
Received: 21 October 2022 | Revised: 7 February 2023 | Accepted: 12 February 2023 | Published online: 2 March 2023

RESEARCH ARTICLE

Heterogeneous Ensemble
Approaches for Robust Face Mask
Detection in Crowd Scenes

Xufeng Hu1 , Younghoon Jeon1 and Jeonghwan Gwak1,2,3,4,*

1Department of Software, Korea National University of Transportation, Republic of Korea
2Department of Biomedical Engineering, Korea National University of Transportation, Republic of Korea
3Department of AI Robotics Engineering, Korea National University of Transportation, Republic of Korea
4Department of IT & Energy Convergence, Korea National University of Transportation, Republic of Korea

Abstract: Face masks are one of the effective tools to slow the spread of disease and reduce medical overload by protecting people from
infectious diseases including COVID-19. To prevent infection from respiratory droplets, it is imperative to wear a mask that covers the nose
and mouth completely. However, it is difficult to make it mandatory for crowds to wear masks in public places where many people gather. For
example, detecting incorrect mask-wearing in crowded scenes is a tedious and attention-grabbing task. Therefore, the success of deep learning
in computer vision motivates automated monitoring systems. However, deep learning-based detection models are unstable if the domain task
is changed and may have different strengths and weaknesses. Therefore, in this study, we propose a heterogeneous ensemble-based detection
model for robust face mask detection in crowd scenes. First, independent detection models such as You look Only Ones (YOLO) v6, YOLO
v7, and Faster R-CNN are employed for the model ensemble. Second, the prediction results obtained from the detection models are
post-processed such as merging, non-maximum suppression, and weighted box fusion. The experimental results show that the
classification performance of our proposed model has an F1 score of about 90.5% and that the improvement of the generalization ability
due to the ensemble strategy contributed to the improvement of the classification performance.
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1. Introduction

COVID-19 is one of the epidemics affecting millions of people
worldwide, spreading exponentially across more than 150 countries
from 2019 to 2022. The disease has spread exponentially across more
than 150 countries, resulting in approximately 530million confirmed
cases of the virus and approximately 6 million deaths between 2019
and 2022. There are mainly two routes of transmission of viruses: (1)
direct transmission and (2) indirect transmission. First, direct
transmission is caused by droplets discharged through the
respiratory tract of an infected patient. Second, indirect contact is
diffusion through objects. Coronavirus can survive for a certain
amount of time on the surface of objects such as doorknobs and
tables. Therefore, contact with unsterilized objects increases the
risk of infection. Although risks such as mortality have recently
decreased due to the popularization of vaccines for the treatment
of COVID-19, many people are still at risk of infection.

A face mask is one of the effective tools to mitigate the rising trend
of infection by covering the nose and mouth with a cloth to prevent
transmission. However, the duty to wear a mask may be neglected for

various reasons, such as a shortage of supplies, inconvenience, and a
lack of safety. Along with the declining sense of duty, it is common
for most institutions to hire additional staff to monitor the wearing of
masks. However, mask-wearing surveillance is a tedious and
attention-grabbing task for inspectors and can be less effective in
crowded situations.

The recent success of deep learning in computer vision has
motivated the development of automated mask detection systems.
The performance of mask detection can be improved through
tracking (Yang et al., 2017). Through compression of the deep
learning-based models, it can be advanced so that mask detection
can be performed even in the internet of things devices (Kang &
Gwak, 2020). However, most of the detection algorithms are based
on personal detection, which only detects one person at a time.
In addition, the detection of incorrect wearing or non-wearing tends
to be ignored because the focus is only on positive samples
indicating the correct wearing of the mask. Monitoring systems
based on single-target detection algorithms are inappropriate
because they limit the movement of people in public places and can
cause confusion. Furthermore, it must successfully detect targets
that appear relatively small due to their distance from the visual
sensor and those with seemingly limited information on the edge of
the detection equipment. Algorithms for multi-object tracking in the
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video have been proposed, including Faster R-CNN using
convolutional neural network-based region proposals and You look
Only Ones (YOLO) models using grid method and reliability. It can
also be used for abnormal situation detection. Moreover, the process
of finding an optimal strategy for parameter optimization can be
utilized (Gwak et al., 2014). However, according to our empirical
results, these detection models are sensitive to the characteristics of
domain tasks and have different strengths and weaknesses.

Therefore, this study proposes a deep learning-based ensemble
approach for robust mask-wearing detection in crowd scenes. First,
independent detection models such as YOLO v5, YOLO v6, YOLO
v7, and Faster R-CNN are employed for the construction of the
ensemble model. The prediction results of each model are merged
with post-processes such as non-maxima suppression and weighted
box fusion (WBF). Our model is rigorously evaluated using statistical
techniques, with two datasets for single-object detection and multi-
object detection.

The rest of this paper consists of four parts. Section 2 gives a brief
overview of related works on object detections, mask detections, and
ensemble strategies. Our proposed detection method is introduced in
Section 3. Section 4 shows the experimental results and discussion
for the evaluation of our proposed model. Finally, Section 5
summarizes and concludes this paper.

2. Literature Review

Deep learning has been successfully applied in many fields
recently (Fang et al., 2022; Yang, 2022; Yang & Song, 2022; Suresh
et al., 2021). In this section, several literatures are presented to help
understand our proposed work. First, representative deep learning-
based object detection models are introduced in Section 2.1. Second,
several studies using object detection algorithms for mask-wearing
detection tasks are described in Section 2.2. Finally, the concept of
ensemble approaches and various strategies are described in Section 2.3.

2.1. Object detection models

The deep learning-based object detection model mainly uses the
following two strategies: (1) single-phase strategy and (2) multi-phase
strategy. In the single-phase strategy, the object detectionmodel obtains
the category and location information of the object directly from the
input image. Therefore, this strategy requires less computation and
can be designed intuitively. On the contrary, a multi-phase strategy
employs a candidate region extraction process that proposes regions
in the input image where objects may be present before object
detection. Therefore, the object detector uses the candidates to
predict object information such as existence, class, and location. The
YOLO series is one of the representatives of single-phase object
detection models, which significantly reduces the inference time with
little loss of performance. From the initial version of YOLO, seven
versions have been developed. In the development of YOLO, seven
versions have been updated; since YOLO v1-v4 belongs to the
previous version, the performance of this model is weak. We only
study YOLO v5 and its subsequent versions YOLO v6 and YOLO
v7. The description of the YOLO series is limited to YOLO v5
(Redmon et al., 2016), YOLO v6 (Li et al., 2022), and YOLO v7
(Wang et al., 2022) employed as independent object detection
models in this study. YOLO v5 is implemented using PyTorch
instead of Darknet (Chen, 2019) to improve accessibility. Mosaic
data enhancement (Zeng et al., 2021) is adopted at the main
contribution input end of YOLO v5, with reference to the method of
CutMix data enhancement (Yun et al., 2019). Data enhancement to
improve the imbalance of small, medium, and large target data in

data concentration is used. If the dataset itself has many small
targets, mosaic data enhancement will cause the originally small
targets to become smaller, resulting in the poor generalization ability
of the model. YOLO v6 has customized a series of networks of
different scales for industrial applications in different scenarios. To
achieve the best trade-off between speed and accuracy, architectures
of different scales vary. The small model uses a simple single-path
trunk, while the large model is built on an efficient multi-branch
block. The main purpose of YOLO v6 is to promote its application
in industrial applications. YOLO v6 injects a self-distillation strategy,
performing both classification and regression tasks. At the same time,
the author dynamically adjusts the knowledge from teachers and
labels to help students learn more effectively at all training stages.
Advanced label allocation detection technology, loss function, and
data enhancement technology have also been widely used and
verified, and they are selectively used to further improve performance.
The author of YOLO v7 primarily focuses on optimizing the model
from two key perspectives. First, the re-parameterization technique, as
discussed by Ding et al. (2021), centers on optimizing the optimizer
rather than the architecture itself. Second, the work conducted by
Ding et al. (2022) involves the development of Convolutions into
Fully-connected Layers for Image Recognition. In recent years, model
structure re-parameterization and dynamic label allocation have
become the main optimization direction in the field of target
detection. For the structure re-parameterization, the structure re-
parameters of different layers of the network are optimized by
analyzing the propagation path of the gradient, and the structure re-
parameterization of different planning models is proposed. In dynamic
label assignment, because the model has multiple output layers, it is
difficult to assign better dynamic targets to different branches during
training. Another multi-stage strategy method for object detection is
characterized by (1) generating a suggestion area, (2) extracting
features from the suggestion area, and (3) classifying the extracted
category features. Faster R-CNN (Ren et al., 2015) is a representative
object detection model using a multi-stage strategy. The region
recommendation network extracts regions of interest to reduce
computing time. Compared with other methods based on depth
learning, Faster R-CNN supports end-to-end learning at all layers
while maintaining robustness (Akshatha et al., 2022; Cygert &
Czyżewski, 2022). However, to avoid overlapping candidate boxes,
the model uses the classification score as the standard, and then uses
non-maximum suppression (NMS) (Neubeck & Van Gool, 2006) for
post-processing. This method is easy to cause false negatives (FNs)
and is not friendly to occluded objects.

2.2. Mask detection systems

Cygert and Czyżewski (2022) proposed an optimistic CNN based
on MobileNet (Howard et al., 2017) for face mask detection. The
proposed network was trained using a large dataset consisting of high-
quality images, but incorrect mask-wearing cannot be detected
because it only focuses on the presence of the mask. Ren & Liu
(2020) propose the labeling of the training dataset through the K-
means clustering algorithm and the use of distance–intersection over
union (IoU) as a loss function for efficient training of YOLO v3. The
comparison results of four different loss functions show that the
proposed method contributes to the improvement of accuracy and
acceleration of the convergence speed. However, the proposed model
focuses only on wearing a mask, and the images used for training and
validation are low in complexity, which may cause unstable
performance in places with many connections. Degadwala et al.
(2021) evaluated the performance of YOLO v4 for the classification
of three classes, masked correctly, no mask, and masked incorrectly,
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but the complexity of the image, such as a crowd scene, was not
considered. Sharma (2020) has been and has become a model that
shows superior performance in the detection of small objects in the
task of detecting the wearing of a mask through a camera in real time.
However, in the performance evaluation experiment of the proposed
model, actual venues with a lot of people were not considered, and it
is impossible to detect the case of wearing a mask incorrectly.

2.3. Ensemble learning approaches

Ensemble learning aims to design one strong agent by combining
several weak agents. A homogeneous class uses an array of independent
classifiers with the same architecture, whereas a heterogeneous
ensemble employs a set of independent classifiers of different types.
The three main classes of ensemble learning methods are bagging,
stacking, and boosting. Boosting and bagging, one of the ensemble-
based model design strategies, merge several weak classifiers trained
using an array of datasets obtained through repeated random
sampling. Dataset diversification due to bagging techniques can
contribute to mitigating overfitting. Recently, methodologies to adapt
ensemble learning to object detection tasks have been proposed. In
the bagging strategy, it is possible to design models in parallel
because each weak classifier can be trained independently. Ensemble
learning for object detection tasks is mainly about efficiently merging
the prediction results of different independent models. Therefore,
Vilhelm et al. (2022) analyzed the impact of ensemble methodology
in designing object detection models, including finding desert
vehicles in ultra-high-resolution images such as satellite images.
Experimental results show that ensemble strategies such as bagging
allow high reliability at the expense of additional training and
increased prediction times. Casado-García et al. (2020) proposed
several voting strategies and increased testing time for ensembles of
models. The voting strategy consists of three parts, (1) affirmative,
(2) consensus, and (3) unanimous. The proposed ensemble strategy

has higher classification accuracy than the independent model, and
the positive strategy and the unanimous strategy are favorable for the
task with many FNs and the task with many false positives (FPs),
respectively. It is beneficial for many tasks. Consensus strategies also
provide a compromise between affirmative and unanimous strategies.
In stacking, an algorithm takes the outputs of sub-models as input
and attempts to learn how to best combine the input predictions to
make a better output prediction. Stacking is also known as a stacked
generalization and is an extended form of the model averaging
ensemble technique in which all sub-models equally participate as
per their performance weights and build a new model with better
predictions. This new model is stacked up on top of the others. The
method of our proposed ensemble model is to use the same dataset
to train different models. Methods such as data enhancement in the
training project to improve the accuracy of each model and the
difference between models are used, and finally fusion output based
on the prediction results of each model is performed.

3. Research Methodology

3.1. Overview

In this study, we propose a strategy to detect mask-wearing in
images. The proposed model predicts the position of a face in an
image and classifies it into three classes, including wearing of
mask correctly, no mask, and mask incorrectly. For robust
model design, we employed an ensemble strategy and several
post-processing. Heterogeneous object detectors are based on
Faster R-CNN and YOLO series to complete the detection of
mask-wearing. As shown in Figure 1, the pictures are input into
different models. On the above Faster-RCNN object detector,
through a region proposal network (RPN) and a region-based
detection network make object predictions. The following is the

Figure 1
Architecture of ensemble learning-based object detector
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prediction result of the model using the YOLO series. First, input the
picture into the backbone network of the YOLO series model, and then
pass through the Neck layer network. This layer includes Spatial
Pyramid Pooling for extracting features of different scales, and a
path aggregation network for these features is integrated. In this
way, three layers of feature maps with different sizes are obtained,
and finally, the features of different scales are aggregated to obtain
the prediction results. Then we merge the prediction results from
the Faster R-CNN and YOLO series models and filter the repeated
and low-score prediction boxes through the ensemble module to
obtain the output of the model.

3.2. Heterogeneous object detectors

The corresponding class is the index of the highest value in the
array of the corresponding probability where the instance is the
probability value for each class. Our ensemble strategy employs a list
of different object detectors L ¼ D1; . . . ;Dm½ �, where m is the num-
ber of object detectors. Each detector generates a list of detections
D ¼ d1; : : : ; dN½ �, where each di is given by a triple
[ bi; ci; pi ] that consists of a bounding box (bi), the corresponding
class (ci), and the corresponding probability (pi). The bounding box
indicating the position of the object is expressed in the form of
[ x1; y1; x2; y2 ]. The bounding box indicating the position of the
object is expressed in the form of [x1; y1; x2; y2], where x1 and y1
are upper left coordinates and x2 and y2 are lower right coordinates.
The corresponding class is the index of the highest value in the array
of the corresponding probability. In this experiment, four representative
deep learning-based object detectors, YOLO v5, YOLO v6, YOLO v7,
and Faster R-CNN described in Section 2, are employed.

3.3. Ensemble approaches

The purpose of the ensemble model is to design a robust
detector in crowded scenes. Combining prediction results from
different models can improve performance by preventing
overfitting. For the final fusion of prediction results, it is proposed
to use NMS and WBF (Solovyev et al., 2021) simultaneously.

NMS is one of the strategies to solve the problem of generating
multiple bounding boxes for each object in the prediction of the
detector. In the NMS process, the number of overlapping bounding
boxes is minimized by repeating the removal of boxes that overlap
a lot with the box with the highest confidence score. The formula
for IoU is the criteria for overlapping bounding boxes. The NMS
algorithm is effective for detecting a single object, but it has
problems such as having multiple bounding boxes in the detection
result of one object in a multi-object detection task. The pseudo-
code of NMS is described in Algorithm 1.

Algorithm 1. Non-maximum suppression (NMS)

input: B ¼ b1; . . . bNf g; C ¼ c1; . . . cNf g; Th

B is the list of initial bounding boxes

C is corresponding confidence scores

Th is threshold

output : Prediction results

Begin:

D  ;

while B ¼ ; do

m  argmax S

M  bm

D  D [M; B B�M

for bi in B do

if IoU M; bið Þ � Th then

B  B� bi

C  C � ci

end

end

end
return D, C
end

Algorithm 2. Weighted box fusion (WBF)

input: B ¼ b1; . . . bNf g; C ¼ c1; . . . cNf g; Th

B is the list of initial bounding boxes

C is corresponding confidence scores

Th is threshold

output : Prediction results

Begin:

D  ;

while B ¼ ; do

m  argmax S

M  bm

D  D [M; B B�M

for bi in B do

if IoU M; bið Þ � Th then

B  weighted sum B; bið Þ

C  Average C � cið Þ

end

end

end
return D, C
end

WBF is a strategy that ensembles multiple bounding boxes. If the
IoU of two randomly selected bounding boxes exceeds the
threshold, the coordinates of the bounding boxes are weighted,
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and the optimal bounding box is the output. The pseudo-code of
WBF is described in Algorithm 2.

Themixed use of NMS andWBF is suggested in this experiment.
Specifically, the NMS and WBF are sequentially applied to the
merging of the prediction results of each independent object detector.

4. Experiment

4.1. Dataset

Weobtained totally 5763 images ofmask correctly, nomask, and
mask incorrectly, from the internet. The dataset is divided into two
categories including the simple dataset (with less than four persons)
and the complex dataset (with more than or equal to four persons).
The simple dataset consists of 4748 images with 3 or fewer people
in each image, while the complex dataset has 1015 images with 4
or more people in each image. The dataset is further divided into
three categories, mask correct, no mask, and mask incorrectly. A
mask correctly covers the entire face, including the mouth and nose
as shown by the green border box in Figure 2, while a mask
incorrectly may leave the nose or mouth exposed as shown by the
blue border box in Figure 2. A no-mask category includes images
of people without any type of mask. We divide into a training set,
validation set, and test set according to the ratio 70%, 20%, and
10%. The simple dataset is used to evaluate simple mask-wearing
detection. On the other hand, the complex dataset evaluates the
detection ability of crowded scenes and the total of simple and
complex datasets. Table 1 shows the details of the simple and

complex datasets. Table 2 shows the number of objects in simple,
complex, and total datasets.

4.2. Experimental implementation

An ensemble learning algorithm is an algorithm that efficiently
merges the prediction results of each trained independent model.
Therefore, in all experiments, we compare the prediction results of
the ensemble model with the performance of different detection
models trained individually for each model. Our proposed model
was rigorously evaluated through a series of experiments. The first
is to evaluate the position prediction performance in object
detection. How well the model detects objects and is evaluated
using test samples not used for training. The second is the
evaluation of the classification performance of the detected object.
The metrics of classification performance, precision (PR), recall
(RC), F1-score (F1), and average precision (AP) are used.

The horizontal direction of the confusion matrix in Table 3
represents the model predictions, and the vertical columns represents
the ground truth. The combination of the predicted and true classes
allows us to compute four values, namely, true positives, false
positives, false negatives, and true negatives, which are key metrics
for evaluating model accuracy and performance. True Positive (TP)
refers to the number of target objects correctly detected by the model.
If the model correctly predicts the object in the image, then this
prediction is considered TP. False positive (FP) is wrongly divided
into the number of positive cases, that is, the number of actual
negative cases but predicted by the model as positive cases. False
negative (FN) is wrongly divided into the number of negative cases,
that is, the number of actual positive cases but predicted by the model
as negative cases. True negative (TN) is correctly divided into the
number of negative cases, that is, the actual number of negative cases
and the number of cases predicted by the model as negative cases.

PR is a measure of the classifier and is the ability to correctly
identify samples. It represents the proportion of correctly predicted
samples among the samples identified as positive samples. It is
calculated as follows:

PR ¼ TP
TPþ FP

RC is the ratio of positive cases judged as true in themodel to the total
positive cases. It is calculated as follows:

RC ¼ TP
TPþ FN

F1 represents the harmonic average evaluation index of precision and
recall, which is calculated as follows:

F1 ¼ 2� PR�RC
PþRC

APmeasures the average accuracy of a single category model, which
is calculated as follows:

Figure 2
Mask detection data samples

Table 1
The composition of the dataset

Data Train Validation Test Total

Simple 3323 949 476 4748
Complex 710 203 102 1015
Total 4033 1152 578 5763

Table 2
Number of objects in the dataset

Train Validation Test Total

Data
Mask

correctly
No
mask

Mask
incorrectly

Mask
correctly

No
mask

Mask
incorrectly

Mask
correctly

No
mask

Mask
incorrectly

Mask
correctly

No
mask

Mask
incorrectly

Simple 3328 1259 26 914 393 6 470 190 3 4712 1842 35
Complex 3554 1825 67 936 544 18 562 278 5 5052 2647 90
Total 6882 3084 93 1850 937 24 1032 468 8 9764 4489 125
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AP ¼
Z

1

0
PR RCð Þdr

YOLO v5, YOLO v6, YOLO v7, and Faster R-CNN are employed as
independent object detectors. All models are pre-trained (Tan et al.,
2018) with ImageNet (He et al., 2019). For the simple dataset,
complex dataset, and total dataset, we use 70% ratio for fine-tuning,
while the remaining 30% of the data is used for validating 20% and
testing 10% of the performance of the model. Our image dataset is
resized to 640 × 640 for a fixed size. Three hundred epochs are
used for training all the models, whereas the learning rate is set to
0.001 for the optimizers. Table 4 is a summary of the experimental
environment.

4.3. Result

The proposed methodology is evaluated according to a series of
experiments. Four independent object detectors were employed,
YOLO v5, YOLO v6, YOLO v7, and Faster R-CNN. We have

presented the results of each model in Tables 5 and 6 for
the sample and complex dataset, respectively. For Ensemble 0,
we have combined YOLO v6 and YOLO v7 while for Ensemble 1,
we have merged Faster R-CNN, YOLO v6, and YOLO v7.
Figure 3 shows independent classifier-based prediction results and
ensemble-based prediction results. According to the detection
results shown in Figure 3, we found that the Faster R-CNN model
works well for edge detection. The red box indicates that the mask
is not used, the green box indicates that the mask is used correctly,
and the blue box indicates that the mask is used incorrectly.
Independent object detectors are showing plausible detectability and
also contain several misclassifications. In Fast R-CNN, the human
forehead is highlighted as a bounding box, and more than one
bounding box exists for the same object. YOLO v6 and YOLO v7
have objects that they do not detect, and YOLO v6 does not detect
edge objects and blurry objects. YOLO v7 did not detect objects
without masks. And YOLO v5 has not detected most of the objects
at the edges, including the top and bottom of the image. Ensemble-
based object detectors show a high level of detectability. All objects
located at the edges are successfully detected.

Figure 4 shows a comparison of detection capabilities according
to the ensemble method. In this experiment, the simultaneous use of
the proposed ensemble technique, NMS andWBF, is evaluated using
Ensemble 1. The merging of the prediction results of each
independent model results in the production of many bounding
boxes. If only NMS is used, FPs are not deleted, and if only WBF
is used, there are still several bounding boxes for one object. On
the other hand, a methodology using both algorithms can
successfully detect any object.

Most object detectors in performance evaluation experiments
using simple datasets tend to have relatively high classification
performance (Table 5). This is because it is a relatively simple
task, as fewer than four people are in the sample image of the
simple dataset. However, in most of the performance perimeters,
ensemble-based models outperform independent models.
Ensemble 1 is state of the art in classification for all classes.

As shown in Table 6, the performance of the basic model and
ensemble-based models shows a slight downward trend. This is

Table 3
Confusion matrix

True class

Positive Negative

Predicted class Positive True positive False positive
Negative False negative True negative

Table 4
Summary of system environment

Item Value

CPU Intel i5-10400
Memory Memory 32GB
GPU NVIDIA GeForce RTX 3080
CUDA version 10.2
Python version 3.8
Pytorch version 1.7.1

Table 5
Comparison of classification performance of each model on the simple dataset

Model

Mask correctly No mask Mask incorrectly Average

AP PR RC F1 AP PR RC F1 AP PR RC F1 AP PR RC F1

Faster R-CNN 0.910 0.923 0.957 0.940 0.881 0.827 0.815 0.821 0.615 0.620 0.781 0.705 0.802 0.790 0.851 0.822
YOLO v5 0.987 0.974 0.953 0.963 0.960 0.973 0.940 0.956 0.303 0.472 0.333 0.402 0.750 0.806 0.742 0.773
YOLO v6 0.974 0.967 0.960 0.964 0.958 0.972 0.917 0.944 0.500 0.436 0.642 0.539 0.810 0.788 0.839 0.815
YOLO v7 0.989 0.977 0.970 0.973 0.968 0.948 0.952 0.950 0.262 0.471 0.333 0.402 0.740 0.793 0.752 0.754
Ensemble 0 0.973 0.989 0.985 0.987 0.986 0.974 0.993 0.983 0.333 0.500 0.333 0.446 0.764 0.821 0.770 0.805
Ensemble 1 0.995 0.996 0.999 0.997 0.995 0.997 0.995 0.996 0.610 0.997 0.562 0.779 0.866 0.996 0.852 0.925

Table 6
Comparison of classification performance of each model on the complex dataset

Model

Mask correctly No mask Mask incorrectly Average

AP PR RC F1 AP PR RC F1 AP PR RC F1 AP PR RC F1

Faster R-CNN 0.910 0.923 0.957 0.940 0.886 0.714 0.909 0.811 0.408 0.727 0.500 0.613 0.734 0.787 0.786 0.786
YOLO v5 0.987 0.974 0.953 0.963 0.973 0.958 0.917 0.937 0.597 0.674 0.600 0.637 0.852 0.865 0.823 0.845
YOLO v6 0.945 0.967 0.939 0.953 0.986 0.928 0.925 0.926 0.580 0.680 0.500 0.590 0.837 0.858 0.787 0.823
YOLO v7 0.989 0.977 0.970 0.973 0.978 0.966 0.931 0.948 0.716 0.648 0.600 0.624 0.890 0.863 0.833 0.848
Ensemble 0 0.975 0.913 0.982 0.947 0.953 0.901 0.964 0.932 0.600 0.600 0.600 0.600 0.842 0.804 0.848 0.826
Ensemble 1 0.973 0.929 0.940 0.934 0.968 0.933 0.941 0.937 0.610 1.000 0.564 0.782 0.850 0.954 0.815 0.884
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caused by relatively complex datasets compared to simple datasets.
The ensemble model we proposed in complex datasets is not as
effective as YOLO v7. It may be that the ensemble model has a
lot of image edge information and some blurred objects because
these objects were not labeled when the dataset was labeled.
Nonetheless, our proposed ensemble-based model outperforms
standalone models on total datasets.

Table 7 shows the performance of the Ensemble 1 model on the
total dataset. Compared with the basic model, it achieved the highest
F1 score in each category.

Figure 5 shows the prediction results of our ensemble model. In
Ensemble 0, YOLOv6 andYOLOv7 are used as the prediction results
of the basic model. For edge objects, there is a FN. Ensemble 1 added
Faster R-CNNmodel. The result shows that there are detection errors,
but the detection performance of the model for edge objects is
improved. Figure 6 shows the prediction results obtained by the
Ensemble 1 model after training with the total dataset. From the
results, it can be concluded that our proposed ensemble model can
perform well in the mask-wearing detection task for burred objects
(a), head occlusion area <50% (b), head occlusion area >50% (c),
for small object detection (d), a great improvement.

5. Discussion

This paper proposes a simple and efficient ensemble model for
mask-wearing detection tasks. Different from previous mask-
wearing detection tasks, we not only include the samples of the

Figure 3
Each independent object detector uses total data training, as
follows: prediction results of each independent object detectors

for a crowded scene

Figure 4
Comparison of detection capabilities of different integration

methods after Ensemble 1 is trained with total data

Figure 5
Prediction results of each object detector based on integrated

learning in the crowd scene in the total dataset

Table 7
Comparison of classification performance of each model on the total dataset

Model

Mask correctly No mask Mask incorrectly Mean

AP PR RC F1 AP PR RC F1 AP PR RC F1 AP PR RC F1

Faster R-CNN 0.957 0.907 0.956 0.930 0.807 0.740 0.800 0.770 0.167 0.340 0.167 0.253 0.643 0.662 0.641 0.651
YOLO v5 0.974 0.954 0.923 0.938 0.967 0.954 0.923 0.938 0.406 0.625 0.500 0.562 0.782 0.844 0.784 0.815
YOLO v6 0.976 0.951 0.955 0.953 0.913 0.978 0.961 0.960 0.400 0.667 0.500 0.570 0.763 0.865 0.805 0.827
YOLO v7 0.969 0.962 0.931 0.946 0.969 0.956 0.936 0.846 0.523 0.606 0.500 0.553 0.820 0.841 0.789 0.781
Ensemble 0 0.973 0.911 0.985 0.950 0.975 0.926 0.978 0.950 0.450 0.571 0.500 0.530 0.799 0.802 0.821 0.810
Ensemble 1 0.964 0.957 0.959 0.958 0.978 0.916 0.974 0.968 0.603 0.682 0.664 0.790 0.848 0.850 0.865 0.905
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mask-wearing and not wearing but also added the cases of whether
the mask is correctly or incorrectly worn. In addition, we use NMS
andWBF in themerged segment. NMS is responsible for screening out
predictions with low prediction scores, and the WBF algorithm gives
different weights to different models. Finally, the performance of the
model is tested using two different datasets. The experimental results
show that the ensemble model has achieved significant results on both
datasets. In the complex dataset, performance of both independent
detectors and ensemble-based models showed a slightly decreasing
trend. This is caused by a relatively complex dataset compared to
the simple dataset. Nevertheless, our proposed ensemble-based
models generally outperform independent models. When total data
are used, it still performs best. However, the model is not satisfied
with the detection result of the mask worn incorrectly category,
which may be due to the low prediction score of the mask
incorrectly category using the basic model.

6. Conclusion

In summary, we proposed an ensemble-based object detector for
robust mask-wearing detection in crowd scenes. The fusion detection
algorithm designed in this paper is based on the bounding box and
confidence score of each model. The prediction results of independent
object detectors are merged by NMS and WBF. Through the collected
dataset and statistical techniques, our model is strictly flattened. The
empirical results show that our model fusion method successfully
performed mask-wearing even on high-complexity images, and the
detection ability for closure and edges was also improved. In the
future, we would like to explore that it cannot only detect the wearing
of the pedestrian mask but also track the movement of pedestrians.
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