance generalization
while reducing computational costs. These strategies ensure that
the model can effectively learn robust features from diverse satel-
lite imagery while minimizing overfitting. Lastly, the enhancements
made to the model have led to substantial performance gains, with
the proposed model achieving a training accuracy of 96.7% and a
validation accuracy of 96.5%, outperforming traditional machine
learning and deep learning methods. This demonstrates the model’s
effectiveness in classifying multispectral satellite images with high
precision and reliability.
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