
Received: 28 October 2024 | Revised: 16 December 2024 | Accepted: 1 January 2025 | Published online: 14 February 2025

Journal of Computational and Cognitive Engineering
2025, Vol. 00(00) 1–13

DOI: 10.47852/bonviewJCCE52024668
RESEARCH ARTICLE

Enhance URL Defacement Attack Detection
Using Particle Swarm Optimization and
Machine Learning

Omar Almomani1,* , Adeeb Alsaaidah1 , Ahmad Adel Abu-Shareha2 , Abdullah Alzaqebah3, Mohammed Amin
Almaiah4 and Qusai Shambour5

1Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Jordan
2Department of Data Science and Artificial Intelligence, Al-Ahliyya Amman University, Jordan
3Department of Computer Science, The World Islamic Sciences and Education University, Jordan
4Department of Computer Science, The University of Jordan, Jordan
5Department of Software Engineering, Al-Ahliyya Amman University, Jordan

Abstract: Uniform resource locator (URL) defacement attack can be defined as any cyberattack in which the attacker replaces the
appearance or content of the targeted webpage with their own that is intended to disgrace, mislead, or malign the website. Detecting
URL defacement attacks is significant to avoid breaching the security of the website content or its configuration files, modifying the file
locations, templates, or attacks on the website environment and applications. A machine learning (ML) technique can be used to detect the
defacement attack on any website with complex content and structure, as opposed to the classical techniques for detection, such as Diff
comparison, Document Object model tree analysis, and checksum, which can only be applied to static websites. This article proposes a
feature selection model based on particle swarm optimization with support vector machine, decision tree, random forest, Naive Bayes, and
k-nearest neighbor ML classification algorithms. The proposed model aims to improve the URL defacement attack detection by selecting
the best features from the ISCX-URL-2016 dataset. Then, the reduced set of features produced by the proposed model step is used as input
to evaluate and compare the results of the used ML classifiers. The results showed that the proposed model has significantly reduced the
features, regarding the classification’s feature reduction, the random forest classifier outperformed other classifiers in terms of true positive
rates, accuracy, precision, sensitivity, and F-measure, whereas the proposed model with random forest classifier has 99.21% True positive
rates, 99.29% accuracy rate, 99.38% precision rate, 99.21% sensitivity rate, and 99.29% F-measure rate. In the future directions of this arti-
cle, more research should be done on a variety of things, including varying and sophisticated techniques of altering the URL defacement
since it would better calibrate the model for application in real-life situations.

Keywords: URL defacement, machine learning, particle swarm optimization (PSO), cybersecurity, ISCX-URL-2016 dataset

1. Introduction

The rapid expansion of web applications and online services
led to the importance of uniform resource locator (URL) as a key
asset for all organizations, businesses, and even governments. URL
is defined as the address used to access resources on the internet.
URL malware, URL phishing, URL spam, and URL defacement
are examples of URL cyberthreats. URL defacement attack is a
penetration of website files, content, or appearances. Unlike other
cyberattacks like. URL malware, URL phishing, and URL spam,
URL defacement attacks involve no phishing, robbing, or steal-
ing crimes or uncovering confidential information. The defacement

*Corresponding author: Omar Almomani, Department of Networks and
Cybersecurity, Al-Ahliyya Amman University, Jordan. Email: o.almomani@
ammanu.edu.jo

attack aims to breach the security of the website files or its con-
figuration, modify the files’ locations or templates, or attack the
website environment and applications. Defacement attacks com-
monly replace thewebsite’s content with the hacker’smessage. Such
URL defacement attacks embarrass website owners and ruin their
reputations, especially for government parties, companies, interna-
tional associations, and organization [1]. The defacement commonly
reveals political disagreement and conflicts, or it promotes hackers
in the cybersecurity community. There are various other purposes
for the attacker to implement the URL defacement attack, including
revenge, asking for money to restore the original website contents,
or proving the attacker’s ability to attack secure websites. Accord-
ingly, defacement attack detection in an early stage is required [2].

A defacement attack is a way to modify a website’s con-
tent, structure, or configuration using various techniques, including
SQL injection, malware infection, unauthorized access, and DNS

Pdf_Fol io:1

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://doi.org/10.47852/bonviewJCCE52024668
https://orcid.org/0000-0003-3160-6542
https://orcid.org/0000-0003-4380-7771
https://orcid.org/0000-0002-2374-3152
https://orcid.org/0000-0002-3026-845X
mailto:o.almomani@ammanu.edu.jo
mailto:o.almomani@ammanu.edu.jo
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

hijacking, making it hard to defend. The consequences of such
attacks are obvious for both the owners and users of the victim web-
sites. An example of such an attack is the DNS hijacking of the
Google website in 2012, in which an Algerian hacker named MCA-
CRB conducted a defacement attack and led to the falsification of
the Romanian on their server instead of the Google web page for
more than an hour. MCA-CRB also performed an attack on almost
5,530 websites all over the world. In 2018, the patient survey web-
site hosted by the UKNational Health Service (NHS) was hacked by
AnoaGhost, which was the message that appeared on the website for
a few hours due to that attack. In 2019 a hacker breached the host-
ing provider’s system, called Pro-Service in Georgia, and defaced
15,000 government, bank, and press websites. In 2020, more than
51 US government websites were defaced by two Iranian hack-
ers in response to the assassination of the military general Qasem
Soleimani in Iraq. The hackers display messages and show images
against US President Donald Trump. Various defacement attacks
have been conducted worldwide [3].

The classical techniques for defending against defacement
attacks include scanning security vulnerabilities, web attack moni-
toring, [4] and defacement monitoring tools. The scanning tools aim
at discovering the vulnerabilities of the websites and the hosts to be
fixed. These tools focus on the operating systems and the device set-
tings. Various tools have been developed, such as Abbey Scan and
Acunetix Vulnerability Scanner. The web attack monitoring tools
analyze the traffic and discover any suspicious patterns. The deface-
ment attack monitoring tools are used as comparison techniques
to detect the differences between the original website content and
structure and the target website version. Site24x7 andWebOrion are
two examples of defacement monitor tools. The problem with the
defacement attack monitoring tools is their inability to be used with
dynamic websites [5].

Detecting URL defacements and other attacks, such as DoS,
phishing, sniffing, ping sweeps, port scanning, and malware, can be
implemented using machine learning (ML) methods and algorithms
[6]. The process involves capturing the network flow, extracting
prominent features, analyzing the content, and identifying poten-
tial threats. Accordingly, URL defacement attack detection can be
implemented using supervised or unsupervised ML. The unsuper-
vised algorithms identified patterns but required further mapping
between patterns and the final class label, as the attack may involve
multiple patterns, and so for the normal traffic [7]. The supervised
algorithms produced the final output and more accurate results
than the unsupervised algorithms [8]. Accordingly, a classification
algorithm is trained to detect the attack along with the important
step of feature selection, which has the advantage of simplifying
the training and detection phases by minimizing features, which
reduces the time and space required for the classification processes
and improves the results of the classification process [9]. Therefore,
in this article, supervised algorithm is used in the classification
stage.

Feature selection is implemented either using a filter-based
or wrapper-based approach [10]. The filter approach selects a
feature-by-feature to reduce the complexity of testing all possi-
ble combinations of features equal to n! where n is represented by
the feature number. The filter-based approach selects the features
based on their correlation with the output class. The wrapper-based
approach scores selected subsets of features based on their per-
formance with a specific classification algorithm. Accordingly, the
wrapper-based contributions to the accuracy of the classification
output. Yet, testing all feature subsets is computationally expen-
sive, which can be reduced using optimization algorithms, such as
particle swarm optimization (PSO) [11].

Overall, various algorithms for feature selection were proposed
based on bio-inspired algorithms [12, 13], and various supervised
ML algorithms were used for classification. Yet, integrating feature
selection algorithms andML algorithms is critical to obtain adequate
results for the URL defacement attack detection task. Accordingly,
this article used PSO for feature selection with various ML classifi-
cation algorithms, including naive Bayes (NB), k-nearest neighbors
(KNN), support vector machine (SVM), decision tree J48 (DT), and
random forest (RF).

The contributions to the research are summarized as follows:

1) The study provides a model for improving the URL defacement
by decreasing the number of selected features of ISCX-URL-
2016 dataset using (PSO). The model reduces features to 38 out
of 79.

2) The study evaluates the proposed model using (NB), (KNN),
(SVM), (DT), and (RF) machine learning (ML) classifiers.
RF classifier is superior to other tested classifiers in term
of true-positive rates, accuracy, precision, sensitivity, and
F-measure.

The article’s remaining sections are arranged as follows:
In Section 2, the relevant literature is reviewed, along with
an overview of the defacement attack and the elements of the
proposed solution. The methodology is detailed in Section 3.
Sections4and5contain the findingsand theconclusion, respectively.

2. Related Works and Background

This section offers background information and an overview of
the subject being studied in this paper.

2.1. Machine learning and classification

ML is the study of how machines can learn from data. Unsu-
pervised ML is a subfield of ML that concerns learning without
guidance. Accordingly, given data samples represented by a fea-
ture vector X, unsupervised ML focuses on discovering relations
and patterns between these samples. Supervised ML is concerned
about learning with guidance. Classification and regression are
among the common tasks in supervised learning. In the classifi-
cation task, a training set of n samples is represented by (x1, y1),
(x2, y2),.., (xn, yn), where xi is the feature vector for sample i, and
yi is the output class label of that sample. These samples are used
to train the classifier and build a trained model. As a result, the
trained model is represented as a mapping function X → Y, lim-
ited to the Y values being made available to the classifier in the
training phase [14].

The classification algorithms can be implemented using var-
ious classification algorithms, which can be categorized into
instance-based, DT-based, probability-based, artificial neural net-
work (ANN), and SVM [15]. Instance-based work does not use
any trained models. Instead, this technique uses the instances of
the training set as a reference to produce the correct class label
for the samples of the unknown class. Accordingly, there is no
time consumption for the training phase. Besides, it can be easily
adapted to new instances. DT builds a trained model in the form of
a tree. This technique’s advantages are interoperability, accuracy,
and low memory consumption. The probability-based technique
computes the maximum likelihood of a class label based on a given
input. Like the decision-tree technique, probability classifiers are
interoperable and require low memory space. Yet, it is inefficient
with complex data and commonly produces bad results for com-
plex problems. An ANN builds a trained model in the form of a

Pdf_Fol io:202

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

connected network that is trained to optimize the weights of the
edges between the nodes. This technique’s advantage is the ability
to handle complex and noisy data. The disadvantages are the time
required for the training process and the possibility of generating
bad results for complex problems. An SVM builds a model by
drawing a hyperplane between two data classes. Commonly, SVM
produces good results for complex nonlinear data. Overall, no best
classifier can be used for all data types, and different classifiers
produce different results for different inputs [16, 17].

Accordingly,more than a single classifier is commonly utilized,
and the results are evaluated and compared. This article uses five
classifiers: KNN, SVM, DT, NB, and RF. KNN [18] is an instance-
basedclassificationalgorithmthatdoesnotbuildanymodels. Instead,
the mapping function of the KNN can be represented as finding
the value of y as most of the values of y’ for samples with feature
vectors x’ are most similar to x. SVM builds a trained model in the
form of a hyperplanemodel iteratively. The hyperplane between two
classes is a line that divides the space into x1 and x2 and divides the
output class labels into y1 and y2 with minimal error and maximum
margin. DT builds a trained model in the form of a tree that can be
represented as a tree with branches and nodes. The internal branches
test a feature’s value in the feature space, while the leaves represent a
class label. The tree is constructed as the branches aim to maximize
the separation between the classes based on their feature values. NB
is a probability-based mechanism for classification and prediction
based on input and historical data. RF builds a model of multiple
decision trees with randomly selected features. The goal is to create
a set of uncorrelated trees, and then use them to make a collective
decision [17].

2.2. Particle Swarm Optimization

PSO, invented by James Kennedy and Russ Eberhart in 1995
[19], and modified version of the PSO was introduced in 1998 [20].
PSO is a population-based algorithm inspired by swarms’ social
interactions and flocking behavior, such as fish and birds. PSO is
implemented by randomly initiating candidate solutions (particles)
that evolved to create a new population from the old one itera-
tively until reaching the best solution. Each candidate solution in
a given population is moved (i.e., changed) based on the current
velocity and distance to the local and global best solution. Figure 1
shows the PSO algorithm flowchart diagram, the local best solution
is the best fitness value obtained by that solution, and the global
best solution is the best fitness achieved by any solution. Various
optimization techniques have been proposed to explore the solution
space of complex problems and find the optimal solution defined
by a specific objective function. Compared to other existing meta-
heuristic optimization techniques, such as GA, Tabu Search, ACO,
Grey Wolf Optimization, and Harris Hawks Optimization, PSO has
various advantages, which can be summarized as follows:

1) PSO makes a few assumptions about the problem being solved.
Thus, it depends on simple problem representation and a few
parameter settings.

2) PSO is simple and can be used to search for a large solution
space.

3) PSO does not require the problem to be of differential form.
4) PSO can solve complex problems [21].

2.3. Related work

ML techniques are frequently used to identify malicious web-
sites, network attacks, and cybercrimes, and these tasks may be
reduced to a classification issue. To train an ML for a malicious

website detection system, a classifier is used with the available
data that are relevant to the classification of authentic and malicious
websites. Previous studies proved that when robust ML classifiers
are utilized, malicious website accuracy of detection can be high.
Yet, some preprocessing is required to obtain such results. Among
these, feature reduction is highly important. A diversity of feature
selection methods is utilized to reduce the feature number.

Massive malicious website detection methods have been pre-
sented using various classifiers and preprocessing steps. James et al.
[22] proposed a method that involved analyzing URLs and using the
following ML classifiers: NB, DT, KNN, and SVM. The proposed
method examined the hostname and path and categorized it as an
attack or a genuinewebsite. The strategy for detecting phishingweb-
sites depends on lexical characteristics, host properties, and page
significance. The evaluations were conducted using datasets from
Alexa, Phishtank, and others. Similarly, Subasi et al. [23] used the
ANN, KNN, SVM, RF, rotation forest, and C4.5 for malicious web-
site detection. The results asserted that the RF could only be accurate
up to 97.26%. Other classifiers all achieved the same accuracy as
that reported in the study.

Hota et al. [24] proposed a feature selection technique known
as the remove-replace feature selection technique (RRFST). RRFST
removes features from the original feature space if removing that
feature maintained or improved the accuracy of the results; oth-
erwise, the feature is replaced in the original feature space. Two
decision rree (DT) techniques, C4.5 and classification and regres-
sion tree (CART), as classifiers, which were then combined to
create an effective classification model with a smaller feature sub-
set produced through RRFST. The experimental results showed that
an accuracy of 99.27% was achieved utilizing C4.5 and CART
ensemble with just 11 features.

Jain and Gupta [25] proposed an anti-phishing technique based
on ML with features retrieved from the client side. The experi-
ments have been performed onmultiple datasets. First, the Phishtank
dataset was used with 1528 phishing websites, followed by the
Openphish dataset with 613 phishing websites, the Alexa dataset
with 1600 legitimate websites, the Payment Gateway dataset with 66
samples, and the Top Banking website dataset with 252 legitimate
websites. The proposed technique used a feature extraction method
on the client’s side and improved the phishing detection accuracy
by using ML techniques such as RF, SVM, NN, LR, and NB neu-
ral networks. Joshi and Pattanshetti [26] used the relief-F algorithm
as a feature selection approach and the RF method as a binary clas-
sifier. The experiments were conducted based on datasets obtained
from the Mendeley website. Ubing et al. [27] proposed a malicious
website detection technique using ensemble learning. To implement
ensemble learning, three strategies were used: bagging, boosting,
and stacking. The experiments were conducted based on a dataset
of 30 features and 5126 records from UCI, an open public datasets
website. The classifiers were combined to get the highest accuracy
possible from a DT.

Mao et al. [28] proposed a mechanism for learning-based
aggregate analysis to assess page layout similarity for phishing page
detection. Four learning classifiers were used such as SVM, DT,
AdaBoost, and RF. The experiments were conducted based on a
dataset obtained from the Phishtank dataset. Sahingoz et al. [29]
proposed a real-time anti-phishing system that used lexical features
and seven different classification algorithms. The experiments were
conducted based on a new dataset. The FRmethod, which only used
lexical features, performed the best for phishing URL detection,
with an accuracy rate of 97.98%.

Zamir et al. [30] proposed a stacking-based supervised learning
model for phishing website detection. The goal was to increase the
classification accuracy by stacking the most effective classifiers and

Pdf_Fol io:3 03

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 1
PSO algorithm flowchart diagram

Strart

Initialize PSO Parameters

Generate first swarm

Evaluate the fitness of all particles

Record personal best fitness of all particles

Find global best particle

Swarm meet the

termination criteria?

End

Update the velocity of particles

Update the position of particles

No

Y
e

s

using features selected using the PCA. To build two stacking mod-
els, they integrated random forest (RF), neural network (NN), and
bagging algorithms in one, and k-nearest neighbors, random forest,
and bagging algorithms in the other. As for the accuracy perfor-
mance, which was 97.4%, the RF-NN-Bagging technique surpassed
all other models mentioned in the research. Similarly, Subasi and
Kremic [31] proposed an intelligent system for identifying phish-
ing websites. A customized ML model was used to distinguish
between legitimate and fraudulent websites. To create a reliable
and clever phishing website-detecting structure, several classifi-
cation algorithms were applied. Receiver operating characteristic
(ROC), area under ROC curve (AUC), and F-measure were used to
evaluate the effectiveness of ML techniques. Adaboost with SVM

outperformed all other classification techniques, according to the
results, reaching the maximum accuracy of 97.61%.

Ali and Malebary [32] proposed a technique that weighted
the processed websites based on PSO. To improve the accuracy
of phishing website detection, PSO is used to identify elements
in the websites and weigh them based on their significance in
distinguishing between legitimate and malicious websites. Results
demonstrated that the proposed PSO-based component weighting
increased the ML models’ ability to distinguish between legitimate
and phishing websites. Alsariera et al. [33] proposed the ABET,
RoFET, BET, and LBET models. These models combine the extra
tree classifier with a meta-learner model. A meta-algorithm, also
known as a metaheuristic, is a high-level technique created to

Pdf_Fol io:404

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

identify the best answer to an optimization issue. This technique
was used to construct M1, rotation forest, bagging, and LogitBoost.
The UCI dataset was resampled in this study using 10-fold cross-
validation, and the extra tree model was trained and tested ten times,
with the results evaluated using a weighted average value. Accord-
ing to the experimental findings, the four fusion models achieved
superior results, with an accuracy of 97% or more, false-negative
rates under the value of 0.038, and false-positive rates under the
value of 0.019.

Odeh et al. [34] proposed PhiBoost using adaptive boosting and
feature selection for phishing website detection. The experiments
were conducted based on datasets collected from the Phishtank
archive, MillerSmiles archive, and Google search engines. The pro-
posed approach generates a very high predicted accuracy of almost
99%. Harinahalli-Lokesh and BoreGowda [35] proposed a phishing
detection system using wrapper-based feature selection. Different
ML methods were used as classifiers, including RF, kNN, DT, and
SVM. The utilized dataset was obtained from UCI. In comparison
to other techniques, RF was found to achieve the highest accuracy
of 96.87%.

Gupta et al. [36] proposed a phishing detection approach
based on an RF. The experiments were conducted based on the
ISCX-URL-2016 dataset, which includes 19,964 instances with 9
lexical features. The ISCX-URL-2016 dataset has more than 35,300
legal URLs and over 10,000 phishing URLs. In the experiments,
10,000 innocuousURLswere randomly selectedwith 9964 phishing
URLs. The performance of the RF was compared with four single
classifiers, and the results showed that RF had the best accuracy

of 99.57%. However, SVM performed better than RF in terms of
response time. A summary of the related work is given in Table 1.

3. Methodology

A model for defacement attacks is proposed using feature
selection and ML techniques. Figure 2 illustrates the steps of the
proposed model. The proposed model uses the PSO algorithm
to reduce features and the SVM, RF, NB, K-NN, and J48 ML
classifiers to classify the defacement attacks.

3.1. Preprocessing stage

The preprocessing stage involves various straightforward
steps, including missing values removal, eliminating duplicated
data, data transformation, and data normalization. This stage aims
to minimize overfitting, remove outliers, and ease feature selec-
tion and classification processes. As such, eliminating duplicated
data improves classification outcomes by distinguishing infrequent
records from frequent ones and eliminating bias toward such infre-
quent yet duplicated records. The records with missing values are
removed to eliminate classifier confusion and incorrect results [37].
Numerical data were scaled using a min-max method to the range
of [0,1], as given in Equation (1).

XNormalized = X − XMinimum

XMaximum − XMinimum
(1)

Table 1
Summary of the related work

Author Classifiers Feature selection Datasets Results
RT 85.63%
KNN 75.77%
SVM 74.48%

James et al. [22] RT, KNN,
SVM, and NB

Lexical feature
extraction

www.alexa.com, www.
dmoz.org, personal web
browser history, and
www.phishtak.com NB 83.50%

Subasi et al. [23] RF No UCI 97.36%
Hota et al. [24] CART and

C4.5
RRFST Khonji’s Anti-Phishing 99.27%

RF 99.09%
SVM 96.16%
KNN 98.05%
LR 98.25%

Jain and Gupta
[25]

RF, SVM, NN,
LR, and NB

Client-side specific
features

Phishtank, Openphish,
Alexa, Payment
Gateway, and Top
Banking Website

NB 97.59%
Joshi and
Pattanshetti
[26]

RF ReliefF Mendeley website 97.63%

Ubing et al. [27] EL RFG UCI 95.4%
SVM 96.9%
RF 97.3%
DT 93.6%

Mao et al. [28] SVM, RF, DT,
and AB

Learning-based
aggregation Phishtank

AB 94.5%
DT 97.02%
Adaboost 93.24%

(Continued)

Pdf_Fol io:5 05

https://www.alexa.com
https://www.dmoz.org
https://www.dmoz.org
https://www.phishtak.com

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Table 1
(Continued)

Author Classifiers Feature selection Datasets Results
Kstar 93.65%
KNN 95.67%
RF 97.98%
SMO 94.92%

Sahingoz et al.
[29]

DT, Adaboost,
Kstar, KNN,
RF, SMO, and
NB

NLP Ebbu2017 Phishing
Dataset

NB 95.67%
Zamir et al. [30] Stacking

(RF + NN +
bagging)

IG, gain ratio,
relief-F, and
recursive feature

Phishing Websites Stacking (RF +
NN + bagging)

97.4%

Subasi and
Kremic [31]

Adaboost with
SVM

no UCI Adaboost with
SVM

97.61%

BPNN 96.43%
SVM 92.19%
C4.5 96.28%
NB 91.03%
RF 96.83%

Ali and Malebary
[32]

BPNN, SVM,
C4.5, NBRF
and KNN

PSO-based feature
weighting UCI

KNN 96.32%
RoFET 97.45%
BET 97.4%
LBET 97.58%

Alsariera et al.
[33]

ABET, RoFET,
BET, and
LBET

Gain ratio, IG, RFE,
PCA and relief-F UCI

ABET 97.49%
Odeh et al. [34] PhiBoost PhiBoost PhishTank,

MillerSmiles, and
Google Searching
Operators

98.9%

SVM 48.56%
SVC 92.69%
KNN 93.53%
DT 96.05%

Harinahalli-
Lokesh and
BoreGowda [35]

SVM, SVC,
KNN, DT, and
RF

Manually UCI

RF 96.78%
RF 99.57%
KNN 99.04%
SVM 97.64%

Gupta et al. [36] RF, KNN,
SVM, and LR

New feature
extraction
mechanism

ISCXURL-2016

LR 95.56%

where the XNormalized parameter is the normalized value, while the
XMaximum and XMinimum parameters represent the maximum and the
minimum values in the data vector, respectively.

3.2. PSO feature selection

PSO is an optimization algorithm that can be used for complex
problems, as discussed in Section 2.3. Feature selection can be rep-
resented as a binary optimization problem of 0s and 1s, where the
value 0 or 1 is assigned to each feature. As a wrapper-based feature
selection approach, using PSO for feature selection, at each itera-
tion, the solution evolved with a different combination of 0s and
1s. Each solution is evaluated and evolved to obtain the optimal
solution.

In the process, binary solutions are initialized randomly, each
for each particle (i.e., search agent), and the fitness of each solu-
tion is calculated accordingly. Then, PSO selects the individual
solution (pbest), and the global solution (gbest) is based on fit-
ness values. Next, the positions and velocities of the particles will
be updated to evolve toward the optimal solution, which means
generating new solutions. PSO updates the velocity and position

according to Equations (2) and (3), respectively. Iteratively, PSO
calculates the fitness value for each new solution, compares the
fitness values with the current best solution, and updates the best
solution according to the fitness value. The output of the PSO-
based feature selection will represent the optimal or near-optimal
solution, which is the most informative and relevant set of features.
Algorithm 1 shows the pseudocode for solving feature selection
using the PSO.

vk+1
id

= vk
id
+ c1rk

1 (pbestk
id
− xk

id) + c2rk
2 (gbestk

id
− xk

id) (2)

xk
id
= xk

id
+ vk+1

id
(3)

where vk
id
and xk

id
are the particle’s ith speed at its k occurrences and

position in the d dimension. pbestk
id is the individual’s best solution,

while gbestk
id illustrates the best global solution. The variables c1

and c2 are control parameters, while r1 and r2 are random values in
the range of [0,1].

Pdf_Fol io:606

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 2
The model methodology

Algorithm 1: Pseudocode for the PSO for feature selection

Step 1: Initialization: initialize the positions and velocity for
each particle randomly, positions [0,1]

Step 2: While the stop condition is not met, do
for each particle x ∈ {1,2,...,N} loop

1) Calculate the fitness of x1
2) If x1 fitness < pbest

• pbest = x1
• pbestfit = fitness of x1

3) If pbest < gbest

• gbest = pbest
• gbestfit = pbestfit

Step 3: Update the particle’s velocity and position according to
Eq. (2) and Eq. (3)
Step 4: Return gbest and gbestfit

3.3. Machine learning classifiers

As mentioned earlier, various classifiers are used in the
proposed model as different classifiers produce different results
[16, 17]. SVM is used for its well-known accurate outputs for
various problems. SVM is a binary classifier that uses a hyper-
plane to separate the data into two classes. The hyperplane
maximizes the margin’s space between the classes depending on
the utilized kernel. Because it is a component of the structural
risk minimization strategy, the SVM offers high generalization
capabilities [38, 39].

J48 classifier is a tree-based classifier with an enhancedmethod
for pruning trees to cut down on classification-related issues. First,
J48 creates a decision tree by choosing the root attribute with the
highest gain value, and then the branches are constructed for the val-
ues of the attributes. Once all branches have the same class output,
the process is repeated for each branch [40].

RF is an ensemble learning classifier of multiple weak trees
based on merging the predictions of different trees, each of which
is trained independently. RF can overcome overfitting, shorten the

Pdf_Fol io:7 07

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

training time, and work well with massive datasets. RF can be
implemented with the missing values of an incomplete dataset [41].

NB classifier is an extension of the conventional technique,
the maximum likelihood estimation theory (MLE). NB uses a
probability-basedmechanism for the classification and prediction of
the class of a sample based on input attributes and historical data.
Moreover, Naïve Bayes rules rely on the fundamentals of the condi-
tional probability rule. However, it enforces independence between
the attributes [42].

KNN uses majority voting to classify a sample based on its
closest K-NN neighborhoods. The distance metric used to identify
the closest neighbors, such as the Euclidean distance, significantly
impacts its performance. The K-NN classifier calculates the differ-
ences between the sample to be classified and the neighborhood.
The value of K affects the performance [43].

4. Experiments and Results

The experiments were conducted using a Windows 11 oper-
ating system, an i7-1065G7 processor running at 1.50 GHz, and
16.0 GB of RAM. The experiments are conducted using Python

programming language. For the right comparison, we apply the
same conditions and variables, such as population size and the
maximum number of iterations for all the compared methods and
techniques. Using trial and error, the population size of the PSOwas
set to 30, and the maximum number of iterations was set to 100 in
the experiments. For each experiment, 50 runs are performed.

4.1. Dataset

The ISCX-URL-2016 URL dataset is used for experiments, a
publicly available dataset from the Canadian Institute for Cyber-
security. Five URL malicious classes, including benign, malware,
defacement, spam, and phishing, are included in the dataset.
The dataset contains 79 lexical features from URLs, as listed in
Table 2 [44].

The ISCX-URL-2016 dataset includes 12,000 spam sam-
ples, 10,000 phishing samples, 11,500 malware samples, 45,500
defacement samples, and more than 35,000 benign samples. The
benign samples are the legitimate URLs that do not direct users to
malicious websites or attempt to install harmful malware on their
computers are known as benign URLs. Although these websites

Table 2
Features of dataset

No Feature No Feature

F1 Querylength F41 Directory_DigitCount
F2 domain_token_count F42 File_name_DigitCount
F3 path_token_count F43 Extension_DigitCount
F3 avgdomaintokenlen F44 Query_DigitCount
F5 longdomaintokenlen F45 URL_Letter_Count
F6 avgpathtokenlen F46 host_letter_count
F7 tld F47 Directory_LetterCount
F8 charcompvowels F48 Filename_LetterCount
F9 charcompace F49 Extension_LetterCount
F10 ldl_url F50 Query_LetterCount
F11 ldl_domain F51 LongestPathTokenLength
F12 ldl_path F52 Domain_LongestWordLength
F13 ldl_filename F53 Path_LongestWordLength
F14 ldl_getArg F54 sub-Directory_LongestWordLength
F15 dld_url F55 Arguments_LongestWordLength
F16 dld_domain F56 URL_sensitiveWord
F17 dld_path F57 URLQueries_variable
F18 dld_filename F58 spcharUrl
F19 dld_getArg F59 delimeter_Domain
F20 urlLen F60 delimeter_path
F21 domainlength F61 delimeter_Count
F22 pathLength F62 NumberRate_URL
F23 subDirLen F63 NumberRate_Domain
F24 fileNameLen F64 NumberRate_DirectoryName
F25 this.fileExtLen F65 NumberRate_FileName
F26 ArgLen F66 NumberRate_Extension

(Continued)

Pdf_Fol io:808

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Table 2
(Continued)

No Feature No Feature

F27 pathurlRatio F67 NumberRate_AfterPath
F28 ArgUrlRatio F68 SymbolCount_URL
F29 argDomanRatio F69 SymbolCount_Domain
F30 domainUrlRatio F70 SymbolCount_Directoryname
F31 pathDomainRatio F71 SymbolCount_FileName
F32 argPathRatio F72 SymbolCount_Extension
F33 executable F73 SymbolCount_Afterpath
F34 isPortEighty F74 Entropy_URL
F35 NumberofDotsinURL F75 Entropy_Domain
F36 ISIpAddressInDomainName F76 Entropy_DirectoryName
F37 CharacterContinuityRate F77 Entropy_Filename
F38 LongestVariableValue F78 Entropy_Extension
F39 URL_DigitCount F79 Entropy_Afterpath
F40 host_DigitCount Lable benign, malware, defacement, spam, and phishing

of legitimate URLs may include advertisements and adware, the
adware is normally safe for a computer. Around 35,300 benign
URLs were gathered from well-known Alexa websites. To retrieve
the URLs of the websites, the domains were run via a Heritrix web
crawler, which resulted in the crawling of around 500,000 distinct
URLs. Then, duplicated and malicious URLs were removed from
the initial list.

Malicious URLs direct users to a website that usually down-
loads harmful software, which can be used to steal identities, corrupt
data, and even record keystrokes. Software that is harmful to com-
puters and can steal personal data is known as malware. Malware is
a threat with harmful and dangerous consequences, like the conse-
quences of biological agents or terrorist cells looking to cause chaos.
Malware can take many forms, including scareware, spyware, and
ransomware. From the DNS-BH project, which maintains a list of
malware sites, more than 11,500 URLs associated with malware
websites were acquired.

Defacing a URL typically entails modifying some aspect of it,
such as the way it looks or a part of the material on it. There are sev-
eral reasons why hackers attempt to deface a website. This type of
action is takenwhen certain website information needs to be updated
without the consent of the website’s owner, and strictly speaking,
it entails breaking into a website. The defacement URL category
includes more than 45,450 URLs. They are highly regarded web-
sites by Alexa that host harmful website content with concealed or
fake URLs.

Phishing URLs typically lure a visitor to a bogus website where
they attempt to collect as much personal information as they can.
Sometimes, a simple URL error might easily direct a user to a phish-
ing website. Phishing uses social engineering tactics by hackers to
acquire sensitive data, such as credit card numbers and other digital
identities. Spam links send unsolicited emails to advertise or seri-
ously harm the recipient’s computer. FromOpen Phish, a database of
live phishing websites, approximately 10,000 phishing URLs were
obtained.

Spam URLs are regularly included in spam emails. Certain
spam URLs might be dangerous and corrupt the user’s PC with

spyware and adware. From the publicly accessible WEBSPAM-
UK2007 dataset, about 12,000 spam URLs were gathered.

This article focuses on detecting and classifying the deface-
ment attack instead of others since this type has the most significant
number of instances recorded in the dataset. For that, and as the
first step in the proposed model, we extract only the defacement and
benign samples to form the target dataset for which the model will
be trained.

4.2. Evaluation metrics

True positive (TP), true negative (TN), false positive (FP), and
false negative (FN) ratios are used to assess the effectiveness of
the model, which depend on the number of correctly and incor-
rectly classified samples as presented in the confusion matrix in
Table 3. Other metrics, including accuracy, precision, sensitivity,
and F-Measure are calculated using these measurements, as given
in Equations (4), (5), (6), and (7).

Table 3
Confusion matrix

Predicted
Normal Attack

Normal TP FNActual
Attack FP TN

Accuracy = TP + TN/TP + TN + FP + FN (4)

Precision = TP/TP + FP (5)

Sensitivity = TP/TP + FN (6)

F −Measure =
2 ∗ Precision ∗ Sensitivity/Precision + Sensitivity (7)

Pdf_Fol io:9 09

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

4.3. Results and discussion

The feature selection step using PSO is combined with a
KNN-based wrapper model in the experiments. Accuracy, preci-
sion, sensitivity, F-measure, TP, and the number of selected features
is the six performancemetrics that are used to evaluate the efficiency
of the proposed PSO feature selection model to reach the optimal
value. The optimized feature selection results are compared to the
model’s results using all the features, the best features reported in
the literature, and InformationGain (IG). These results are evaluated
with classification algorithms, including SVM, J48, RF, and NB.

4.3.1. Features selection results
The selected features using the proposed model are listed in

Table 4. As noted, the PSO reduced the number of features to 38
features instead of 79 features for detecting defacement attacks.
Accordingly, the proposed PSO optimizes the balance between

removing unnecessary features and enhancing performance in terms
of F-measure, accuracy, precision, TP, and sensitivity.

4.3.2. Classification results
The developed PSO model is assessed using the SVM, J48,

RF, NB, and KNN ML classifiers. The results of the classification
experiments are presented in Table 5.

The proposed model achieved significant results, as illustrated
in Figure 3. Compared to the results of the other feature selec-
tion techniques and using all features, the proposed model based on
PSO achieved the highest TP rate with a TP of 99.21%. The pro-
posed model’s best results were achieved using the random forest
classifier. Similarly, the proposed model achieved better accuracy,
precision, sensitivity, and F-measure than others. Using the RF
classifier, the proposed model achieved an accuracy of 99.29%,
a precision of 99.38%, a sensitivity of 99.21%, an F-measure of
99.29%. False-positive rates of 0.63%. The RF classifier was the

Table 4
Selected feature set based on PSO

Item Description

Features F1,F3,F4,F8,F10,F14,F15,F17,F18,F23,F24,F25,F29,F31,F35,F36,F39,F40,F41,F43,F46,F48,F49,F50,F60,F61,
F62,F63,F64,F65,F67,F68,F70,F72,F74,F76,F77,F78

Total 38

Table 5
Results of SVM, J48, RF, NB, and KNN

Classifier Feature Reduction TP % FN % FP % TN % Accuracy % Precision % Sensitivity % F-measure %
All features 97.24 2.76 1.43 98.57 97.90 98.58 97.24 97.91
Best features 98.15 1.85 1.54 98.46 98.31 98.43 98.15 98.29
Information gain 98.40 1.60 0.93 99.07 98.73 99.09 98.40 98.74RF

Proposed model 99.21 0.79 0.63 99.37 99.29 99.38 99.21 99.29

All features 95.16 4.84 2.90 97.10 96.12 97.09 95.16 96.12
Best features 96.91 3.09 3.62 96.38 96.65 96.37 96.91 96.64
Information gain 95.65 4.35 2.62 97.38 96.51 97.38 95.65 96.51SVM

Proposed model 97.81 2.19 2.00 98.00 97.90 98.03 97.81 97.92

All features 96.85 3.15 5.32 94.68 95.77 94.89 96.85 95.86
Best features 96.71 3.29 2.74 97.26 96.99 97.20 96.71 96.95
Information gain 96.44 3.56 2.26 97.74 97.08 97.75 96.44 97.09KNN

Proposed model 98.18 1.82 1.94 98.06 98.12 98.10 98.18 98.14

All features 96.53 3.47 2.00 98.00 97.26 98.00 96.53 97.26
Best features 97.97 2.03 2.33 97.67 97.82 97.63 97.97 97.80
Information gain 97.82 2.18 2.06 97.94 97.88 97.98 97.82 97.90J48

Proposed model 98.87 1.13 1.02 98.98 98.92 99.00 98.87 98.93

All features 86.42 13.58 9.54 90.46 88.42 90.23 86.42 88.28
Best features 92.88 7.12 15.27 84.73 88.77 85.65 92.88 89.12
Information gain 86.87 13.13 9.50 90.50 88.67 90.31 86.87 88.56NB

Proposed model 89.97 10.03 9.21 90.79 90.38 90.87 89.97 90.42

Pdf_Fol io:1010

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 3
Classification results

best among other classifiers because it increases accuracy and
decreases overfitting by combining the predictions from multiple
decision trees.

5. Conclusions and Future Work

This article proposed a model for feature selection based on
PSO feature selection for URL defacement attacks. Using fewer and
more effective selected features leads to faster classification and bet-
ter performance. The ISCX-URL-2016 dataset with SVM, J48, RF,
NB, and KNN classifiers was used to assess the proposed model.
Two stages made up the experiment’s execution. The first stage
focuses on feature selection using a PSO, while the second stage
involves assessing the proposed model using SVM,

J48, RF, NB, and KNN ML classifiers. The results of the first
stage demonstrated that the proposed model reduced the number
of features to 38 out of 79. Accordingly, the results of the second
stage demonstrated that the proposed model with an RF classifier
produces the highest rate in terms of TP rates, accuracy, preci-
sion, sensitivity, and F-measure compared to other models. In future
work, more metaheuristic algorithms, URL attacks, and deep learn-
ing approaches will be developed, implemented, and evaluated to
boost performance.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

The data that support the findings of this study are openly avail-
able in URL dataset (ISCX-URL2016) at: https://www.unb.ca/cic/
datasets/url-2016.html.

Author Contribution Statement

Omar Almomani: Conceptualization, Methodology, Soft-
ware, Investigation, Writing – original draft, Supervision, Project
administration. Adeeb Alsaaidah: Conceptualization, Formal anal-
ysis, Writing – original draft. Ahmad Adel Abu-Shareha:
Methodology, Formal analysis, Investigation,Data curation,Writing
– review & editing, Visualization. Abdullah Alzaqebah: Software,
Resources, Data curation, Writing – review & editing, Visualiza-
tion. Mohammed Amin Almaiah: Validation, Resources, Writing
– original draft. Qusai Shambour: Resources, Writing – original
draft.

References

[1] Burruss, G. W., Howell, C. J., Maimon, D., & Wang, F.
(2022). Website defacer classification: A finite mixture model
approach. Social Science Computer Review, 40(3), 775–787.
https://doi.org/10.1177/0894439321994232

[2] Nguyen, T. H., Hoang, X. D., & Nguyen, D. D. (2021).
Detecting website defacement attacks using web-page text and
image features. International Journal of Advanced Computer
Science and Applications, 12(7), 215–222. https://doi.org/10.
14569/IJACSA.2021.0120725

[3] Hoang, X. D., & Nguyen T. H. (2021). A CNN-based model
for detecting website defacements. Journal of Science &
Technology on Information and Communications, 1(1), 4–9.

[4] Abualhaj, M. M., Al-Shamayleh, A. S., Alhamza, M.,
Alkhatib, S. N., Hiari, M. O., & Anbar, M. (2024).

Pdf_Fol io:11 11

https://www.unb.ca/cic/datasets/url-2016.html
https://www.unb.ca/cic/datasets/url-2016.html
https://doi.org/10.1177/0894439321994232
https://doi.org/10.14569/IJACSA.2021.0120725
https://doi.org/10.14569/IJACSA.2021.0120725

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Enhancing spyware detection by utilizing decision trees with
hyperparameter optimization. Bulletin of Electrical Engineer-
ing Informatics, 13(5),3653–3662.https://doi.org/10.11591/eei.
v13i5.7939

[5] Dau, H. X., Trang, N. T. T., & Hung, N. T. (2022). A survey of
tools and techniques for web attack detection. Journal of Sci-
ence and Technology on Information Security, 1(15), 109–118.
https://doi.org/10.54654/isj.v1i15.852

[6] Banerjee, S., Swearingen, T., Shillair, R., Bauer, J. M., Holt, T.,
& Ross, A. (2022). Using machine learning to examine cyber-
attack motivations on web defacement data. Social Science
Computer Review, 40(4), 914–932. https://doi.org/10.1177/
0894439321994234

[7] Jeyabharathi, Alphonse, A. S., Priya, E. L. D., & Kowsigan, M.
(2022). Review of machine learning techniques used for intru-
sion and malware detection in WSNs and IoT devices. In S. L.
Tripathi, D. K. Singh, S. Padmanaban & P. Raja (Eds.), Design
and development of efficient energy systems (pp. 57-65). Wiley.
https://doi.org/10.1002/9781119761785.ch5

[8] Naeem, S., Ali, A., Anam, S., & Ahmed, M. M. (2023).
An unsupervised machine learning algorithms: Comprehensive
review. International Journal of Computing Digital Systems,
13(1), 911–921. http://dx.doi.org/10.12785/ijcds/130172

[9] Bergadano, F., Carretto, F., Cogno, F., & Ragno, D. (2019).
Defacement detection with passive adversaries. Algorithms,
12(8), 150. https://doi.org/10.3390/a12080150

[10] Ali, M. Z., Abdullah, A., Zaki, A. M., Rizk, F. H., Eid, M.M., &
El-Kenway, E. M. (2024). Advances and challenges in feature
selection methods: A comprehensive review. Journal of Arti-
ficial Intelligence and Metaheuristics, 7(1), 67–77. https://doi.
org/10.54216/JAIM.070105

[11] Agrawal, P., Abutarboush, H. F., Ganesh, T., &Mohamed, A.W.
(2021). Metaheuristic algorithms on feature selection: A survey
of one decade of research (2009-2019). IEEE Access, 9, 26766–
26791. https://doi.org/10.1109/ACCESS.2021.3056407

[12] Pham, T. H., & Raahemi, B. (2023). Bio-inspired feature
selection algorithms with their applications: A systematic litera-
ture review. IEEE Access, 11, 43733–43758. https://doi.org/10.
1109/ACCESS.2023.3272556

[13] Alsaaidah, A., Almomani, O., Abu-Shareha, A. A., Abualhaj,
M. M., & Achuthan, A. (2024). ARP spoofing attack detection
model in IoT network using machine learning: Complexity vs.
accuracy. Journal of Applied Data Sciences, 5(4), 1850–1860.
https://doi.org/10.47738/jads.v5i4.374

[14] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine
learning and deep learning.Electronic Markets, 31(3), 685–695.
https://doi.org/10.1007/s12525-021-00475-2

[15] Almomani, O. (2021). A hybrid model using bio-inspired meta-
heuristic algorithms for network intrusion detection system.
Computers, Materials & Continua, 68(1), 409–429. https://doi.
org/10.32604/cmc.2021.016113

[16] Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay,
W. S., Gadekallu, T. R., & Maddikunta, P. K. R. (2021). Com-
parative analysis of machine learning algorithms for prediction
of smart grid stability. International Transactions on Elec-
trical Energy Systems, 31(9), e12706. https://doi.org/10.1002/
2050-7038.12706

[17] Lim, K. S., Lee, L. H., & Sim, Y. W. (2021). A review
of machine learning algorithms for fraud detection in credit
card transaction. International Journal of Computer Science
and Network Security, 21(9), 31–40. https://doi.org/10.22937/
IJCSNS.2021.21.9.4

[18] Abualhaj, M. M., Abu-Shareha, A. A., Shambour, Q. Y.,
Alsaaidah, A., Al-Khatib, S. N., & Anbar, M. (2024).
Customized K-nearest neighbors’ algorithm for malware detec-
tion. International Journal of Data and Network Science, 8(1),
431–438. https://doi.org/10.5267/j.ijdns.2023.9.012

[19] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimiza-
tion. In Proceedings of ICNN’95—International Conference on
Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.
1995.488968

[20] Shi, Y., & Eberhart, R. (1998). A modified particle swarm opti-
mizer. In 1998 IEEE International Conference on Evolutionary
Computation Proceedings. IEEE World Congress on Computa-
tional Intelligence (Cat. No. 98TH8360), 69–73. https://doi.org/
10.1109/ICEC.1998.699146

[21] Shami, T. M., El-Saleh, A. A., Alswaitti, M., Al-Tashi, Q.,
Summakieh, M. A., & Mirjalili, S. (2022). Particle swarm
optimization: A comprehensive survey. IEEE Access, 10,
10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859

[22] James, J., Sandhya, L., & Thomas, C. (2013). Detection
of phishing URLs using machine learning techniques. In
2013 International Conference on Control Communication
and Computing, 304–309. https://doi.org/10.1109/ICCC.2013.
6731669

[23] Subasi, A., Molah, E., Almkallawi, F., & Chaudhery, T. J.
(2017). Intelligent phishing website detection using random for-
est classifier. In 2017 International Conference on Electrical
and Computing Technologies and Applications, 1–5. https://doi.
org/10.1109/ICECTA.2017.8252051

[24] Hota, H. S., Shrivas, A. K., & Hota, R. (2018). An ensem-
ble model for detecting phishing attack with proposed
remove-replace feature selection technique.Procedia Computer
Science, 132, 900–907. https://doi.org/10.1016/j.procs.2018.
05.103

[25] Jain, A. K., & Gupta, B. B. (2018). Towards detection of
phishing websites on client-side using machine learning based
approach. Telecommunication Systems, 68(4), 687–700. https://
doi.org/10.1007/s11235-017-0414-0

[26] Joshi, A., & Pattanshetti, T. R. (2019). Phishing attack detec-
tion using feature selection techniques. In Proceedings of
International Conference on Communication and Information
Processing, 1–7. https://dx.doi.org/10.2139/ssrn.3418542

[27] Ubing, A. A., Jasmi, S. K. B., Abdullah, A., Jhanjhi, N.
Z., & Supramaniam, M. (2019). Phishing website detection:
An improved accuracy through feature selection and ensemble
learning. International Journal of Advanced Computer Sci-
ence and Applications, 1(1), 252–257. https://doi.org/10.14569/
IJACSA.2019.0100133

[28] Mao, J., Bian, J., Tian, W., Zhu, S., Wei, T., Li, A., & Liang,
Z. (2019). Phishing page detection via learning classifiers from
page layout feature. EURASIP Journal on Wireless Communi-
cations and Networking, 2019(1), 43. https://doi.org/10.1186/
s13638-019-1361-0

[29] Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019).
Machine learning based phishing detection from URLs. Expert
Systems with Applications, 117, 345–357. https://doi.org/10.
1016/j.eswa.2018.09.029

[30] Zamir, A., Khan, H. U., Iqbal, T., Yousaf, N., Aslam, F., Anjum,
A., & Hamdani, M. (2020). Phishing web site detection using
diverse machine learning algorithms. The Electronic Library,
38(1), 65–80. https://doi.org/10.1108/EL-05-2019-0118

[31] Subasi, A., & Kremic, E. (2020). Comparison of adaboost
with multiboosting for phishing website detection. Procedia

Pdf_Fol io:1212

https://doi.org/10.11591/eei.v13i5.7939
https://doi.org/10.11591/eei.v13i5.7939
https://doi.org/10.54654/isj.v1i15.852
https://doi.org/10.1177/0894439321994234
https://doi.org/10.1177/0894439321994234
https://doi.org/10.1002/9781119761785.ch5
http://dx.doi.org/10.12785/ijcds/130172
https://doi.org/10.3390/a12080150
https://doi.org/10.54216/JAIM.070105
https://doi.org/10.54216/JAIM.070105
https://doi.org/10.1109/ACCESS.2021.3056407
https://doi.org/10.1109/ACCESS.2023.3272556
https://doi.org/10.1109/ACCESS.2023.3272556
https://doi.org/10.47738/jads.v5i4.374
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.32604/cmc.2021.016113
https://doi.org/10.32604/cmc.2021.016113
https://doi.org/10.1002/2050-7038.12706
https://doi.org/10.1002/2050-7038.12706
https://doi.org/10.22937/IJCSNS.2021.21.9.4
https://doi.org/10.22937/IJCSNS.2021.21.9.4
https://doi.org/10.5267/j.ijdns.2023.9.012
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1109/ICCC.2013.6731669
https://doi.org/10.1109/ICCC.2013.6731669
https://doi.org/10.1109/ICECTA.2017.8252051
https://doi.org/10.1109/ICECTA.2017.8252051
https://doi.org/10.1016/j.procs.2018.05.103
https://doi.org/10.1016/j.procs.2018.05.103
https://doi.org/10.1007/s11235-017-0414-0
https://doi.org/10.1007/s11235-017-0414-0
https://dx.doi.org/10.2139/ssrn.3418542
https://doi.org/10.14569/IJACSA.2019.0100133
https://doi.org/10.14569/IJACSA.2019.0100133
https://doi.org/10.1186/s13638-019-1361-0
https://doi.org/10.1186/s13638-019-1361-0
https://doi.org/10.1016/j.eswa.2018.09.029
https://doi.org/10.1016/j.eswa.2018.09.029
https://doi.org/10.1108/EL-05-2019-0118

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Computer Science, 168, 272–278. https://doi.org/10.1016/j.
procs.2020.02.251

[32] Ali, W., & Malebary, S. (2020). Particle swarm optimization-
based feature weighting for improving intelligent phishing
website detection. IEEE Access, 8, 116766–116780. https://doi.
org/10.1109/ACCESS.2020.3003569

[33] Alsariera, Y. A., Adeyemo, V. E., Balogun, A. O., &
Alazzawi, A. K. (2020). AI meta-learners and extra-trees
algorithm for the detection of phishing websites. IEEE
Access, 8, 142532–142542. https://doi.org/10.1109/ACCESS.
2020.3013699

[34] Odeh, A., Keshta, I., & Abdelfattah, E. (2021). PHIBOOST—
A novel phishing detection model using adaptive boost-
ing approach. Jordanian Journal of Computers Informa-
tion Technology, 7(1), 64–73. https://doi.org/10.5455/jjcit.
71-1600061738

[35] Harinahalli-Lokesh, G., & BoreGowda, G. (2021). Phish-
ing website detection based on effective machine learning
approach. Journal of Cyber Security Technology, 5(1), 1–14.
https://doi.org/10.1080/23742917.2020.1813396

[36] Gupta, B. B., Yadav, K., Razzak, I., Psannis, K., Castiglione,
A., & Chang, X. (2021). A novel approach for phishing URLs
detection using lexical based machine learning in a real-time
environment. Computer Communications, 175, 47–57. https://
doi.org/10.1016/j.comcom.2021.04.023

[37] Kang, M., & Tian, J. (2018). Machine learning: Data pre-
processing. In M. G. Pecht & M. Kang (Eds.), Prognostics
and health management of electronics: Fundamentals, machine
learning, and the Internet of things (pp. 111-130). IEEE Press.
https://doi.org/10.1002/9781119515326.ch5

[38] Naganna, S. R. & Deka, P. C. (2014). Support vector machine
applications in the field of hydrology: A review. Applied Soft
Computing, 19, 372–386. https://doi.org/10.1016/j.asoc.2014.
02.002

[39] Almaiah, M. A., Almomani, O., Alsaaidah, A., Al-Otaibi, S.,
Bani-Hani, N., Hwaitat, A. K. A., ..., & Aldhyani, T. H.
H. (2022). Performance investigation of principal component
analysis for intrusion detection system using different support
vector machine kernels. Electronics, 11(21), 3571. https://doi.
org/10.3390/electronics11213571

[40] Sharma, A. K., & Sahni, S. (2011). A comparative study of
classification algorithms for spam email data analysis. Inter-
national Journal on Computer Science and Engineering, 3(5),
1890–1895.

[41] Biau, G., & Scornet, E. (2016). A random forest guided
tour. TEST, 25(2), 197–227, https://doi.org/10.1007/s11749-
016-0481-7

[42] Rish, I. (2001). An empirical study of the naive Bayes classi-
fier. In IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, 3(22), 41–46.

[43] Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003).
KNN model-based approach in classification. In On the
Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2003 Catania, 986–996. https://
doi.org/10.1007/978-3-540-39964-3_62

[44] Mamun, M. S. I., Rathore, M. A., Lashkari, A. H., Stakhanova,
N., & Ghorbani, A. A. (2016). Detecting malicious URLs
using lexical analysis. In Network and System Security: 10th
International Conference, 467–482. https://doi.org/10.1007/
978-3-319-46298-1_30

How to Cite: Almomani, O., Alsaaidah, A., Abu-Shareha, A. A., Alza-
qebah, A., Almaiah, M. A., & Shambour, Q. (2025). Enhance URL
Defacement Attack Detection Using Particle Swarm Optimization and
Machine Learning. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonviewJCCE52024668

Pdf_Fol io:13 13

https://doi.org/10.1016/j.procs.2020.02.251
https://doi.org/10.1016/j.procs.2020.02.251
https://doi.org/10.1109/ACCESS.2020.3003569
https://doi.org/10.1109/ACCESS.2020.3003569
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.5455/jjcit.71-1600061738
https://doi.org/10.5455/jjcit.71-1600061738
https://doi.org/10.1080/23742917.2020.1813396
https://doi.org/10.1016/j.comcom.2021.04.023
https://doi.org/10.1016/j.comcom.2021.04.023
https://doi.org/10.1002/9781119515326.ch5
https://doi.org/10.1016/j.asoc.2014.02.002
https://doi.org/10.1016/j.asoc.2014.02.002
https://doi.org/10.3390/electronics11213571
https://doi.org/10.3390/electronics11213571
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-319-46298-1_30
https://doi.org/10.1007/978-3-319-46298-1_30
https://doi.org/10.47852/bonviewJCCE52024668

	Introduction
	Related Works and Background
	Machine learning and classification
	Particle Swarm Optimization
	Related work

	Methodology
	Preprocessing stage
	PSO feature selection
	Machine learning classifiers

	Experiments and Results
	Dataset
	Evaluation metrics
	Results and discussion
	Features selection results
	Classification results

	Conclusions and Future Work

