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Abstract: Diabetes is a disease that is growing at the highest rate globally, and it has several impacts. One of such complications is diabetic
retinopathy (DR), which causes damage to the retina and vision impairment. DR can be mild, and it can also be severe, and there are many
shades in between. Therefore, it is possible to avoid vision loss if DR is diagnosed and treated in its early stages. Diagnosis of DR today is
still a tedious process as only ophthalmologists can diagnose it using digitized colorful retinal fundus images. This article describes a new
strategy for the early identification of DR that combines full-field optical coherence tomography (FF-OCT) with sophisticated deep learning
(DL) algorithms, notably Feature Pyramid Networks (FPNs) linked with spatial pyramid pooling (SPP). FF-OCT produces high-resolution,
cross-sectional pictures of the retina, revealing precise structural changes that occur before apparent symptoms of DR. We created a multi-
scale DL framework that takes advantage of the capabilities of FPNs and SPP to efficiently process and evaluate the fine features of FF-OCT
images. The FPN design detects changes in the retinal structure at different scales, which improves the network’s performance in detecting
early signs of DR. On the other hand, the SPP module collects contextual information from several sub-regions of the image to provide
a stable and accurate feature representation regardless of the size and location of the lesion. These models were trained and validated on
this dataset using performance indicators such as sensitivity, specificity, and area under the ROC curve (AUC). The findings of this paper
suggest that the FPNs with the SPP model are superior to the traditional image analysis methods and the standard Convolutional Neural
Network in diagnosing early-stage DR.

Keywords: diabetic retinopathy (DR), early-stage diabetic, deep learning (DL), full- field optical coherence tomography (FF-OCT), Feature
Pyramid Networks (FPNs), spatial pyramid pooling

1. Introduction

Blood sugar regulation is compromised in people with dia-
betes. Elevated blood sugar levels impact the body’s tissues and
organs. Diabetes becomes more evident and poses a greater risk
when blood sugar levels reach a maximum [1]. A common cause
of diabetic retinopathy (DR), a condition that affects vision, is dia-
betes mellitus. Due to varying degrees of severity, early detection
aids in management [2]. The retina’s purpose is to convert light into
electrical signals for proper image processing. It relies on nearby
blood vessels for nourishment and oxygen. Diabetes can damage
these blood vessels, reducing blood flow to the retina, compromis-
ing its functionality, and ultimately resulting in decreased vision.
DR is a disorder characterized by retinal abnormalities that, if left
untreated, can cause blindness. Currently, DR is diagnosed through
a labor-intensive and time-consuming analysis of digital color reti-
nal fundus images by qualified ophthalmologists. Any diabetic who
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develops chronic hyperglycemia is at risk of developing diabetic
retinal disruptions (DR) due to progressive vascular interruptions in
the retina [3–6].

DR is usually classified into two types: proliferative DR (PDR)
and non-proliferative DR (NPDR). Increased vascular permeabil-
ity and capillary blockage inside the retinal blood vessels are two
characteristics of PDR, commonly referred to as advanced DR.
Here, neovascularization is thought to represent PDR, a more devel-
oped stage of DR [7]. Throughout this period, neuronal retinal
degeneration and medically undetected microvascular abnormal-
ities progress since DR is primarily asymptomatic in its early
stages. Clinically, fundus examination is used to identify the first
stage of DR [8]. These days, functional differences in the elec-
troretinogram (ERG), retinal blood vessel diameter, and retinal
circulation are used by researchers to identify DR using a vari-
ety of techniques. Because fundus images are noninvasive, quick,
and well-tolerated, it is a commonly used technique for assessing
the degree of DR. To accurately diagnose and measure the sever-
ity of diabetic eye disease, ophthalmologists use high-resolution
fundus images to track retinal abnormalities [9]. The majority
of fundus screens rely on the medical expertise of ophthalmol-
ogists and involve the manual examination of fundus images.
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Thus, from a practical standpoint, automating the diagnosis and
detection of DR is essential. Moreover, lesion segmentation is
crucial for both diagnosing and detecting DR, and it is also utilized
for evaluating the severity of DR later on [10].

Since it lessens the chance that NPDR will develop into PDR,
early detection of DR is important and is used to avoid the worst
effects in later stages. DR is often divided into four stages. Mild
nonproliferative retinopathy is the first of the four phases in this case.
The initial stage is distinguished by microaneurysms. Intermediate
nonproliferative retinopathy is the disease’s second stage. It occurs
when the retina’s blood arteries clog, reducing the quantity of blood
that reaches the various retinal regions. Proliferative retinopathy,
the last stage of the disease, results in vision impairment [11]. The
detection of DR has been on the rise in recent years due to the
application of different artificial intelligence (AI) methods, which in
turn enhances the computational power required to develop new DL
techniques. Figure 1 shows the optical coherence tomography image.

Figure 1
The optical coherence tomography image

The imaging technique known as retinal OCT is utilized to
obtain high-resolution cross-sections of living patients’ retinas.
An estimated 30 million OCT scans are carried out annually, and
a substantial amount of time is spent on picture analysis and inter-
pretation. (A) The neovascular membrane (white arrowheads) and
related subretinal fluid (arrows) are visible in the far left choroidal
neovascularization (CNV). Diabetic macular edema (DME) with
intraretinal fluid linked to retinal thickening (middle left) (arrows).
(Center right) In early age-related macular degeneration (AMD),
there are many drusen (arrowheads). (Long right) Normal retina
without any retinal fluid or edema, with the foveal contour retained.

Based on full-field optical coherence tomography (FF-OCT)
images, the study proposes a new approach for the early identifica-
tion of DR by integrating spatial pyramid pooling (SPP) and Feature
Pyramid Network (FPNs). This method combines the advantages of
both methods to progress the presentation of the retinal image anal-
ysis. FPNs are capable of extracting multi-scale features from the
retinal images, which helps in representing the various pathologi-
cal signs at different resolutions. Furthermore, SPP enhances this
ability because the model operates with data from several scales at
once, allowing it to identify pathologies of any size and location in
the retina. The addition of FF-OCT, a high-resolution imaging tech-
nique that provides cross-sectional images of the retinal architecture
to this approach, has made it possible to improve the screening of
DR at an early stage. By using these methods, clinicians are able to
identify the presence of retinal abnormalities with greater sensitiv-
ity and at an earlier stage than would be possible without the use of
these methods, which may prevent the development of severe vision
loss.

1.1. Motivation of this research

The objective of this work is to increase the identification of
DR in its early stages, which is among the major causes of blind-
ness. Specifically, it uses FPN with SPP to diagnose DR at an early

stage with the assistance of FF-OCT. The current methods of detec-
tion usually incorporate signs that are observable in the advanced
stages of the disease, which means that there are missed opportuni-
ties for early diagnosis. The goal of this work is to use FPNs with
SPP to improve the accuracy and efficiency of the processing of the
FF-OCT data in order to find retinal structural alterations that might
indicate the early stages of DR. This strategy is not only directed at
improving the medical imaging technology but also has the possi-
bility of altering the screening practices by providing timely therapy
for the loss of vision in diabetes patients.

1.2. Research gaps

1) Many of the current models may not be very representative
of the diverse populations and deviations that are present in
real-life scenarios since the datasets used in their training were
relatively small and homogeneous. This restricts the detection
systems’ capacity to be used generally and may influence their
performance for various racial and ethnic groups.

2) DR can be more accurately identified by using multimodal data,
such as OCT, fluorescein angiography, and patient-specific clin-
ical information. The ideal methods for multimodal integration
are still not well understood, and research on how to optimally
integrate different data types with conventional fundus imaging
is still in its early stages.

1.3. The main contribution of this research

1) To develop a novel technique for the early identification of DR
that combines FF-OCT with sophisticated deep learning (DL)
algorithms, notably FPNs linked with SPP.

2) FF-OCT enables precise cross-sectional imaging of the retina,
indicating structural alterations that may develop before DR
symptoms appear.

3) We created a multi-scale DL framework that takes advantage
of the capabilities of FPNs and SPP to efficiently process and
evaluate the fine features of FF-OCT images.

4) Finally, the FPN design detects retinal changes at numerous
scales, improving the network’s capacity to spot subtle indicators
of early DR.

The organization is as follows: Section 2 discusses earlier work
in DR detection and categorization, whereas Section 3 demonstrates
howtheproposedtechniqueworks.Theresultsoftheestablishedwork
are presented in Section 4, and the paper is concluded in Section 5.

2. Literature Survey

DR, the main cause of vision loss in diabetics, must be identi-
fied and treated as quickly as possible. Recent developments in DL
are beneficial for enhancing the early-stage DR detection’s accu-
racy and speed. Conventional diagnostic methods, though effective,
often involve the use of fundus images and are based on the
observer’s interpretation, which may not identify early signs of
the disease. The use of Convolutional Neural Networks (CNNs)
and other Machine Learning (ML) techniques may improve the
early identification of DR among patients. This literature review
is concerned with the enhancement and utilization of these meth-
ods and their effects on patients’ outcomes, early identification, and
diagnostic accuracy.

As the incidence of DR has risen, many techniques for screen-
ing this disease have been developed. Shankar et al. [12] first
introduced DNN-MSO, a method for detecting and categorizing
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DR images. This method comprises several steps, which include
segmentation, preprocessing, classification, and feature extraction.
contrast limited adaptive histogram equalization (CLAHE) was
applied first to enhance the difference of the DR images. Following
this preprocessing step, the histogram method was applied to seg-
ment the DR images. Last but not least, the DNN-MSO classifier
was used to classify the extracted feature vectors.

In their study, Bhardwaj et al. [13] developed a hierarchi-
cal grading system for DR utilizing two datasets, MESSIDOR
and IDRiD. They extracted textural features from the MESSIDOR
dataset, including form, intensity, and elements of the Gray-Level
Co-occurrence Matrix. The accuracy of the K-nearest neighbor
(KNN) and support vector machine (SVM) algorithms was 95.30%
and 92%, respectively. The percentage of positive responses to
the questions was 60% and 70%, respectively, after the features
were implemented. The KNN classifier achieved an accuracy of
94%. The accuracy achieved for the given datasets is 98% for the
DIARETDB1 dataset and 00% for the IDRiD dataset. Neverthe-
less, their suggested technique would not work well for a large and
difficult dataset like Kaggle-EyePACS.

Luo et al. [14] proposed a Self-supervised Fuzzy Clustering
Network (SFCN) to address the challenge of labeling retinal dataset
images. This approach significantly enhances performance as it does
not need the time-consuming human annotation. The SFCNmethod-
ology is useful, but there is still room for enhancement in the DR
detection and classification system, which may one day surpass the
current state of the art in supervised learning.

Wu et al. [15] suggested that the input data be classified into
two types: between DR-affected images and non-DR images. This
is done using a coarse network. A coarse network is a network that
is made up of a large number of nodes. Integrating attention gate
modules into the CNN design offers two benefits: improving the
contrast of the lesion and reducing the amount of interference from
other areas of the image. The fine network then classifies the DR
classifications provided by the coarse network into mild, moderate,
severe, and proliferative phases of DR. Two datasets are used in this
method: EyePACS, which contains photos of DR taken with various
cameras from both the left and right eyes, and the IDRiD, which
consists of images of DR taken at an Indian eye clinic utilizing a
Kowa VX-10𝛼 digital fundus camera. In the IDRiD dataset and the
EyePACS dataset, the best accuracy of the model was 56.19% and
83.1%, respectively.

Two DL architectures were created by Mohanty et al. [16]
in order to diagnose and classify DR: the DenseNet 121 network
and a novel model that combines the VGG16 architecture with an
XGBoost classifier. Retinal images from the APTOS 2019 Blind-
ness Detection Kaggle dataset were used to assess these models.
Appropriate balancing procedures were used to correct the dataset’s
imbalance of image classes.

To enhance the early diagnosis ofDR,AbdelMaksoud et al. [17]
proposed the E-DenseNet hybrid model. This model was intended
to overpower the complexities associated with distinguishing DR
from retinal images employing CNNs. It is possible that conven-
tional CNNs may not be able to precisely differentiate among
dissimilar kinds of lesions with different features. To overcome
this, the Eyenet and DenseNet models were fused to form the
E-DenseNet, which is a novel architecture. The E-DenseNet model
proved to be highly efficient with a computation time of only 3.5
minutes. In addition to achieving a near-perfect average accuracy
of 91.2%, it also demonstrated 69% specificity, 96% sensitivity, a
92.45%Dicesimilaritycoefficient,anda0.883quadratickappascore.

Khan et al. [11] have discussed the reduction in model train-
ing and convergence time for DR categorization. They used a

network-in-network, SPP layer, and VGG16. The fundus retina
images were subjected to data preparation techniques such as
scaling, cropping, normalization, and augmentation. Based on the
VGG16 design, the network-in-network and SPP layers were put
into practice. Using the SPP layer, the last convolutional layer of
VGG16was linked to the first fully connected layer in order to avoid
cropping and information corruption. Using the Xavier technique,
the network-in-network layer was initialized. The final fully linked
layers of VGG16 were then modified to learn nonlinear features.
This approachwas superior to other methods with an AUC of 0.95 in
the Kaggle dataset and a 52% parameter reduction.

2.1. Problem identification of existing systems

1) Diabetes frequently results in DR, a problem that is difficult to
identify and treat before major vision loss occurs since it often
advances without symptoms in its early stages.

2) Many diabetic patients may not have access to routine eye
exams, resulting in delayed diagnosis and treatment of DR,
a condition that could have been prevented with earlier
identification.

3) Because DL and contemporary imaging technologies are
not fully integrated, there are few opportunities for early
intervention and management of DR.

4) Diagnosing early-stage DR can be challenging since it might
present with modest or overlapping visual symptoms, making it
difficult to differentiate from other eye disorders.

3. Proposed Model

This section introduces a novel approach to diagnose DR at
an early stage by integrating FPNs combined with SPP with FF-
OCT. FF-OCT offers high-resolution cross-sectional images of the
retina and thus can detect structural changes in DR before clinical
signs appear. To make the best of the FPNs and SPP, we pro-
posed a multi-scale DL framework for the FF-OCT image analysis.
The FPN design identifies retinal alterations at multiple resolutions,
enhancing the network’s ability to identify early signs of DR. How-
ever, the SPP module compiles contextual information from several
sub-regions of the picture to provide a stable and accurate feature
representation independent of lesion size and location. The dataset
for this study included FF-OCT scans of normal people and diabetic
patients at various retinopathic phases. Figure 2 shows the block
diagram for the proposed FF-OCT approach.

3.1. Dataset description

This dataset is a collection of OCT images, primarily used
for the diagnosis and classification of retinal diseases. The dataset
includes a comprehensive set of grayscale OCT scans categorized
into four distinct classes: Normal, CNV, DME, and Drusen. It
is derived from clinical settings, ensuring high-quality imaging
standards for robust analysis and model training. This dataset is
particularly useful for training ML models to detect pathological
conditions in retinal images, making it a valuable tool in developing
automated diagnostic systems. With over 84,495 images split into
training, validation, and test sets, the dataset provides ample data
for supervised learning tasks, including image classification and
segmentation. The images are organized into folders by category,
simplifying preprocessing and enabling efficient model pipeline
development. Figure 3 displays the sample images for dataset.
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Figure 2
Block diagram of FF-OCT proposed method

Figure 3
Sample images for dataset

3.2. Preprocessing

The input image is taken from a dataset, and noise and out-
liers are reduced using a Kalman filter. This leads to a significant
improvement in the input image’s quality [18].

3.2.1. Kalman filter
Considering its high computational efficiency, the Kalman fil-

ter is the most frequently used version of the Bayes filter. The
definition of the Kalman filter in this case for the input image is:

𝜓 ( f w) ≈ ℘( f w; 𝜆w,∑w
) (1)

∑w stands for estimate uncertainty, and a wider distribution is
produced by a bigger covariance. 𝜆w stands for mean distribution℘(fw; λw,∑w) also represents the likelihood of fw for a Gaussian
distribution with a covariance of∑w and a mean of λw.
3.2.2. ROI extraction

The computational hurdles are greatly minimized by extracting
a specific portion of an image using the Region of Interest (ROI)

extraction [19] approach. The ROI is computed by accounting for
the preprocessed image’s pixel intensity values. To locate crucial
areas in a noisy image, the ROI extraction technique is used. The
scattered component is segmented into non-responsive regions to
provide an efficient classification strategy. ROI, or pixel intensity
value, defines the border for the extracted portion of an input image.
To eliminate exterior misrepresentations, external components have
been removed from the preprocessed images. The ROI extraction
result is shown as 2.

3.3. Full-field optical coherence tomography

FF-OCT is a high-resolution imaging technique utilized to gain
detailed cross-sectional images of biological tissues. FF-OCT pro-
vides better imaging speed and resolution since it captures the whole
field of vision simultaneously, in contrast to standard OCT, which
uses a scanning beam [20].

Low-coherence interferometry forms the basis of FF-OCT.
This technique requires a light source, a beam splitter, a reference
mirror, and an example in its most basic version. The source’s light is
split into two pathways: one illuminates the sample, while the other
proceeds toward the reference mirror. A camera records the interfer-
ence pattern produced when the light reflected from both pathways
is combined again.

3.3.1. Interference and coherence
The interplay of light waves replicated from the example and

the reference mirror results in an interference pattern.

I (x, y) = Is (x, y) + Ir + 2√Is(x, y)Ir cos(𝜙 (x, y) − 𝜙r) (2)

Where:

1) The sample’s reflected light intensity at position (x, y) is
measured at Is (x, y).

2) Ir is the reference mirror’s light intensity reflection.
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3) Thephaseof light reflectedby theexample is indicatedby𝜑s(x, y).
4) 𝜑r represents the quantity of light that the reference mirror

reflects.

3.3.2. Depth resolution
The Δz depth resolution in FF-OCT is defined by the light

source’s coherence length Lc.

Δz = 2In2𝜋 − 𝜆20Δ𝜆 (3)

Where:

1) The light source’s central wavelength is represented by 𝜆0.
2) The light source’s spectral bandwidth is represented by Δ𝜆.
3.3.3. Imaging process
1) Illumination: The sample is illuminated by a light source that

emits a wide range of light.
2) Interference: Light reflected from the example and the reference

mirror interferes, creating an interference pattern.
3) Detection: A camera captures the interference pattern across the

entire field of view
4) Reconstruction: An exhaustive, high-resolution cross-sectional

image of the example is produced using the data gathered.

3.3.4. Signal processing
To obtain depth information, Fourier transform algorithms are

applied to the signals collected by the camera. The signal that was
found over time t, indicated as I (x, y, t), is:
I (x, y, t) − Is (x, y) + Is + {2√Is (x, y)Ir cos (2kz +∅s (x, y)) − ∅r}

(4)

The sample depth profile can be obtained from the temporal signal
by applying the Fourier transform.

F {I (x, y, t)} = F {Is (x, y)} + F {Ir}+F{2√Is (x, y)Ir cos (2kz + ∅s (x, y)) − ∅r} (5)

The Fourier transform helps in the differentiation of the various
frequencies, which enables the determination of depth information.

3.3.5. Applications
In biomedical imaging, particularly for detailed pictures of bio-

logical samples and tissues, including the skin and retina, FF-OCT
is routinely used. In clinical diagnosis and research, it is valuable
as it provides structural information. Using low-coherence inter-
ferometry and Fourier transform signal processing, FF-OCT is a
novel imaging method producing high-resolution depth-sectioning
pictures of biological tissues.

3.4. Feature pyramid networks (FPNs)

FPNs integrate lateral connections with top-down architec-
ture to improve object identification. This approach generates a
feature pyramid by combining high-level traits, which are more
semantically rich, with low-level qualities, which are exact in their
geographical location. This lets the network spot objects at different
diameters [21].

3.4.1. Architecture
Backbone Network: A standard CNN serves as the backbone,

providing feature maps at dissimilar levels. Let {C1,C2,C3,C4,C5}
be the feature maps from dissimilar stages of the backbone network,
where Ci is the feature map from the ith stage.

Top-Down Pathway: The top-down approach increases the
resolution of lower-level feature maps by integrating them with
higher-level feature maps through lateral connections. Let Pi denote
the feature map at level iii of the pyramid. The upsampling process
is defined as:

P
up
i = Upsample (Pi+1) (6)

where Upsample is typically done using bilinear interpolation.
Lateral Connections: To improve spatial characteristics, each

upsampled feature map P
up
i is combined with the lateral feature map

Ci from the backbone.

P1 = Conv(Pup
i + Ci) (7)

Here, Conv represents a convolutional layer used to merge and
refine the feature.

Feature Pyramid: The last feature maps {P1,P2,P3,P4,P5} form
the feature pyramid, which is used for object detection. These maps
contain information at different scales, allowing for the detection of
objects ranging from small to large sizes.

Finally, FPNs construct a multi-scale feature pyramid by com-
bining high-level and low-level feature maps through top-down
and lateral connections. This results in more robust object detec-
tion across varying scales. The key operations involve upsampling,
addition, and convolution.

Upsampling ∶ P
up
i = Upsample(Pi+1) (8)

Feature Fusion ∶ Pi = Conv (Pup
i + Ci) (9)

3.5. Spatial pyramid pooling (SPP)

SPP is used to handle varying object sizes and aspect ratios by
pooling features from different spatial bins. The key idea is to pool
features over multiple spatial scales and then concatenate them into
a fixed-size representation.

Pooling: Given a feature map F of size H × W, the SPP layer
divides F into multiple spatial bins. For each bin configuration (e.g.,
1 × 1, 2 × 2, 4 × 4), it performs max pooling or average pooling to
extract features.

Let’s denote the pooling operation for a configuration with k×k
bins as SPPk (F). For each bin, pooling extracts:

SPPk (F) = [pool (F)1×1 , pool (F)2×2 , pool(F)4×4] (10)

where pool(F)1×1 represents pooling over the entire feature map,
pool(F)2×2 represents pooling over 2 × 2 bins, and so forth.

Concatenation: The pooled features from different bin
configurations are concatenated to form a fixed-size representation.

SPP (F) = concat (SPP1×1 (F) , SPP2×2 (F) , SPP4×4 (F)) (11)
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4. Result

4.1. Experimental setup

The FF-OCT was applied using the Python 3.9 programming
language and the TensorFlow software framework. TensorFlow was
chosen for the purpose of building and training an FPN because of
its ease of use. Moreover, Keras, a neural network framework built
on top of TensorFlow, may be used as a network that has already
been trained. An Intel Core i7-7500U laptop with 16 GB of RAM
and a laptop motherboard was used as the gear for developing and
training the FPN. In this research, the existingmodels used areCNN-
DenseNet [22],ResNet50 [23],PrincipalComponentAnalysis-Color
Fundus Photography (PCA-CFP) [24], and Deep Restricted Boltz-
mann Machine (DRBM) [25]. The experimental setup settings are
described in detail in Table 1.

Training a model for the proposed method FF-OCT involves
preprocessing high-resolution retinal images to reduce noise and
enhance quality, followed by data augmentation to increase dataset
diversity. ADL architecture, such as FPNwith SPP, is used to extract
multi-scale features and detect subtle retinal changes. Key hyper-
parameters like learning rate, batch size, and epochs are optimized
for performance, while loss functions and regularization techniques
prevent overfitting. The model is trained on high-end GPUs, with
evaluationmetrics like accuracy andDice coefficient ensuring robust
generalization for tasks like early-stage DR diagnosis.

4.2. Performance metrics

The performance measures include accuracy, Matthews Corre-
lation Coefficient (MCC), Negative Predictive Value (NPV), False
Positive Rate (FPR), and False Negative Rate (FNR), among others.
The following is the suggested mathematical model:

Accuracy = TP + TN
TP + TN + FP + FN

(12)

FPR = FP
FP + TN

(13)

FNR = FN
FN + TP

(14)

MCC = TP∗TN − FP∗FN√(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(15)

NPV = TN
TN + FN

(16)

4.2.1. Accuracy analysis
The accuracy of the FF-OCT method is associated with dif-

ferent methods in Figure 4 and Table 2. The graph shows how
the DL approach effectively improves accuracy. For example, the
FF-OCT model has an accuracy of 91.45% for 100 data points,
whereas the CNN-DenseNet, ResNet50, PCA-CFP, and DRBM

Figure 4
Accuracy analysis for FF-OCT method

Table 1
Experimental setup for the proposed method FF-OCT

Hyperparameter Description Typical values Significance in FF-OCT implementation
Learning Rate Controls the step size during gradient

descent optimization.
10–4 to 10–5 Determines how quickly the model learns. Too

high can cause instability; too low can slow
convergence.

Batch Size Number of FF-OCT images processed
in one forward/backward pass during
training.

8 or 16 Larger batch sizes require more memory but
provide stable gradients. Smaller sizes
introduce noise.

Number of Epochs Number of complete passes through the
training dataset.

100–500 (with early
stopping)

Prevents underfitting (too few epochs) or
overfitting (too many epochs).

Optimizer Algorithm used to update model weights
during training.

Adam, SGD with
momentum

Adam is preferred for adaptive learning rates;
SGD with momentum is used for fine-tuning.

FPN Pyramid Levels Number of levels in the Feature Pyra-
mid Network for multi-scale feature
extraction.

3–5 Determines the granularity of feature extrac-
tion for detecting subtle retinal changes in
FF-OCT images.

SPP Bin Sizes Spatial scales at which features are
pooled in spatial pyramid pooling.

8 × 8 Captures contextual information at differ-
ent scales, improving lesion detection in
FF-OCT images.

Backbone Network Base architecture for feature extraction
in FPN

ResNet, EfficientNet Pre-trained backbones (e.g., ResNet-50) are
fine-tuned on FF-OCT data for efficient
feature extraction.
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Table 2
Accuracy analysis for FF-OCT technique

Number of data from dataset CNN-DenseNet ResNet50 PCA-CFP DRBM FF-OCT
100 76.28 82.89 81.83 76.31 91.45
200 71.27 84.87 71.11 78.55 92.33
300 81.45 75.67 70.32 86.81 94.65
400 89.24 79.41 87.56 89.98 93.66
500 81.76 83.66 83.45 90.67 95.89
600 80.89 82.81 89.76 88.34 95.91

models have accuracy values of 76.28%, 82.89%, 81.83%, and
76.31%, respectively. Additionally, the FF-OCT model has demon-
strated its effectiveness across various data sizes. For instance, the
accuracy for FF-OCT with 600 data points is 95.91%, whereas for
CNN-DenseNet, ResNet50, PCA-CFP, and DRBM, the correspond-
ing accuracy values are 80.89%, 82.81%, 89.76%, and 88.34%,
respectively.

4.2.2. MCC analysis
The MCC of the FF-OCT methodology is contrasted with

alternative methods in Figure 5 and Table 3. The effectiveness
of the DL method in enhancing MCC is depicted in the graph.
For 100 data points, the MCC values of the FF-OCT model are
87.18%,whereas theMCCvalues of the CNN-DenseNet, ResNet50,
PCA-CFP, and DRBM models are 60.67%, 61.899%, 63.45%,
and 65.81%, respectively. Nevertheless, the FF-OCT model has
demonstrated its effectiveness across various data sizes. In this
regard, the MCC for FF-OCT with 600 data points is 95.91%,

Figure 5
MCC analysis for FF-OCT method

whereas for CNN-DenseNet, ResNet50, PCA-CFP, and DRBM, the
corresponding MCC values are 80.78%, 82.56%, 84.11%, and
85.45%, respectively.

4.2.3. FPR analysis
An FPR evaluation of the FF-OCT technique is displayed in

Figure 6 and Table 4 in comparison to alternative approaches. The
graph shows that even with low FPR, DL technology performs bet-
ter. On the other hand, the FPR values for the CNN-DenseNet,
ResNet50, PCA-CFP, and DRBM models are 50.81%, 44.17%,
43.18%, and 33.56%, respectively. Meanwhile, the FF-OCT model
exhibits an FPR of 21.98% with 100 data points. The FF-OCT
model, nevertheless, performs best across various datasets, yield-
ing low FPR values. The FPR value for the FF-OCT model with
600 data points is 30.32%, whereas the CNN-DenseNet, ResNet50,
PCA-CFP, and DRBM models have respective FPR values of
53.67%, 49.99%, 43.87%, and 42.46%.

Figure 6
FPR analysis for FF-OCT method

Table 3
MCC analysis for FF-OCT technique

Number of data from dataset CNN-DenseNet ResNet50 PCA-CFP DRBM FF-OCT
100 60.67 61.89 63.45 65.81 87.18
200 62.23 64.98 67.22 69.44 90.23
300 65.45 68.11 70.67 73.19 92.33
400 70.78 74.67 76.73 79.34 94.46
500 77.46 81.11 83.44 85.23 95.56
600 80.78 82.56 84.11 85.45 95.91
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Table 4
FPR analysis for FF-OCT technique

Number of data from dataset CNN-DenseNet ResNet50 PCA-CFP DRBM FF-OCT
100 50.81 44.17 43.18 33.56 21.98
200 50.76 46.81 43.89 34.11 21.44
300 50.11 43.89 44.67 36.56 23.65
400 51.89 45.67 44.81 38.98 29.11
500 52.34 49.91 45.17 40.11 28.87
600 53.67 49.99 43.87 42.46 30.32

4.2.4. FNR analysis
Comparing the FF-OCT methodology to alternative

approaches, an FNR assessment is presented in Figure 7 and
Table 5. The DL technology performs better with a low FNR, as
the graph shows. The CNN-DenseNet, ResNet50, PCA-CFP, and
DRBM models had FPR values of 50.76%, 40.18%, 32.91%, and
27.56%, respectively. Meanwhile, the FF-OCT model exhibits an
FPR of 22.45% with 100 data points. The FF-OCT model, never-
theless, performs best across numerous datasets, yielding low FNR
values. The FNR value for the FF-OCT model with 600 data points
is 25.91%, whereas the CNN-DenseNet, ResNet50, PCA-CFP, and
DRBM models have respective FNR values of 53.22%, 46.19%,
37.56%, and 30.33%.

Figure 7
FNR analysis for FF-OCT method

4.2.5. NPV analysis
The NPV of the FF-OCTmethodology is contrasted with alter-

native methods in Figure 8 and Table 6. The DL approach increases
NPV, as shown in the graph. For example, the NPV values for

Figure 8
NPV analysis for FF-OCT method

the CNN-DenseNet, ResNet50, PCA-CFP, and DRBM models are
62.45%, 75.56%, 80.67%, and 88.81%, respectively, while the NPV
for the FF-OCT model is 87.18% for 100 data points. Nevertheless,
the FF-OCTmodel has demonstrated its effectiveness across various
data sizes. In this regard, the NPV for FF-OCT with 600 data points
is 94.17%, whereas for CNN-DenseNet, ResNet50, PCA-CFP, and
DRBM.

4.2.6. Execution time analysis
Table 7 and Figure 9 compare the execution times of the pro-

posed FF-OCT methodology to those of existing methodologies.
FF-OCT has outperformed all other approaches. For example, the
proposed FF-OCT technique takes only 1.675 ms to execute 100
data points. Other present approaches, such as CNN-DenseNet,
ResNet50, PCA-CFP, and DRBM, required 12.567 ms, 11.224 ms,
8.876 ms, and 6.187 ms of execution time, respectively. Similarly,
the proposed FF-OCT strategy executes 600 data points in 5.918
ms, whereas existing techniques such as CNN-DenseNet, ResNet50,

Table 5
FNR analysis for FF-OCT technique

Number of data from dataset CNN-DenseNet ResNet50 PCA-CFP DRBM FF-OCT
100 50.76 40.18 32.91 27.56 22.45
200 48.12 41.23 31.36 28.17 21.82
300 51.34 41.67 37.45 32.91 22.45
400 52.87 46.18 35.46 29.45 25.17
500 49.91 44.68 36.75 31.76 24.56
600 53.22 46.19 37.56 30.33 25.91
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Table 6
NPV analysis for FF-OCT method

Number of data from dataset CNN-DenseNet ResNet50 PCA-CFP DRBM FF-OCT
100 62.45 75.56 80.67 88.81 90.91
200 66.78 71.34 74.56 75.18 91.45
300 69.98 79.98 77.21 77.78 93.55
400 71.22 88.87 61.65 73.24 92.65
500 76.56 81.54 68.87 71.18 93.67
600 79.91 89.95 60.44 76.65 94.17

Table 7
Execution time analysis for FF-OCT method

Number of data from dataset CNN-DenseNet ResNet50 PCA-CFP DRBM FF-OCT
100 12.567 11.224 8.876 6.187 1.675
200 12.987 11.654 8.446 6.223 2.345
300 14.176 12.765 9.186 7.198 2.876
400 14.867 12.981 9.665 6.667 3.765
500 14.651 13.161 10.234 8.186 4.941
600 16.115 13.991 10.141 8.115 5.918

PCA-CFP, and DRBM require 16.115 ms, 13.991 ms, 10.141 ms,
and 8.115 ms, respectively.

Figure 9
Execution time analysis for FF-OCT technique

The FF-OCT method’s training and validation losses on an
80:20 data split are displayed in Figure 10. The training loss mea-
sures the difference between the starting values and the expected
performance within the training set. On the other hand, the val-
idation loss evaluates the effectiveness of the FF-OCT approach
on the validation set. The findings demonstrate the improved per-
formance and classification accuracy of the FF-OCT system, as
evidenced by the decreasing training and validation losses as the
number of epochs increases. Themethod’s enhanced capacity to rec-
ognize relationships and patterns is highlighted by the reduction in
loss values.

Using an 80:20 ratio between the training and validation sets,
Figure 10 illustrates the accuracy of the FF-OCT system during
training and validation. When evaluating training accuracy, the
training dataset is used, whereas validation accuracy is assessed
using a separate testing dataset. The results show that the accuracy

increases as the epoch counts increase for both training and valida-
tion. Therefore, as more epochs are added, the FF-OCT technique
is more accurate on both datasets.

4.2.7. Comparative analysis
In Figure 11 and Table 8, the comparative analysis of the FF-

OCTmethod is given with reference to other methods. For example,
the FF-OCT values of accuracy, MCC, FPR, FNR, and NPV are 95.
91%, 95. 91%, 30. 32%, 25. 91%, and 94. 17%, respectively.

4.3. Ablation study

In an ablation study conducted with FPNs with SPP for
FF-OCT-based early-stage DR detection, the effect of several com-
ponents of the model architecture is analyzed. By removing or
modifying certain parts of the model, the study assesses the effects
of certain components like the FPN or the SPP layers on the model’s
robustness and precision in detecting early-stage DR. The model’s
performance in identifying pathological changes that may indi-
cate early DR is enhanced by understanding how each component
contributes to multi-scale features and spatial information from
FF-OCT images.

4.3.1. Influence of the FPN
FPNs have significantly contributed to the early-stage DR

detection since they enhance the models’ performance in terms
of identifying fine-grained information in the retinal images. FPN
enhances the detection performance by using the multi-scale fea-
tures that help the system to detect the early signs of DR. This
capability is significant in early diagnosis and intervention since it
increases the sensitivity and specificity of the automated systems in
identifying early changes in the retina that may not be detected by
other methods.

4.3.2. Influence of the K-fold cross-validation
In FF-OCT-based early-stage DR detection, the application of

10-fold cross-validation considerably increases model robustness
and reliability. Ten segments, or subsets, of the dataset are divided
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Figure 10
Analysis of accuracy and loss during training and validation

Figure 11
Comparative analysis for proposed model FF-OCT

Table 8
Comparative analysis for proposed

model FF-OCT

Methods FF-OCT
Accuracy 95.91
MCC 95.91
FPR 30.32
FNR 25.91
NPV 94.17

for the statistical method known as cross-validation. The remaining
nine subsets are used for training, and one is used for validation.
By employing 10-fold cross-validation, the suggested model, FF-
OCT, obtained a 95.91% improvement in presentation for our input
data. In association, the existing Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), Decision Tree (DT), and Naïve Bayes
(NB) models obtained accuracy presentations of 81.46%, 81.43%,
77.22%, and 77.75%, respectively, as shown in Tables 9 and 10.

Table 9
10-fold cross-validation

K-folds Accuracy
1 0.93
2 0.92
3 0.95
4 0.95
5 0.96
6 0.94
7 0.93
8 0.96
9 0.94
10 0.95
10-Fold Mean 0.95

Table 10
A comparison of the proposed model to innovative

validation analysis methodologies

Models Evaluation methods Accuracy (%)
SVM 10-fold cross-validation 81.33
KNN 10-fold cross-validation 81.33
DT 10-fold cross-validation 78.17
NB 10-fold cross-validation 77.77
Proposed 10-fold cross-validation 95.91

Figure 12 and Table 11 present a comparative analysis of the
FF-OCT method and its performance on various datasets in rela-
tion to other existing methods. For instance, when evaluated on the
DIARETDB1 dataset, the FF-OCT method achieved an accuracy of
95.91%.
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Figure 12
Comparative analysis of proposed technique on dissimilar

approaches and datasets

Table 11
Comparative investigation of the proposed

technique using different approaches and datasets

Author Dataset Accuracy
Goel et al. [26] IDRID 94.3
Bilal et al. [27] DIARETDB0 93
Khan et al. [11] Kaggle dataset 85
Luo et al. [28] MESSIDOR2 77.75
Proposed DIARETDB1 95.91

5. Conclusion

In this work, we used FF-OCT images to investigate the effi-
cacy of FPN in conjunction with SPP for the identification of
early-stage DR. The proposed method FF-OCT faces several lim-
itations. First, even using sophisticated feature extraction methods
like FPN and SPP, it can be difficult to identify the subtle clin-
ical alterations typical of early-stage DR, which could result in
a missed diagnosis. Furthermore, the need for sizable, excellent
annotated datasets is a major limitation because it is challeng-
ing and time-consuming to get such datasets for early-stage DR.
Another issue is computational complexity, which could impede
real-time clinical application since the merging of FPN and SPP
raises resource requirements. The system is resource-intensive as
the mix of FPN and SPP raises processing demands. This may
limit its application in real-time healthcare contexts or in locations
with limited access to high-performance calculation infrastructure.
The proposed methodology leverages FPN’s prowess in collecting
multi-scale characteristics and SPP’s adaptability to different spatial
resolutions, both of which are essential for detecting subtle patho-
logical alterations indicative of early-stage DR. When compared to
conventional procedures, the combination of these methodologies
demonstrated a considerable improvement in both detection accu-
racy and sensitivity. FPN and SPP’s improved feature extraction
and pooling techniques allowed amore sophisticated analysis of FF-
OCT images and helped to more precisely and quickly identify DR
in its early stages. This advancement could lead to improved patient
outcomes by significantly enhancing early diagnosis and treatment.
Further research may explore the use of innovative AI methods to
recognize the two types of exudates in retinal images from a variety
of datasets.
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Appendix

Abbreviations Description

DL Deep Learning
DR Diabetic Retinopathy
PDR Proliferative DR
NPDR Non-Proliferative DR
FPN Feature Pyramid Networks
SPP Spatial Pyramid Pooling
FA Fluorescein Angiography
OCT Optical Coherence Tomography
A/V Artery/Vein
DMN Diabetic Retinopathy Network
LBO Ladybug Beetle Optimization
HPO Hunter-Prey Optimizer
GLCM Gray-Level Co-occurrence Matrix
KNN K-Nearest Neighbor
DNN-MSO Deep Neural Network-based Moth Search Optimization
SVM Support Vector Machine
IDRiD Indian Diabetic Retinopathy Image Dataset
HRF High-Resolution Fundus
CNN Convolutional Neural Network
SFCN Self-supervised Fuzzy Clustering Network
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