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A Cognitive-Based Similarity
Measure for Decision-Making with
Spherical Fuzzy Information

Iman Mohamad Sharaf1,*

1Department of Basic Sciences, Higher Technological Institute, Egypt

Abstract: This study aims to develop a new perspective of similarity measures (SMs) for the recently introduced spherical fuzzy sets (SFSs).
SFSs have several favorable properties making them superior to other types of fuzzy sets (FSs). As a consequence, SFSs are currently subject
to extensive study to establish robust measures. SMs are one of the known measures of FSs. In the spherical fuzzy environment, some of the
extant SMs cannot satisfy the axioms of similarity and provide counter-intuitive cases. Moreover, these conventional SMs are generalizations
of SMs for intuitionistic and Pythagorean fuzzy information. None of them reflects the cognitive dimension of a SFS. Hence, the concept of the
cognitive impact of a SFS is introduced. The cognitive impact is the logical implications for what human perception ought to ensue. Based on
this concept, a new SM is introduced.While the conventional SMs are based on the position of the SFSs relative to each other, the novel SM is
based on the effect of each evaluation on decision-making. First, an extensive review of the SMs for SFSs is presented. Second, the new
concept of cognitive impact is introduced in the spherical fuzzy environment. Then, the novel SM is developed. A comparative analysis
between the novel SM and the extant SMs is conducted. Finally, a multi-criteria decision-making problem is solved, namely green
supplier selection using the proposed cognitive-based SM to check its applicability and its validity.
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1. Introduction

The measures of similarity are very important tools that
estimate the degree of similarity between two things. A measure
of similarity proved to be an important aspect in various
applications, for example, image processing, disease diagnosis,
texture analysis, pattern recognition, and multi-criteria decision-
making (Mishra et al., 2022). Since the development of fuzzy sets
(FSs), the well-known conventional similarity measures (SMs)
have been modified to handle different types of fuzzy information.

The notion of FSs was initially introduced by Zadeh (1965),
later termed type-1 fuzzy sets (T1FSs) or ordinary FSs. T1FSs are
widely employed to solve diverse problems in various applications.
Nevertheless, with the continuous evolution of technologies, real-
world problems became more complicated and T1FSs are incapable
of modeling human judgment, evaluation, and reasoning when
uncertain and ambiguous information is encountered. Subsequently,
more elaborate types of FSs were developed and proposed.

Atanassov (1986) proposed intuitionistic fuzzy sets (IFSs), which
is a general form of T1FSs. IFSs handle imprecision and indeter-
minacy from a different perspective. While an ordinary FS is
composed of only one degree, an IFS is composed of a duplet. The
two degrees are the degree of membership (MD) and the degree of
non-membership (NMD). The sum of these degrees is less than or

equal to one. The hesitation degree (HD) depends on these two
degrees so that the totality of the three degrees is equal to one.

Samarandache (1998) developed neutrosophic fuzzy sets
(NFSs) as an extension of IFSs. A NFS is composed of the
independent triplet, namely truthiness, falsity, and indeterminacy
degrees. Each degree is less than or equal to one, and the totality
of these degrees is less than or equal to three.

Yager and Abbasov (2013) and Yager (2014) made another
development of IFSs and introduced Pythagorean fuzzy sets (PFSs).
PFSs are composed of the same duplet of the IFSs. This time, the
sum of squares of the duplet is less than or equal to one to provide a
larger domain. Still, the HD depends on the MD and the NMD such
that the sum of the squares of the three degrees is equal to one.

Cuong and Kreiovich (2013) proposed picture fuzzy sets
(PcFSs). A PcFS is composed of the independent triplet, namely
the positive membership degree, the negative membership degree,
and the neutral membership degree. Each degree is less than or
equal to one, and the sum of the three degrees together with the
refusal degree (RD) is equal to one.

Spherical fuzzy sets (SFSs) are new additions to the family of
FSs. SFSs are generalizations of the previous extensions of IFSs,
which is PcFSs, and NFSs. Hence, they encompass the merits of
the previous FSs. SFSs allow decision-makers to express their
doubts about the definition of the MD and the NMD. The three
independent membership parameters are related to their squared
summation. SFSs define the membership parameters on a unit
sphere, which allows the expression of human cognition on a
larger domain. Consequently, SFSs are more capable of handling
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imprecise and uncertain information faced in various real-world
problems.

Mahmood et al. (2019), Kutlu Gündoǧdu and Kahraman (2019),
and Ashraf et al. (2019) introduced SFSs. Mahmood et al. (2019)
proposed the concept of SFSs and T-SFSs along with spherical
fuzzy relations. They also defined some of their operations and
operators. Kutlu Gündoǧdu and Kahraman (2019) introduced the
generalized three-dimensional SFSs and defined the necessary
arithmetic operations and aggregation operators. Ashraf et al. (2019)
introduced SFSs with their basic operations. Based on these basic
operations, they developed the SF-weighted averaging aggregation
operator and the SF-weighted geometric aggregation operator.

In the SF-environment, almost all the SMs are extensions of
SMs for IFSs and PFSs. Furthermore, the SMs developed in the
literature have some limitations that might affect the validity of
results in the SF-environment (Shishavan et al., 2020). Some of
the extant SMs cannot satisfy the axioms of similarity and provide
counter-intuitive cases (Khan et al., 2020). The extant SMs focus
on the position of the SFSs in the three-dimensional space
ignoring the implications of the SF-information that has a decisive
influence on choice.

This study develops a new perspective of SMs for SFSs. SMs
are one of the known measures of FSs. In the SF-environment, some
of the extant SMs have several drawbacks. Furthermore, none of the
extant SMs reflects the cognitive dimension of a SFS. They are
simply generalizations of SMs for IFSs and PFSs. Therefore, the
concept of the cognitive impact of a SFS is introduced. The
cognitive impact is the logical implications for what human
perception ought to ensue. Based on this concept, a new SM is

proposed. The proposed SM is based on the effect of each
evaluation on decision-making, in contrast to the conventional
SMs that are based on the position of the SFSs relative to each
other. First, an extended review of SMs of SFSs is presented.
Second, the new concept of cognitive impact is introduced in the
SF-environment. Then, the cognitive-based SM (CBSM) is
developed. A comparative analysis between the proposed SM and
some of the extant SMs is conducted. Finally, an application in
multi-criteria decision-making (MCDM) is solved, namely green
supplier selection (GSS) using the proposed CBSM to check its
applicability and validity.

From the previous, the study serves the following four
purposes:

(i) A review of the extant SMs for SFSs.
(ii) The concept of the cognitive impact of a SFS is introduced.
(iii) A new SM is proposed based on the concept of cognitive

impact.
(iv) The CBSM is utilized to increase the robustness and accuracy of

decision-making.

The article is organized as follows. The basic preliminaries of SFSs
are given in Section 2. An extensive literature review of SMs is
presented in Section 3. In Section 4, the concept of the cognitive
impact of a SFS and the novel SM is introduced. A comparative
analysis is conducted in Section 5. The CBSM is utilized in
MCDM in Section 6. The conclusion is presented in Section 7.

The abbreviations and acronyms used in the article are listed in
Table 1.

Table 1
List of abbreviation and acronyms used

Abbreviation Definition Abbreviation Definition

CBSM Cognitive-based similarity measure NFS Neutrosophic fuzzy set
CI Choquet integral NMD Non-membership degree
CoI Cognitive impact PcFS Picture fuzzy set
CSFSM Cosine formula similarity measure PFS Pythagorean fuzzy set
CSSM Cosine similarity measure SFS Spherical fuzzy set
CTFSM Cotangent formula similarity measure SM Similarity measure
DBSM Distance-based similarity measure SQCSSM Square root cosine similarity measure
DSM Dice similarity measure STSM Set-theoretic similarity measure
ESM Exponential similarity measure T1FS Type-1 fuzzy set
FM Fuzzy measure VBSM Vector-based similarity measure
FS Fuzzy set WCSFSM Weighted cosine function similarity measure
GSCM Green supplier chain management WCSSM Weighted cosine similarity measure
GSM Grey similarity measure WCTFSM Weighted cotangent function similarity measure
GSS Green supplier selection WDSM Weighted Dice similarity measure
HD Hesitancy degree WESM Weighted exponential similarity measure
IFS Intuitionistic fuzzy set WGSM Weighted grey similarity measure
JSM Jaccard similarity measure WJSM Weighted Jaccard similarity measure
MCDM Multi-criteria decision-making WSCQSM Weighted square root cosine similarity measure
MD Membership degree WSTSM Weighted set-theoretic similarity measure
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2. Preliminaries

In this section, some fundamental concepts of SFSs with their
basic operations and distance measures are presented.

Definition 2.1. (Kutlu Gündoǧdu & Kahraman, 2019). A SFS on a
universe of discourseU is composed of the triplet µÃs

MDð Þ : U ! 0; 1½ �;
υÃs

NMDð Þ : U ! 0; 1½ �, and πÃs
HDð Þ : U ! 0; 1½ � and is denoted by

eAs ¼
D
u; µÃs

uð Þ; υÃs
uð Þ;πÃs

uð Þ
� ����u 2 U

En o
(1)

satisfying

0 � µ2
Ãs

uð Þ þ υ2
Ãs

uð Þ þ π2
Ãs

uð Þ � 1;8u 2 U : (2)

The refusal degree (RD) can be computed by

rÃs
uð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� µ2

Ãs
uð Þ þ υ2Ãs

uð Þ þ π2
Ãs

uð Þ
� �

;

r
8u 2 U (3)

The RD is the possibility of refusing the three previous degrees about
the event.

Hence, a SFS can be expressed using the four degrees by

eAs ¼
D
u; µÃs

uð Þ;υÃs
uð Þ;πÃs

uð Þ; rÃs
uð Þ

� ����u 2 U
En o

(4)

satisfying

0 � µ2
Ãs

uð Þ þ υ2
Ãs

uð Þ þ π2
Ãs

uð Þ þ r2
Ãs

¼ 1;8u 2 U : (5)

The score and accuracy functions for SFSs are given by

Score eAs

� � ¼ µÃs
� πÃs

� �
2 � υÃs

� πÃs

� �
2 (6)

and

Accuracy eAs

� � ¼ µ2
Ãs
þ υ2

Ãs
þ π2

Ãs
(7)

eAs < eBs iff Score eAs

� �
< Score eBs

� �
;

or Score eAs

� � ¼ Score eBs

� �
and Accuracy eAs

� �
< Accuracy eBs

� �
:

For two SFSs eA ¼ eA1; eA2; . . . ; eAn

� �
and eB ¼ eB1; eB2; . . . ; eBn

� �
, the

following distance measures are defined.

Definition 2.2. (Shishavan et al., 2020). The normalized Hamming
distance can be calculated by using either the three or the four
membership grades as follows:

dH eA; eB� � ¼ 1
n

Xn
i¼1

µÃi
� µB̃i

�� ��þ υÃi
� υB̃i

�� ��þ πÃi
� πB̃i

�� ��� �
; (8)

dH0 eA; eB� � ¼ 1
n

Xn
i¼1

µÃi
� µB̃i

�� ��þ υÃi
� υB̃i

�� ��þ πÃi
� πB̃i

�� ��þ rÃi
� rB̃i

�� ��� �
: (9)

Definition 2.3. (Shishavan et al., 2020). The normalized Euclidean
distance can be calculated using either the three or the four
membership grades as follows:

dE eA; eB� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
µÃi

� µB̃i

� �
2 þ υÃi

� υB̃i

� �
2 þ πÃi

� πB̃i

� �
2

	s
; (10)

dE0 eA; eB� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
µÃi

� µB̃i

� �
2 þ υÃi

� υB̃i

� �
2 þ πÃi

� πB̃i

� �
2 þ rÃi

� rB̃i

� �
2

	s
(11)

Definition 2.4. (Donyatalab et al., 2022). The normalizedMinkowski
distance, also known as the generalized distance, is given as

dM eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n

Xn
i¼1

µ2
Ãi
� µ2

B̃i

��� ���α þ υ2Ãi
� υ2B̃i

��� ���α þ π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(12)

When the sets under observations are not of equal importance, weighted
distancemeasuresaredefinedemploying theweightsof thesets tosignify
their importance. If the weight vector is considered, it is given by

wi ¼ w1;w2; . . .wnð Þ; where wi 2 0; 1½ �; and
Xn
i¼1

wi ¼ 1:

The weighted Minkowski distance is given as

dwM eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Xn
i¼1

wi µ2
Ãi
� µ2

B̃i

��� ���α þ υ2
Ãi
� υ2

B̃i

��� ���α þ π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(13)

When α ¼ 1, the normalized Minkowski distance will reduce to the
SF-Hamming distance.

dHM eA; eB� � ¼ 1
2n

Xn
i¼1

µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���h i
: (14)

When α ¼ 2, the normalized Minkowski distance will reduce to the
SF-Euclidean distance.

dEM eA; eB� � ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n

Xn
i¼1

µ2
Ãi
� µ2

B̃i

��� ���2 þ υ2
Ãi
� υ2

B̃i

��� ���2 þ π2
Ãi
� π2

B̃i

��� ���2h is
: (15)

Definition 2.5. (Donyatalab et al., 2022). The normalized
Minkowski–Hausdorff is given as

dMH eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n

Xn
i¼1

maxi µ2
Ãi
� µ2

B̃i

��� ���α; υ2
Ãi
� υ2

B̃i

��� ���α; π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(16)

The weighted Minkowski–Hausdorff distance is given as

dwMH eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Xn
i¼1

wi maxi µ2
Ãi
� µ2

B̃i

��� ���α; υ2Ãi
� υ2B̃i

��� ���α; π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(17)

When α ¼ 1, the normalized Minkowski distance will reduce to the
SF-Hamming–Hausdorff distance.

dHH eA; eB� � ¼ 1
2n

Xn
i¼1

maxi µ2
Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���h i
:

(18)
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When α ¼ 2, the normalized Minkowski distance will reduce to the
SF-Euclidean–Hausdorff distance.

dEH eA; eB� � ¼ 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1
2n

Xn
i¼1

maxi µ2
Ãi
� µ2

B̃i

��� ���2; υ2
Ãi
� υ2

B̃i

��� ���2; π2
Ãi
� π2

B̃i

��� ���2h is
: (19)

3. A Literature Review

SMs and distance measures are widely used to determine the
relationship between two objects in various domains, for example,
network comparison, machine learning, and data mining. In the
framework of SFSs, some different distance and SMs of SFSs have
been proposed. However, they are limited through the literature. The
existing SMs can be classified into two types: vector-based
similarity measures (VBSMs) and distance-based similarity
measures (DBSMs). VBSMs rely on the angle between SFSs.
DBSMs rely on the distance between SFSs. Almost all of the SF-
SMs are generalizations of existing SMs for IFSs (Wei, 2018; Xu &
Cai, 2012; Ye, 2011) and PFSs. The most common SMs include the
Dice similarity measure (DSM), the Jaccard similarity measure
(JSM), the cosine similarity measure (CSSM), the cosine formula
similarity measure (CSFSM), and the cotangent formula similarity
measure (CTFSM). The novel SMs between SFSs were investigated
by considering the positive, neutral, negative, and refusal grades.

Ullah et al. (2018) proposed a CSSM and a weighted cosine
similarity measure (WCSSM). Wei et al. (2019) and Rafiq et al.
(2019) also proposed a CSSM and a WCSSM. Moreover, they
concurrently defined 10 SMs between SFSs based on the cosine
function. Wei et al. (2019) applied these SMs to pattern
recognition and medical diagnosis. Meanwhile, Rafiq et al. (2019)
applied the proposed SMs to decision-making problems. These
SMs can be defined as follows.

Definition 3.1. (Rafiq et al., 2019; Ullah et al., 2018; Wei et al.,
2019). A CSSM and a WCSSM between two SFSs eA and eB using
(1) are defined by

Sc1 eA; eB� � ¼ 1
n

Xn
i¼1

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
: υ2

B̃i
þ π2

Ãi
:π2

B̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i

q ; (20)

Swc1 eA; eB� � ¼Xn
i¼1

wi

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2

B̃i
þ π2

Ãi
:π2

B̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ πB̃i

q
4 : (21)

Definition 3.2. (Rafiq et al., 2019;Wei et al., 2019). A CSSM and a
WCSSM between two SFSs eA and eB using (4) are defined by

Sc2 eA; eB� � ¼ 1
n

Xn
i¼1

µ2
Ãi
:µ2

B̃i
þ υ2Ãi

: υ2B̃i
þ π2

Ãi
:π2

B̃i
þ r2Ãi

: r2B̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r4

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i
þ r4

B̃i

q ;

(22)

Swc2 eA; eB� � ¼Xn
i¼1

wi

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2

B̃i
þ π2

Ãi
:π2

B̃i
þ r2

Ãi
: r2
B̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r4

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i
þ r4

B̃i

q :

(23)

Definition 3.3. (Rafiq et al., 2019;Wei et al., 2019). A CSFSM and
a WCSFSM between two SFSs eA and eB using (1) are given by

Scf 1 eA; eB� � ¼ 1
n

Xn
i¼1

cos
π

2
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���� �h i
; (24)

Swcf 1 eA; eB� � ¼Xn
i¼1

wicos
π

2
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���� �h i
; (25)

Scf 2 eA; eB� � ¼ 1
n

Xn
i¼1

cos
π

4
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���� �h i
; (26)

Swcf 2 eA; eB� � ¼Xn
i¼1

wicos
π

4
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���� �h i
: (27)

Definition 3.4. (Rafiq et al., 2019;Wei et al., 2019). A CSFSM and
a WCSFSM between two SFSs eA and eB using (4) are given by

Scf 3 eA; eB� � ¼ 1
n

Xn
i¼1

cos
π

2
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���; r2
Ãi
� r2

B̃i

��� ���� �h i
(28)

Swcf 3 eA; eB� � ¼Xn
i¼1

wicos
π

2
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���; r2
Ãi
� r2

B̃i

��� ���� �h i
;

(29)

Scf 4 eA; eB� � ¼ 1
n

Xn
i¼1

cos
π

4
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���þ r2
Ãi
� r2

B̃i

��� ���� �h i
;

(30)

Swcf 4 eA; eB� � ¼Xn
i¼1

wicos
π

4
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���þ r2
Ãi
� r2

B̃i

��� ���� �h i
:

(31)

Definition 3.5. (Rafiq et al., 2019; G. Wei et al., 2019). A CTFSM
and a WCTFSM between two SFSs eA and eB using (1) are given by

Sctf 1 eA; eB� � ¼ 1
n

Xn
i¼1

cot
π

4
þ π

4
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���� �h i� �
;

(32)

Swctf 1 eA; eB� � ¼Xn
i¼1

wicot
π

4
þ π

4
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���� �h i� �
;

(33)

Sctf 2 eA; eB� � ¼ 1
n

Xn
i¼1

cot
π

4
þ π

8
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���� �h i� �
(34)

Swctf 2 eA; eB� � ¼Xn
i¼1

wicot
π

4
þ π

8
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���� �h i� �
:

(35)

Definition 3.6. (Rafiq et al., 2019; G. Wei et al., 2019). A CTFSM
and a WCTFSM between two SFSs eA and eB using (4) are given by

Sctf 3 eA; eB� � ¼ 1
n

Xn
i¼1

cot
π

4
þ π

4
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���; r2
Ãi
� r2

B̃i

��� ���� �h i� �
;

(36)

Swctf 3 eA; eB� � ¼Xn
i¼1

wicot
π

4
þ π

4
max µ2

Ãi
� µ2

B̃i

��� ���; υ2
Ãi
� υ2

B̃i

��� ���; π2
Ãi
� π2

B̃i

��� ���; r2
Ãi
� r2

B̃i

��� ���� �h i� �
;

(37)
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Sctf 4 eA; eB� � ¼ 1
n

Xn
i¼1

cot
π

4
þ π

8
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���þ r2
Ãi
� r2

B̃i

��� ���� �h i� �
;

(38)

Swctf 4 eA; eB� � ¼Xn
i¼1

wicot
π

4
þ π

8
µ2
Ãi
� µ2

B̃i

��� ���þ υ2
Ãi
� υ2

B̃i

��� ���þ π2
Ãi
� π2

B̃i

��� ���þ r2
Ãi
� r2

B̃i

��� ���� �h i� �
:

(39)

In addition to the CSSM and the WCSSM, Ullah et al. (2018)
proposed grey similarity measures (GSMs) and set-theoretic
similarity measures (STSMs). The newly defined SMs were
applied to the well-known problem of building material recognition.

Definition 3.7. (Ullah et al., 2018). A STSM and a WSTSM
between two SFSs eA and eB are defined by

Sst1 eA; eB� � ¼ 1
n

Xn
i¼1

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i

max µ4
Ãi
þ υ4Ãi

þ π4
Ãi

� �
; µ4

B̃i
þ υ4B̃i

þ π4
B̃i

� �� � ;
(40)

Swst1 eA; eB� � ¼Xn
i¼1

wi

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i

max µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

� �
; µ4

B̃i
þ υ4

B̃i
þ π4

B̃i

� �� � :
(41)

Definition 3.8. (Ullah et al., 2018). A GSM and aWGSM between
two SFSs eA and eB are defined by

Sg eA; eB� � ¼ 1
3n

Xn
i¼1

Δµmin þΔµmax

Δµi þΔµmax

�
þΔυmin þΔυmax

Δυi þΔυmax
þΔπmin þΔπmax

Δπi þΔπmax

	
;

(42)

Swg eA; eB� � ¼ 1
3

Xn
i¼1

wi
Δµmin þΔµmax

Δµi þΔµmax

�
þΔυmin þΔυmax

Δυi þΔυmax
þΔπmin þΔπmax

Δπi þΔπmax

	
;

(43)

where Δui ¼ µ2
Ãi
� µ2

B̃i

��� ���;Δυi ¼ υ2
Ãi
� υ2

B̃i

��� ���;Δπi ¼ π2
Ãi
� π2

B̃i

��� ���;
Δµmin ¼ min µ2

Ãi
� µ2

B̃i

��� ���n o
;Δυmin ¼ min υ2

Ãi
� υ2

B̃i

��� ���n o
;Δπmin ¼ min π2

Ãi
� π2

B̃i

��� ���n o
;

Δµmax ¼ max µ2
Ãi
� µ2

B̃i

��� ���n o
;Δυmax

¼ max υ2
Ãi
� υ2

B̃i

��� ���n o
; and Δπmax ¼ max π2

Ãi
� π2

B̃i

��� ���n o
:

(44)

Khan et al. (2020) proposed STSMs and distance measures. They
applied the proposed measures for selecting mega projects in
developed countries.

Definition 3.9. (Khan et al., 2020). A STSM and a WSTSM
between two SFSs eA and eB are defined by

Sst2 eA; eB� � ¼ P
n
i¼1 µ2

Ãi
:µ2

B̃i
þ υ2

Ãi
: υ2

B̃i
þ π2

Ãi
:π2

B̃i

� �
P

n
i¼1 max µ4

Ãi
;µ4

B̃i

� �
þmax υ4

Ãi
; υ4

B̃i

� �
þmax π4

Ãi
;π4

B̃i

� �� � ;
(45)

Swst2 eA; eB� � ¼ P
n
i¼1 wi µ2

Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2

B̃i
þ π2

Ãi
:π2

B̃i

� �
P

n
i¼1 max µ4

Ãi
;µ4

B̃i

� �
þmax υ4

Ãi
; υ4

B̃i

� �
þmax π4

Ãi
;π4

B̃i

� �� � :
(46)

Shishavan et al. (2020) proposed some similarity measuring tools
including the JSMs, the exponential similarity measures (ESMs)
based on the Hamming and the Euclidean distances, and a square
root cosine similarity measure (SQCSSM). The proposed SMs
were applied to medical diagnosis and GSS problems.

Definition 3.10. (Shishavan et al., 2020). A JSM and a WJSM
between two SFSs eA and eB considering (1) and (4) are defined by

SJ1 eA; eB� � ¼ 1
n

Xn
i¼1

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i

µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i

� �
� µ2

Ãi
µ2
B̃i
þ υ2

Ãi
υ2
B̃i
þ π2

Ãi
π2
B̃i

� � ;
(47)

SwJ1 eA; eB� � ¼Xn
i¼1

wi

µ2
Ãi
:µ2

B̃i
þ υ2Ãi

:υ2B̃i
þ π2

Ãi
:π2
B̃i

µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i

� �
� µ2

Ãi
µ2
B̃i
þ υ2

Ãi
υ2
B̃i
þ π2

Ãi
π2
B̃i

� � :
(48)

SJ2 eA; eB� � ¼ 1
n

Xn
i¼1

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i
þ r2

Ãi
:r2
B̃i

µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i
þ r4

B̃i

� �
� µ2

Ãi
µ2
B̃i
þ υ2

Ãi
υ2
B̃i
þ π2

Ãi
π2
B̃i
þ r2

Ãi
r2
B̃i

� � ;
(49)

SwJ2 eA; eB� � ¼Xn
i¼1

wi

µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i
þ r2

Ãi
:r2
B̃i

µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i
þ r4

B̃i

� �
� µ2

Ãi
µ2
B̃i
þ υ2

Ãi
υ2
B̃i
þ π2

Ãi
π2
B̃i
þ r2

Ãi
r2
B̃i

� � :
(50)

Definition 3.11. (Shishavan et al., 2020). An ESM and a WESM
between two SFSs eA and eB considering (1) and (4) based on distance
measures (8), (9), (10), and (11) are defined by

Sed eA; eB� � ¼ e�d eA; eB� �
; (51)

Swed eA; eB� � ¼Xn
i¼1

wie
�d eAi; eBi

� �
: (52)

Definition 3.12. (Shishavan et al., 2020). A SQCSSM and a
WSQCSSM between two SFSs eA and eB considering (1) and (4)
are defined by

Ssqc1 eA; eB� � ¼ 1
n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i

q ; (53)

Swsqc1 eA; eB� � ¼Xn
i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i

q ; (54)

Ssqc2 eA; eB� � ¼ 1
n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i
þ r2

Ãi
:r2
B̃i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r2

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i
þ r2

B̃i

q ;

(55)
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Swsqc2 eA; eB� � ¼Xn
i¼1

wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2
B̃i
þ π2

Ãi
:π2
B̃i
þ r2

Ãi
:r2
B̃i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r2

Ãi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
µ4
B̃i
þ υ4

B̃i
þ π4

B̃i
þ r2

B̃i

q ;

(56)

Wang et al. (2021) presented some novel DSMs and the generalized
DSMs of SFSs. The proposed SMs were utilized to select a desirable
enterprise resource planning system.

Definition 3.13. (Wang et al., 2021). A DSM and a WDSM
between two SFSs eA and eB considering (1) and (4) are defined by

SD1 eA; eB� � ¼ 1
n

Xn
i¼1

2 µ2
Ãi
:µ2

B̃i
þ υ2Ãi

: υ2B̃i
þ π2

Ãi
:π2

B̃i

� �
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i

� �� � ;
(57)

SwD1 eA; eB� � ¼Xn
i¼1

wi

2 µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
: υ2

B̃i
þ π2

Ãi
:π2

B̃i

� �
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i

� �� � ;
(58)

SD2 eA; eB� � ¼ 1
n

P
n
i¼1 2 µ2

Ãi
:µ2

B̃i
þ υ2

Ãi
: υ2

B̃i
þ π2

Ãi
:π2

B̃i

� �
P

n
i¼1 µ4

Ãi
þ υ4

Ãi
þ π4

Ãi

� �
þPn

i¼1 µ4
B̃i
þ υ4

B̃i
þ π4

B̃i

� � ;
(59)

SwD2 eA; eB� � ¼ P
n
i¼1 2w

4
i µ2

Ãi
:µ2

B̃i
þ υ2

Ãi
: υ2

B̃i
þ π2

Ãi
:π2

B̃i

� �
P

n
i¼1 w

4
i µ4

Ãi
þ υ4

Ãi
þ π4

Ãi

� �
þPn

i¼1 w
4
i µ4

B̃i
þ υ4

B̃i
þ π4

B̃i

� �
(60)

SD3 eA; eB� � ¼ 1
n

Xn
i¼1

2 µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2

B̃i
þ π2

Ãi
:π2

B̃i
þ r2

Ãi
: r2
B̃i

� �
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i
þ r4

B̃i

� �� � ;
(61)

SwD3 eA; eB� � ¼Xn
i¼1

wi

2 µ2
Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2

B̃i
þ π2

Ãi
:π2

B̃i
þ r2

Ãi
: r2
B̃i

� �
µ4
Ãi
þ υ4

Ãi
þ π4

Ãi
þ r4

Ãi

� �
þ µ4

B̃i
þ υ4

B̃i
þ π4

B̃i
þ r4

B̃i

� �� � ;
(62)

SD4 eA; eB� � ¼ 1
n

P
n
i¼1 2 µ2

Ãi
:µ2

B̃i
þ υ2Ãi

: υ2B̃i
þ π2

Ãi
:π2

B̃i
þ r2Ãi

: r2B̃i

� �
P

n
i¼1 µ4

Ãi
þ υ4Ãi

þ π4
Ãi
þ r4Ãi

� �
þPn

i¼1 µ4
B̃i
þ υ4B̃i

þ π4
B̃i
þ r4B̃i

� � ;
(63)

SwD4 eA; eB� � ¼ P
n
i¼1 2w

4
i µ2

Ãi
:µ2

B̃i
þ υ2

Ãi
:υ2

B̃i
þ π2

Ãi
:π2

B̃i
þ r2

Ãi
: r2
B̃i

� �
P

n
i¼1 w

4
i µ4

Ãi
þ υ4Ãi

þ π4
Ãi
þ r4Ãi

� �
þPn

i¼1 w
4
i µ4

B̃i
þ υ4B̃i

þ π4
B̃i
þ r4B̃i

� � :
(64)

Donyatalab et al. (2022) proposed the Minkowski, the Minkowski–
Hausdorff, the weighted Minkowski, and the weighted Minkowski–
Hausdorff distance measures for SFSs. They also developed
trigonometric and f-SMs based on the proposed distance
measures. They applied the proposed SMs to a medical diagnosis
problem for the COVID-19 virus.

Definition 3.14. (Donyatalab et al., 2022). A spherical fuzzy
distance-based f -SM can be defined as follows:

Sdb eA; eB� � ¼ f d eA; eB� �� �� f dmaxð Þ
f dminð Þ � f dmaxð Þ : (65)

Since the distance between two SFSs eA and eB using any of the
distance measures (12)–(19) satisfies 0 � d eA; eB� � � 1, we have
dmin ¼ 0 and dmax ¼ 1. Then, (65) can be rewritten as

Sdb eA; eB� � ¼ f d eA; eB� �� �� f dmaxð Þ
f 0ð Þ � f 1ð Þ : (66)

The simplest function that can be employed in (66) is the linear
function f xð Þ ¼ 1� x. This yields the most popular SF-DBSM

SdbL eA; eB� � ¼ 1� d eA; eB� �
: (67)

The exponential function f xð Þ ¼ e�x can also be employed yielding

Sdbe eA; eB� � ¼ e�d eA; eBð Þ � e�1

e0 � e�1 : (68)

Another simple function is the logarithmic function f xð Þ ¼ log2ð2� xÞ
that gives

Sdbe eA; eB� � ¼ log2ð2� d eA; eB� �Þ � log2 1ð Þ
log2 2ð Þ � log2 1ð Þ : (69)

The simple rational function f xð Þ ¼ 1=ð1þ xÞ can also be
utilized to give

Sdbe eA; eB� � ¼ 1� d eA; eB� �
1þ d eA; eB� � : (70)

SMs (67), (68), (69), and (70) can utilize any of the distance
measures (12)–(19).

Definition 3.15. (Donyatalab et al., 2022). A SF-cosine and a
weighted cosine Minkowski and Minkowski–Hausdorff SMs can
be defined as follows:

SCM eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

cos
π

4
µ2
Ãi
� µ2

B̃i

��� ���α þ υ2
Ãi
� υ2

B̃i

��� ���α þ π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1;

(71)

SWCM eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

wicos
π

4
µ2
Ãi
� µ2

B̃i

��� ���α þ υ2Ãi
� υ2B̃i

��� ���α þ π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1;

(72)

SCMH eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

cos
π

2
max

i
µ2
Ãi
� µ2

B̃i

��� ���α; υ2
Ãi
� υ2

B̃i

��� ���α; π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1;

(73)

SWCMH eA; eB� � ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

wicos
π

2
max

i
µ2
Ãi
� µ2

B̃i

��� ���α; υ2
Ãi
� υ2

B̃i

��� ���α; π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(74)

Definition 3.16. (Donyatalab et al., 2022). A SF-sine and weighted
sine Minkowski and Minkowski–Hausdorff SMs can be defined as
follows:

Journal of Computational and Cognitive Engineering Vol. 2 Iss. 4 2023

336



SSM eA; eB� � ¼ 1�
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

sin
π

4
µ2
Ãi
� µ2

B̃i

��� ���α þ υ2
Ãi
� υ2

B̃i

��� ���α þ π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(75)

SWSM eA; eB� � ¼ 1�
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

wisin
π

4
µ2
Ãi
� µ2

B̃i

��� ���α þ υ2Ãi
� υ2B̃i

��� ���α þ π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(76)

SSMH eA; eB� � ¼ 1�
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

sin
π

2
max

i
µ2
Ãi
� µ2

B̃i

��� ���α; υ2
Ãi
� υ2

B̃i

��� ���α; π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1;

(77)

SWSMH eA; eB� � ¼ 1�
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

wisin
π

2
max

i
µ2
Ãi
� µ2

B̃i

��� ���α; υ2
Ãi
� υ2

B̃i

��� ���α; π2
Ãi
� π2

B̃i

��� ���αh i
;

s
α � 1:

(78)

Ünver et al. (2022) redefined the trigonometric SMs developed by
Rafiq et al. (2019) and Wei et al. (2019) by utilizing fuzzy
measures (FM) and Choquet integral (CI). The proposed
trigonometric SMs satisfy the axiomatic definition of the classical
SMs. These SMs were applied to pattern recognition problems.

Definition 3.17. (Ünver et al., 2022). Let X ¼ ex1; . . . ; exn
 �
be a

finite set, let eA and eB be two SFSs in X, and let σ be a FM on X.

A trigonometric SM based on CI is given by

S C;σð Þ
trig eA; eB� � ¼ Cð Þ

Z
X

FÃi;B̃i xð Þdσ (79)

where FÃi;B̃i
is the cosine formula employed in (20) and (22); the

cosine function formulas employed in (24), (26), (28), and (30); the
cotangent function formulas employed in (32), (34), (36), and (38).

If σ is 2-additive, then (79) is given as

S C2�add ;σð Þ
trig eA; eB� � ¼ C2�addð Þ

Z
X

FÃi ; B̃i
xð Þdσ: (80)

The SMs in the SF-environment developed in literature have some
limitations that might affect the validity of results (Shishavan et al.,
2020). Some of the extant SMs provide counter-intuitive cases (Khan
et al., 2020). The reason for these drawbacks is working with three
independent degrees. VBSMs handle SFSs as vectors in space and
consider the angle between them as an indication of closeness, the
smaller the angle the greater the similarity. Here, a SFS has the same
degree of similaritywith all the SFSsmaking the same anglewith it. In the
same way, DBSMs handle SFSs regarding their position in the three-
dimensionalspaceandconsider thedistancebetweenthemasanindication
of closeness, the smaller the distance the greater the similarity.
Subsequently, a SFS is similar to all the SFSs equidistant from it.

From the previous review, it can be noted that the existing SMs
handle the parameters of a SFS according to their position in the
three-dimensional space. Thereby, they neglect the cognitive impact
of each position regarding acceptance, rejection, and doubtfulness in
defining these evaluations. This explains why the existing SMs have
some limitations, and in some cases, they cannot be properly applied
to problems with SF-information (Shishavan et al., 2020). Therefore,
developing a CBSM that reflects the different impacts of the
parameters of aSFS inevaluation is essential toavoidunreliable results.

4. The Proposed SM

As previously mentioned, a SFS is composed of three
parameters. The MD is the possibility of having an event; the
NMD is the possibility of not having that event. The third degree,
the degree of hesitation, indicates how much the expert is in
doubt about defining theMD and theNMD (Donyatalab et al., 2022).

Definition 4.1. The cognitive impact measures the amount of
information inferred from the human perception that motivates the
selection of one option over the other. This is accomplished by
measuring the closeness from the acceptance, the remoteness from
rejection, and the confidence in these evaluations.

From Definition 4.1, for a SFS eA ¼ ðµ̃A; υÃ;πÃÞ; the closeness
from absolute acceptance is measured by µÃ. The remoteness from
complete rejection is measured by ð1� υÃÞ. The degree of confi-
dence is measured by ð1� πÃÞ. Therefore, the cognitive impact
can be measured as follows.

Definition 4.2. For any SFS eA ¼ µÃ;υÃ;πÃð Þ, the cognitive impact
denoted as CoI eA� � is defined by

CoI eA� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

µ2
Ã
þ 1� υÃð Þ2

� �r !
1� πÃð Þ; (81)

where CoI eA� � 2 0; 1½ �.

Before proceeding with the proposed SMs, first, it is proved that
CoI eA� � � 1.

Proposition 4.1. The cognitive impact of a SFS is less than or equal
to one.

Proof. We have µ2
Ã
þ υ2

Ã
� 1:

Hence, µ2
Ã
þ υ2

Ã
� 2υÃ � 1;

µ2
Ã þ υ2Ã � 2υÃ þ 1 � 2

µ2
Ã
þ 1� υÃð Þ2 � 2

1
2 µ2

Ã
þ 1� υÃð Þ2

� �
� 1 ()

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 µ2

Ã
þ 1� υÃð Þ2

� �r
� 1:

Since 0 � πÃ � 1 ) 1� πÃð Þ � 1; then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 µ2

Ã
þ 1� υÃð Þ2

� �r
1� πÃð Þ � 1: ■

Definition 4.3. A SM between two SFSs eA and eB based on the
cognitive impact can be computed by

SCoI eA; eB� � ¼ 1� 1
n

Xn
i¼1

CoI eAi

� �� CoI eBi

� ��� ��: (82)

Definition 4.4. If the sets are not of equal importance, a weighted
SM is defined utilizing the weights of the sets to signify their
importance. If the weight vector is given by wi ¼ w1;w2; . . . wnð Þ;
with wi 2 0; 1½ �, and Pn

i¼1 wi ¼ 1, the weighted CBSM is defined as

SCoI eA; eB� � ¼ 1�
Xn
i¼1

wi CoI eAi

� �� CoI eBi

� ��� ��: (83)

The following examples illustrate the concept of cognitive impact
and the associated SM.
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Example 4.1. Consider the SFSs eA ¼ 1; 0; 0ð Þ and eB ¼ 0; 1; 0ð Þ.
The SFS, eA, has a cognitive impact CoI eA� � ¼ 1, indicating 100%

approval. Meanwhile, CoI eB� � ¼ 0, indicating 0% approval. Hence,
the SM SCoI eA; eB� � ¼ 0:

Example 4.2. Consider the SFSs eA ¼ 1; 0; 0ð Þ and eC ¼ 0; 0; 1ð Þ.
The cognitive impacts of these SFSs are CoI eA� � ¼ 1, CoI eC� � ¼ 0,
and the SM SCoI eA; eC� � ¼ 0:

From the previous examples, although the SFSs eB and eC have
different implications, they have the same cognitive impact, a “zero”
approval. When the evaluation of an alternative for a criterion is
0; 1; 0ð Þ, this points in the direction of absolute rejection. In contrast,
the evaluation 0; 0; 1ð Þ does not point in any direction due to hesita-
tion. A decision-maker evaluation eB indicates that this expert is not
satisfied with the performance of an alternative for one of the evalu-
ation criteria. On the contrary, an expert evaluation eC indicates that
an expert is unable to decide on the performance of that alternative.
While the first evaluation reflects the incompetence of the alterna-
tive, the second evaluation reflects the indecision of the expert.
In both cases, an option is not selected.

Example 4.3. Consider the SFSs eA ¼ 0:5; 0:7; 0:1ð Þ and eB ¼
0:3; 0:5; 0:1ð Þ. These SFSs have the same cognitive impact
CoI eA� � ¼ CoI eB� � ¼ 0:3711, that is, percentage of approval
37.11%, implying SCoI eA; eB� � ¼ 1. Although eA is closer than eB to
acceptance, it is also closer to rejection. The closeness of eA from
acceptance equals the remoteness of eB from rejection, and the
remoteness of eA from rejection equals the closeness of eB from accep-
tance giving the same net impact.

Example 4.4. Consider the SFSs eA ¼ 0:5; 0:7; 0:1ð Þ and eAc ¼
0:7; 0:5; 0:1ð Þ,CoI eAc

� � ¼ 0:5474 >CoI eA� �; since the information ofeAc has a greater percentage of approval.

Example 4.5. Consider the two SFSs eA ¼ 0:4; 0:4; 0:1ð Þ and eB ¼
0:6; 0:6; 0:1ð Þ. The closeness of eA from acceptance equals the remote-
ness of eB from rejection, and vice versa. They have the same cognitive
impact, CoI eA� � ¼ CoI eB� � ¼ 0:4589; implying SCoI eA; eB� � ¼ 1.

In the literature on SMs for SFSs, researchers mentioned the
axioms of SMs (Donyatalab et al., 2022). Let eA; eB; and eC be three
SFSs; the following properties should hold for SMs

Ax 1ð Þ: 0 � S eA; eB� � � 1

Ax 2ð Þ: S eA; eB� � ¼ S eB; eA� �
Ax 3ð Þ: eA ¼eB () S eA; eB� � ¼ 1

All the proposed SMs for SFSs satisfy the first two axioms. However,
some of them satisfy the third axiom partially, eA ¼ eB ) S eA; eB� � ¼ 1.

For example, the CSSM (20) can give S eA; eB� � ¼ 1 although eA 6¼ eB,
for example, eA ¼ 0:1; 0:1; 0:1ð Þ, eB ¼ 0:3; 0:3; 0:3ð Þ.

The proposed CBSM satisfies the first two axioms, and the
proof is trivial and follows from the definition of the cognitive
impact CoI eA� � 2 0; 1½ � and the SM (82). As for the third axiom, it
is also partially satisfied, eA ¼eB ) S eA; eB� � ¼ 1, the converse is not
true. As mentioned earlier, SFSs are characterized by three indepen-
dent degrees, MD, NMD, and HD. The MD positively affects the
cognitive impact since it motivates the acceptance of an option. In
other words, the MD points in the “in favor of” direction. On the

other hand, both the NMD and the HD negatively affect the cognitive
impact. Here, one of the issues of SF-information arises having two
independent degrees giving a negative influence. The NMD points in
the direction of “not in favor of.” The HD is subtle, complex, and
paradoxical (Jin, 2019). It affects the whole judgment of the MD
and the NMD. For this reason, hesitation is critical and must be
handled differently.

On the other hand, the proposedCBSM satisfies a new property.

Proposition 4.2. A SM between the SFSs eA, eB; and eC based on the
cognitive impact satisfies the following property:

S eA; eB� � ¼ S eA; eC� �) S eB; eC� � ¼ 1

.Proof. From Definition 4.3.

SCoI eA; eB� � ¼ SCoI eA; eC� �
;

1� CoI eA� �� CoI eB� ��� �� ¼ 1� CoI eA� �� CoI eC� ��� ��;
CoI eA� �� CoI eB� ��� �� ¼ CoI eA� �� CoI eC� ��� ��;

CoI eB� � ¼ CoI eC� �;
SCoI eB; eC� � ¼ 1� CoI eB� �� CoI eC� ��� �� ¼ 1: ■

Whenever S eA; eB� � ¼ S eA; eC� �
, this implies that the SFSs eB and eC have

the same cognitive impact, that is, the SF-information of eB and eC
point in the same direction with the same percentage of approval.

5. Comparative Analysis

In this section, the performanceof theCBSMis compared to some
extant methods. The proposed CBSM uses the three independent
degrees only since the fourth degree is not independent and adds no
information. Thus, the SMs selected for comparison are those that
utilize the three independent degrees. Seven vector-based methods
are employed in comparison, the CSSM 20ð Þ, the CSFSMs (24) and
(26), the CTFSMs (32) and (34), the JSM (47), and the DSM (57).
Themost popular SF-DBSM (67) is also employed using four distance
measures, namely the SF-Hamming distance (14), the SF-Euclidean
distance (15), the SF-Hamming–Hausdorff distance (18), and the
SF-Euclidean–Hausdorff distance (19). The SFSs to be compared
are given in Table 2.

Table 2
The SFSs used in comparison

SFSs 1 eA ¼ 0:50; 0:50; 0:50ð Þ; 0:30; 0:30; 0:30ð Þ; 0:40; 0:40; 0:40ð Þf geB ¼ 0:41; 0:41; 0:41ð Þ; 0:27; 0:27; 0:27ð Þ; 0:33; 0:33; 0:33ð Þf g
SFSs 2 eA ¼ 0:70; 0:50; 0:30ð Þ; 0:40; 0:30; 0:50ð Þ; 0:60; 0:40; 0:30ð Þf geB ¼ 0:50; 0:70; 0:30ð Þ; 0:30; 0:40; 0:50ð Þ; 0:40; 0:60; 0:30ð Þf geC ¼ 0:50; 0:40; 0:40ð Þ; 0:40; 0:60; 0:50ð Þ; 0:60; 0:70; 0:30ð Þf g
SFSs 3 eA ¼ 0:50; 0:70; 0:30ð Þ; 0:30; 0:80; 0:40ð Þ; 0:60; 0:30; 0:10ð Þf geB ¼ 0:60; 0:70; 0:30ð Þ; 0:80; 0:40; 0:40ð Þ; 0:60; 0:40; 0:20ð Þf geC ¼ 0:60; 0:40; 0:30ð Þ; 0:50; 0:50; 0:40ð Þ; 0:70; 0:40; 0:20ð Þf g
SFSs 4 eA ¼ 0:70; 0:30; 0:10ð Þ; 0:60; 0:50; 0:10ð Þ; 0:30; 0:40; 0:10ð Þf geB ¼ 0:30; 0:70; 0:10ð Þ; 0:50; 0:60; 0:10ð Þ; 0:40; 0:30; 0:10ð Þf geC ¼ 0:40; 0:40; 0:40ð Þ; 0:40; 0:40; 0:40ð Þ; 0:40; 0:40; 0:40ð Þf g
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The results of the comparison are given in Table 3. From
Table 3, it is clear that the CSSM (20) gives the same degree of
similarity for eA and eB for SFSs 1, although they are completely dif-
ferent, even in their cognitive impact.

For SFSs 2, it was found that eB is more similar to eC than eA by
most of the SMs used in comparison, except for the CSFSM (26),
the CTFSM (34), and the linear function SM (67) based on the
SF-Hamming distance (14), could not determine which is more
similar to eC; eA or eB.

For SFSs 3, the CSFSM (24), the CTFSM (32), and the linear
function SM (67) based on the SF-Hamming-Hausdorff (18) and the
SF-Euclidean-Hausdorff (19) distances could not decide which is more
similar to eC. The other SMs classified eB to be more similar to eC than eA.

Finally, the used SMs could not discriminate eA;eB; and eC for
SFSs 4, except for the CSSM (20) and the proposed CBSM (82).

The previous results do not mean that the CBSM can give equal
similarity degrees for different SFSs. In this case, equal similarity
indicates that the information obtained from these SFSs has a
similar influence on decision.

6. Applications

Green supply chain management (GSCM) is a new
management direction that is concerned with environmental
issues. Green supply chain practices help to sustain business
market competition, achieve customer loyalty, improve brand
image, and minimize negative environmental impacts (Kaur et al.,
2019). GSCM includes several activities, for example, green
supplier evaluation, green production, green packaging, and green
marketing. In sustainable development, the selection of the
appropriate supplier regarding environmental and social aspects
has a vital role (Nourmohamadi Shalke et al., 2018). GSS is the
basic step in GSCM that directly impacts the protection of the
environment. GSS is a MCDM problem that comprises many
contradictory assessment criteria. Supplier management
professionals recognized the challenges associated with GSS. The
development and implementation of practical decision-making
tools to handle these challenges evolve rapidly (Banaeian et al.,
2018). MCDM is one of the major applications of SMs. In this

section, the CBSM is applied to solve a GSS problem. The
following example is adapted from Shishavan et al. (2020).

A company in the agri-food industry sector manufactures
eatable vegetable oils and detergents. The company is ISO 14000
certified. It uses the related guidelines to manage its
environmental responsibilities. This includes encouraging its
suppliers to constantly improve their environmental performance
and practices (Banaeian et al., 2018). Olive oil, palm oil,
sunflower oil, and soybean oil are the prime raw oils that the
company uses. It is required to evaluate and select the suppliers of
each raw material. Thirteen suppliers are available, four suppliers
for olive oil So1; S

o
2; S

o
3; S

o
4f g, three suppliers for palm oil

Sp1; S
p
2; S

p
3


 �
, three suppliers for sunflower oil Sn1 ; S

n
2 ; S

n
3f g; and three

suppliers for soybean oil Sy1; S
y
2; S

y
3


 �
: The assessment criteria for a

green supplier are the same as a traditional supplier adding the envi-
ronmental criterion into consideration. The criteria are service level
C1ð Þ, quality C2ð Þ, price C3ð Þ, delivery time C4ð Þ, and environmental
management system C5ð Þ. Three experts were assigned to evaluate
the ratings of the suppliers for the assessment criteria.

The steps of the solution are summarized as follows.

Step 1. Construct the SF decision matrices and the weights of the
criteria based on the evaluation of the experts.

Step 2. Aggregate the evaluations of the experts to get the overall
decision matrix, and the average weights of the criteria.

Step 3. A reference index (RI) is chosen for each criterion.
Step 4. For each supplier, calculate the similarity degree between the

ratings of the supplier for the assessment criteria with the RI
using the CBSM (83).

SCoI eSi; eRI� � ¼ 1�
Xm
j¼1

wj CoI eSij� �� CoI eRIj� ��� ��;
where eSij is the rating of the ith supplier for the jth assessment cri-
terion, and eRIj is the RI for the jthcriterion.
Step 5. Rank the suppliers regarding the obtained SMs in descending

order. A supplier with the highest degree of similarity is the
best.

Table 3
The results of the comparison

Method SFSs 1 SFSs 2 SFSs 3 SFSs 4eA; eB� � eA; eC� � eB; eC� � eA; eC� � eB; eC� � eA; eC� � eB; eC� �
Sc1 (20) 1 0.8813 0.9101 0.8617 0.9070 0.5321 0.7720
Scf 1 (24) 0.9961 0.9033 0.9236 0.8887 0.8887 0.9307 0.9307
Scf 2 (26) 0.9911 0.9651 0.9651 0.9443 0.9637 0.9447 0.9447
Sctf 1 (32) 0.9251 0.6354 0.6780 0.6381 0.6381 0.6986 0.6986
Sctf 2 (34) 0.89011 0.7679 0.7679 0.7256 0.7839 0.7278 0.7278
SJ1 (47) 0.8965 0.6676 0.7122 0.6755 0.7243 0.5321 0.5321
SD1 (57) 0.9449 0.8001 0.8279 0.7965 0.8323 0.6902 0.6902
SHM (67), (14) 0.9249 0.8333 0.8333 0.7967 0.8433 0.7983 0.7983
SEM (67), (15) 0.9307 0.7949 0.8104 0.7686 0.7817 0.8024 0.8024
SHH (67), (18) 0.9750 0.8600 0.8783 0.8583 0.8583 0.8867 0.8867
SEH (67), (19) 0.9961 0.9023 0.9229 0.8865 0.8865 0.9300 0.9300
SCoI (82) 0.9592 0.9109 0.9560 0.8855 0.9154 0.7880 0.8851
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The overall evaluation matrix, the weights of the criteria, and the RI
of the problem are given in Table 4. More details on the problem and
its data can be found in Shishavan et al. (2020). The obtained SMs are
given in Table 5.

From Table 5, four suppliers were selected, one for each type.
The third supplier So3 is the best for olive oil; the first supplier S

p
1 is the

best for palm oil; the first supplier Sn1 is the best for sunflower oil; and
finally, the first supplier Sy1 is the best for soybean oil.

The results obtained using the CBSM are compared with the
results obtained with some extant SMs and two MCDM methods.
The SMs used are the JSM (47), the ESM (51) based on the
Hamming distance (8) and the Euclidean distance (10), and the
SQCSSM (53). The MCDM methods are the Technique of Order
Preference by Similarity to an Ideal Solution (TOPSIS) and
VIsekriterijumska optimizacija i KOmpromisno Resenje

(VIKOR). TOPSIS and VIKOR are distance-based methods that
utilize a distance metric to know how far a solution is from
optimality. Banaeian et al. (2018), who originally introduced this
problem, converted the experts’ evaluations expressed in linguistic
terms into triangular fuzzy numbers. Then, fuzzy TOPSIS and
fuzzy VIKOR were employed to select the optimal supplier.
Meanwhile, Shishavan et al. (2020) converted linguistic terms into
SFSs and employed SMs of SFSs to select the best supplier.
Table 6 demonstrates the final results obtained by the methods
previously mentioned (Shishavan et al., 2020).

It can be observed from Table 6 that the ranking obtained by the
CBSM coincides with the ranking list of the F-TOPSIS, F-VIKOR,
and the JSM for the supplier of olive oil. All the methods agreed on
the third supplier So3 as the best supplier and the fourth supplier S

o
4 as

the worst supplier. For palm oil, all the methods gave the same rank-

Table 4
The ratings of the suppliers, the weights of the criteria, and the reference index

Type of oil Supplier C1 C2 C3 C4 C5

Olive oil So1
0.05 0.15 0.15 0.35 0.3

0:41; 0:59; 0:38ð Þ 0:56; 0:45; 0:35ð Þ 0:54; 0:48; 0:26ð Þ 0:74; 0:27; 0:28ð Þ 0:72; 0:3; 0:17ð Þ
So2 0.4 0.1 0.2 0.2 0.1

0:76; 0:25; 0:25ð Þ 0:54; 0:47; 0:34ð Þ 0:61; 0:39; 0:35ð Þ 0:61; 0:39; 0:35ð Þ 0:54; 0:47; 0:34ð Þ
So3 0.15 0.2 0.3 0.3 0.05

0:72; 0:3; 0:17ð Þ 0:75; 0:26; 0:17ð Þ 0:78; 0:23; 0:17ð Þ 0:8; 0:21; 0:14ð Þ 0:67; 0:33; 0:35ð Þ
So4 0.05 0.05 0.3 0.35 0.25

0:41; 0:59; 0:38ð Þ 0:41; 0:63; 0:23ð Þ 0:54; 0:47; 0:34ð Þ 0:59; 0:42; 0:27ð Þ 0:47; 0:56; 0:36ð Þ
Palm oil Sp1 0.35 0.3 0.05 0.1 0.2

0:8; 0:21; 0:41ð Þ 0:76; 0:25; 0:2ð Þ 0:64; 0:36; 0:27ð Þ 0:67; 0:33; 0:23ð Þ 0:69; 0:35; 0:16ð Þ
Sp2 0.15 0.1 0.3 0.1 0.35

0:44; 0:58; 0:25ð Þ 0:41; 0:59; 0:38ð Þ 0:46; 0:55; 0:28ð Þ 0:34; 0:66; 0:24ð Þ 0:61; 0:39; 0:35ð Þ
Sp3 0.15 0.1 0.3 0.1 0.35

0:57; 0:43; 0:38ð Þ 0:5; 0:5; 0:5ð Þ 0:65; 0:36; 0:32ð Þ 0:51; 0:49; 0:38ð Þ 0:71; 0:31; 0:28ð Þ
Sunflower oil Sn1 0.3 0.15 0.25 0.15 0.15

0:8; 0:21; 0:14ð Þ 0:56; 0:45; 0:35ð Þ 0:78; 0:23; 0:17ð Þ 0:54; 0:46; 0:44ð Þ 0:38; 0:65; 0:37ð Þ
Sn2 0.15 0.2 0.3 0.3 0.05

0:55; 0:46; 0:3ð Þ 0:51; 0:49; 0:38ð Þ 0:47; 0:56; 0:36ð Þ 0:47; 0:56; 0:36ð Þ 0:48; 0:57; 0:18ð Þ
Sn3 0.1 0.3 0.1 0.15 0.35

0:5; 0:53; 0:2ð Þ 0:69; 0:35; 0:16ð Þ 0:51; 0:49; 0:38ð Þ 0:54; 0:46; 0:44ð Þ 0:72; 0:3; 0:17ð Þ
Soybean oil Sy1 0.1 0.1 0.4 0.2 0.2

0:44; 0:56; 0:39ð Þ 0:54; 0:47; 0:34ð Þ 0:8; 0:21; 0:14ð Þ 0:63; 0:38; 0:23ð Þ 0:76; 0:25; 0:2ð Þ
Sy2 0.05 0.05 0.3 0.35 0.25

0:76; 0:25; 0:25ð Þ 0:58; 0:44; 0:24ð Þ 0:46; 0:55; 0:28ð Þ 0:51; 0:49; 0:38ð Þ 0:5; 0:53; 0:2ð Þ
Sy3 0.35 0.3 0.05 0.1 0.2

0:76; 0:25; 0:2ð Þ 0:38; 0:63; 0:36ð Þ 0:6; 0:4; 0:3ð Þ 0:74; 0:28; 0:14ð Þ 0:54; 0:46; 0:44ð Þ
RI 0:9; 0:1; 0ð Þ 0:9; 0:1; 0ð Þ 0:9; 0:1; 0ð Þ 0:9; 0:1; 0ð Þ 0:9; 0:1; 0ð Þ

Table 5
Results of cognitive-based similarity measure

Supplier Degree of similarity Rank Supplier Degree of similarity Rank

So1 0.5828 2 Sp1 0.7081 1
So2 0.5557 3 Sp2 0.4362 3
So3 0.7360 1 Sp3 0.5176 2
So4 0.4560 4
Sn1 0.5999 1 Sy1 0.6527 1
Sn2 0.4140 3 Sy2 0.4560 3
Sn3 0.5910 2 Sy3 0.5277 2
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ing list. For soybean, all the methods agreed on the first supplier Sy1 as
the best. F-TOPSIS, F-VIKOR, the ESM, and the CBSM agreed on
the second supplier Sy2 as the worst. The JSM and the SCSSM agreed
on the third supplier Sy3 as the worst. Finally, for the sunflower oil, all
the methods gave the same ranking list, and the third supplier Sn3 was
ranked first, except for the CDSM which ranked the first supplier Sn1
in the first place. This result coincides with the result obtained by
Banaeian et al. (2018) using triangular fuzzy data. From Table 5,
it is clear that the degree of similarity between the first and third sup-
pliers is quite equivalent using SFSs. According to Banaeian et al.
(2018), sunflower and soybean share the same supplier; hence, get-
ting the same rank for sunflower and soybean is more acceptable.

7. Conclusion

This study developed a new perspective of SMs for SFSs. In the
SF-environment, the extant SMs handle the SFSs according to their
positions in the three-dimensional space neglecting the implications
of the different parameters of a SFS. For this reason, these
conventional SMs have some limitations that provide counter-
intuitive results in some cases that affect the validity of these
results. Therefore, the concept of the cognitive impact of a SFS is
introduced. Herein, the similarity is measured by the effect of a
SFS on decision-making. The cognitive impact is the logical
implications for what human perception ought to ensue. A novel
SM is proposed based on this concept. Therefore, increase the
robustness and accuracy of decision-making. A comparative
analysis between the proposed SM and some of the extant SMs is
performed. Finally, the CBSM is applied to solve a GSS problem.
Then, the results are compared with the results of some SMs,
namely the JSM, the ESM based on the Hamming distance and
the Euclidean distance, and the SQCSSM. Two distance-based
MCDM techniques are also employed in comparison, namely
TOPSIS and VIKOR. The results of the CBSM were almost
identical to the results of these methods.

In practice, the proposed SM can eliminate the drawbacks that
affect the validity of the results in some cases. It is expected that the
developed method can be successfully applied in various
applications that utilize MCDM leading to robust decisions.

One of the difficulties in the mathematical interpretation of
human cognition expressed by SF-information arises from having
two independent degrees giving a negative influence. While the
NMD has a decisive impact on rejection, the HD affects the
whole judgment, both the MD and the NMD. For this reason, the
HD is more critical than the NMD, and hesitance phenomena
deserve further study. Up to now, HD is a given value in the

corresponding SFSs for linguistic measures. Hesitance is a human
behavior that differs from one expert to another. Each expert can
express his doubts about the definition of MD and NMD. Hence,
it should not be a constant value for all experts giving the same
linguistic assessment. Therefore, future research will focus on the
estimation of hesitation in experts’ evaluation in a SF-environment.

Conflicts of Interest

The author declares that he has no conflicts of interest to
this work.

References

Ashraf, S., Abdullah, S., Mahmood, T., Ghani, F., & Mahmood, T.
(2019). Spherical fuzzy sets and their applications in multi-
attribute decision making problems. Journal of Intelligent
and Fuzzy Systems, 36(3), 2829–2844. https://doi.org/10.
3233/JIFS-172009

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and
Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-
0114(86)80034-3

Banaeian, N., Mobli, H., Fahimnia, B., Nielsen, I. E., & Omid, M.
(2018). Green supplier selection using fuzzy group decision
making methods: A case study from the agri-food industry.
Computers and Operations Research, 89, 337–347. https://
doi.org/10.1016/j.cor.2016.02.015

Cuong, B.C., &KreiovichV. (2013). Picture fuzzy sets-a new concept
for computational intelligence problems. In 2013 Third World
Congress on Information and Communication Technologies,
1–6. https://doi.org/10.1109/WICT.2013.7113099
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