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Abstract: Increasing vehicle manufacturers has led to a considerable rise in the automotive industry’s competitiveness. Various research
projects are being developed to devise process optimization strategies using virtual simulation. The paper discusses the importance of
applying modeling and simulation strategies to optimize automotive manufacturing processes to meet the demands of a constantly evolv-
ing market. The aim is to demonstrate a strategy divided into a few stages to optimize the process of validating new projects applied in
the automotive industry. The methodology employed was computer modeling and simulation, which enabled identifying and eliminating
risks inherent in the validation process, thereby reducing the time required to complete new projects. The results demonstrated that imple-
menting this strategy facilitated an efficient transition of the validation process, maintaining the quality and safety standards required in
the cell. Consequently, it can be posited that the methodology developed is an efficacious instrument for expediting the implementation of
novel processes in automotive manufacturing, thereby contributing to the competitiveness and innovation of the industry in the automotive
segment.
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1. Introduction

The necessity for adaptability to serve the automated systems
market competitively is a persistent challenge faced by the indus-
try. Considering the rapid technological evolution and the varying
customer demands, companies must continuously adapt to remain
relevant. This adaptability is not limited to the end products but also
encompasses the manufacturing processes. New approaches and
strategies are consistently sought to ensure efficiency and agility
in production. This pursuit of adaptability is essential to keep
pace with the market changes and ensure that companies remain
competitive [1].

Software applications are pivotal in evaluating potential
scenarios resulting from implementing new projects. Using sim-
ulation and modeling tools enables companies to anticipate the
consequences of alterations to manufacturing processes, thereby
minimizing risks and optimizing resources. This software enables
the analysis of diverse scenarios, facilitating decision-making
and strategic planning. Consequently, investment in simulation
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technologies is crucial for the efficiency and competitiveness of
industrial operations [2].

The assessment of physical and procedural risks during the pro-
duction of new products through the interaction of industrial robots
represents a critical stage in the development of automated pro-
cesses. Integrating robots into the production line brings a series of
challenges related to safety and operational efficiency. It is therefore
necessary to carefully assess the possible risks associated with the
tasks performed by the robots, as well as the possible process fail-
ures that could occur. It is of the utmost importance to identify these
risks early, as this allows prevention and mitigation measures to be
implemented, thus ensuring the safety of workers and the integrity
of the equipment [3].

The necessity to reduce the validation time for new projects
involving robotic systems is a common objective among compa-
nies in the automotive sector. The validation process is pivotal
in developing new products and technologies, ensuring they meet
the established quality and performance requirements. However,
the time needed to validate a new project fully can be consider-
able, which may impact on the time to market and the company’s
competitiveness [4].

The article presents the following problem: how can
virtual modeling and simulation optimize the validation process
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of new processes applied in automobile manufacturing, reducing
implementation time and, consequently, the associated costs? The
research questions that guide this study are:

1) What are the specific benefits of simulation in optimizing
validation time?

2) How does the implementation of robotics techniques contribute
to reducing the development time of new processes?

This article contributes by exploring the application of virtual
modeling and simulation to optimize the validation process of new
robotic systems in automotive production, with a focus on reduc-
ing implementation time and eliminating operational bottlenecks.
The research seeks to show how these techniques can improve the
efficiency and competitiveness of the industry.

2. Literature Review

2.1. Modeling and simulation of industrial robots
using software

The modeling and simulation of industrial robots using soft-
ware plays a fundamental role in developing and optimizing
automation processes [5]. The need to perform modeling and sim-
ulation is crucial to ensure the effectiveness and efficiency of robot
operations in various industrial sectors [6]. Through virtual simu-
lation, it is possible to evaluate and validate different robot control
and motion strategies before implementation, significantly reducing
the time and cost of developing new robotic systems [7].

Deep learning applications, such as convolutional neural net-
works (CNNs), andaugmented reality (AR) technologieshaveshown
great potential in optimizing industrial processes. The implementa-
tion of these technologies improves accuracy in object identification
and classification, minimizes failures, and speeds up decision-
making. In the automotive context, AR can be used to overlay visual
instructions on the physical environment, reducing errors during
productverification.ModelsbasedonCNNs, suchasYOLOv8,offer
high accuracy in real time, increasing the efficiency of production
lines and reinforcing quality control in critical processes [8, 9].

This approach also makes it possible to identify potential prob-
lems and optimize robot performance in complex and dynamic
environments [10].

When modeling and simulating industrial robots using soft-
ware, it is essential to consider several specific elements and
characteristics. These include the robot’s geometry and kinematics,
such as dimensions, joints, and motion constraints [11]. In addition,
it is essential to accurately model the robot’s sensors and actuators,
as well as the characteristics of the working environment, such as
obstacles, surfaces, and lighting conditions [12]. Proper modeling of
these elements is essential to ensure the simulations’ accuracy and
reliability and provide realistic and valuable results for the design
and development of robotic systems [13].

Some programs stand out when it comes to modeling and sim-
ulating industrial robots, such as Simulink, part of MATLAB from
MathWorks [14], RobotStudio developed by ABB [15], Webots
developed by Cyberbotics [16], and CoppeliaSim from Coppelia
Robotics [17]. CoppeliaSim is a versatile and powerful platform
for accurately modeling robots, environments, and automation pro-
cesses. With its intuitive interface and wide range of features,
CoppeliaSim is widely used in industrial robotics and automation
research, development, and education [18].

Software to model and simulate industrial robots covers vari-
ous fields and industries. These include automotive manufacturing,
where CoppeliaSim simulates assembly, welding, painting, and
parts handling processes [19]. In addition, robot simulation is used in

logistics, healthcare, agriculture, and services sectors, where robots
play an increasingly significant role in automating tasks [20]. The
application of industrial robot modeling and simulation is diverse
and broad, demonstrating its potential in different contexts and
industries [21].

Software modeling and simulation of industrial robots have a
variety of practical applications. For example, in automotive man-
ufacturing, virtual simulation is used to optimize production line
layout, define robot motion paths, and validate new assembly pro-
cesses [22]. In logistics environments, robot simulation is used to
plan transportation routes, optimize material flow, and maximize
operational efficiency [23]. Robot simulation is also used in health-
care scenarios, where surgical robots are simulated to train surgeons
and plan procedures [24]. These examples illustrate the versatil-
ity and usefulness of modeling and simulating industrial robots in
various contexts and practical applications.

Despite the benefits of software-based modeling and simula-
tion of industrial robots, significant challenges are associated with
its implementation. These include the complexity of modeling and
simulating robotic systems, which require specialized engineering
andprogramming skills [25]. In addition, the validationof simulation
models against real systems can be complex due to variations in the
dynamics of the environment andoperating conditions [26]. Integrat-
ing different software and hardware systems can also be challenging,
requiring platform interoperability and compatibility [27].

Current and future market requirements reflect the growing
need for software-based modeling and simulation of industrial
robots. With the rapid evolution of robot technology, the demand
for simulation and optimization tools is expected to grow [28]. This
includes the need for more realistic and accurate simulations that
consider physical interactions, material dynamics, and the behavior
of complex systems [29]. In addition, integrating artificial intel-
ligence and machine learning techniques is expected to improve
the ability to predict and optimize the performance of robotic sys-
tems through simulation [30]. These trends highlight the continued
importance of modeling and simulation of industrial robots as an
essential tool for innovation and advancement of automation in
various sectors and industries.

2.2. Robotic cells applied to automotive
manufacturing processes

The use of robotic cells in automotive manufacturing is vital
for increasing industrial operations’ efficiency, quality, and produc-
tivity [31]. The need for robotic cells is driven by the increasing
complexity of automotive manufacturing processes, which require
precision, repeatability, and flexibility [32]. Robotic cells allow for
the automation of repetitive and hazardous tasks, freeingworkers for
more skilled activities and reducing the risk of workplace accidents
[33]. Integrating robotics into automotive manufacturing pro-
cesses allows faster response to market demands, mass production
of customized vehicles, and adaptation to changing consumer
preferences [34].

The application of augmented reality (AR) in industrial envi-
ronments offers an efficient means of overlaying virtual information
on the physical environment in real time. In the automotive con-
text, this technology allows rapid identification of components,
improves interaction between operators and systems, and reduces
operational errors during product verification. Implementing AR
also makes it easier to visualize assembly steps and safety standards,
optimizing processes and minimizing training time. Thus, AR can
be integrated into new product validation protocols to ensure com-
pliance and efficiency, promoting a more dynamic and safe work
environment [35].
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Several elements and characteristics must be considered when
designing a robotic cell applied to automotive manufacturing pro-
cesses to ensure its effectiveness and efficiency. Among the most
critical elements to consider are industrial robots, the fixturing and
transport devices, the vision and sensor systems, and the control and
monitoring systems [36]. Each component of the robotic cell must
be designed and sized tomeet the specific requirements of themanu-
facturing process, ensuring integration and interoperability between
the different elements [37]. Operator safety and compliance with
occupational health and safety regulations must be considered at all
stages of the design and implementation of the robotic cell [38].

There are numerous practical applications for robotic cells
in automotive manufacturing, ranging from component assembly
to quality inspection [39]. Industrial robots are used on assembly
lines to precisely manipulate and position parts to ensure fast and
accurate assembly [40]. Another scenario is collaborative robots,
which are increasingly used in welding, painting, and inspection
processes, where they work side by side with human operators to
increase efficiency and quality [41]. Other applications include auto-
mated material handling, surface polishing, and the application of
adhesives and sealants to automotive components [42].

It should also be noted that implementing robotic cells in
automotive manufacturing also faces significant challenges. One of
the main challenges is the integration of different technologies and
systems, which may have different origins and interfaces, making
communication and coordination between the components of the cell
complex [43]. Another difficulty is that programming and optimiz-
ing the robots tomeet the specific requirements of themanufacturing
process can be complex and time-consuming, requiring specialized
knowledge of control and automation engineering [44]. Ensuring
operator safety and preventing collisions between robots and equip-
ment are also significant challenges, requiring the implementation
of advanced collision detection and prevention systems [45].

Current and future market demands highlight the continu-
ous need to develop and improve robotic cells used in automotive
manufacturing processes. As technology advances, robotic cells
are expected to become even more sophisticated and intelligent,
incorporating features such as computer vision, machine learning,
and IoT connectivity [46]. These technologies enable closer inte-
gration between production and IT systems, allowing data to be

collected and analyzed in real time to optimize cell performance
and meet dynamic market demands [47]. Robotic cells are expected
to be increasingly flexible and adaptable, automatically reconfigur-
ing themselves to meet changes in product demand and production
requirements [48]. The literature on process simulation and opti-
mization in the automotive industry prioritizes reducing cycle time
and increasing productivity. Studies such as that by Dias et al. [49]
explore tools such as line balancing and 5S to optimize assembly
lines.Mayr et al. [50] use amultidimensional approach based on his-
torical data to identify performance scenarios and optimize process
planning in the automotive sector.

The layout of workstations is also essential for efficiency and
sustainability. Bag et al. [51] highlights its relevance in Industry
4.0 to promote sustainable production and the circular economy.
Ebrahimi et al. [52] analyze mixed assembly line configurations and
show how different layouts impact operational efficiency.

Although relevant, few studies deal with the validation of
new processes, especially in optimizing trajectories to reduce
implementation time and eliminate bottlenecks.

Advanced techniques such as the attention mechanism can be
adapted to improve the efficiency of automated industrial systems.
The application of process simulation, as demonstrated in Chen et al.
[53] as well as Liao and He [54], allows the optimization of dynamic
interruptions and the anticipation of failures in real time, ensuring
that adjustments can be made without operational risks. The simula-
tion offers a controlled environment to test different scenarios,which
results in better resource allocation and optimization of robot trajec-
tories, directly impacting failuremanagement and task scheduling. In
actual development, this approach reduces costs and improves time,
improving security and efficiency. The combination of simulation
with reinforcement learning, as proposed in Yang et al. [55], allows
continuous improvement, being crucial to guarantee increasingly
efficient and adaptable processes in the production environment.

The integration ofmodeling and simulation concepts with tech-
nologies such asmachine learning and robotics allows the validation
of industrial processes, optimizing trajectories and eliminating oper-
ational bottlenecks. To deepen the analysis, a synthesis of studies is
presented that highlights the benefits of using these approaches in
the context of robotic cells and automotive processes, which can be
seen in Table 1.

Table 1
Comparative analysis of SOTA techniques in robotic process validation

Aspect Venigandla et al. [1] Soori et al. [2] Murino et al. [3] Andronas et al. [4] Zhang et al. [5]
Focus Robotic process

automation in retail
pricing

Virtual manufacturing
systems

Risk assessment in cobots Human–robot col-
laboration in
automotive

Simulation in
intelligent
manufacturing

Main
Methodology

AI-enhanced robotic
automation

Literature review FMEA and PRAT risk
assessment

Case studies in
automotive
workstations

Modeling and
simulation

Key Findings AI optimization
improves efficiency

Virtual systems
enhance production
efficiency

Cobot risk is minimized
through combined
methodologies

Effective human–robot
collaboration in
automotive

Simulation optimizes
manufacturing
processes

Applications Retail pricing
optimization

Industrial
manufacturing

Collaborative robotics in
industrial tasks

Automotive industry
workstations

Intelligent man-
ufacturing
environments

Limitations Focused on retail
sector

General man-
ufacturing
focus

Limited to risk assessment
in cobots

Limited automotive
case studies

Focused on
manufacturing

Future Work
Suggestions

Explore AI in other
sectors

Extend virtual systems
to new industries

Further study on col-
laborative robot
safety

Explore further human–
robot integration

Apply simulation to
broader industries
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3. Research Methodology

The methodology used in preparing the paper was computer
modeling and simulation, which focuses on detailed modeling of
the robotic cell and assembly operations in both the virtual simula-
tion and the real cell [56]. The models are validated using real data
collected during the operation of the robotic cell. The models are
then used to simulate different production scenarios and evaluate the
impact of proposed improvements [57].

The simulation was conducted using the CoppeliaSim soft-
ware, version 4.0.0, with the Lua dynamics and programming
modules enabled. The layout of the robotic cell was modeled
based on measurements of the physical environment, replicating the
dimensions and positioning of the supports. The trajectory model-
ing included reference points defined as Home, P1, P2, P3, and P4,
used to define the robot’s trajectory. Operating times were collected
through manual timing at eight cycles per movement, with data
validated using mean and standard deviation to ensure consistency.

To minimize the impact of validating new projects in the
robotic cell and to comply with automotive manufacturing pro-
cesses, ten steps have been developed to standardize the procedure
in an industrial environment:

1) Verification that the current parameters correspond to the pro-
posed modifications, such as the robot’s work area and reach,
the load to be managed, the type of fixture for handling, the
trajectory, and the collision analysis.

2) Select the robot manufacturer and model in the CoppeliaSim
software environment.

3) Positioning of the robot in the virtual manufacturing cell.
4) Declaration and assignment of the variables involved, such

as the robot’s work area and reach, the load to be managed,
the type of attachment for handling, trajectory, and collision
analysis.

5) Simulation of the movements excluded by the new process.
6) Verification of possible collisions.
7) Creation of the program to check the trajectory followed by the

robot in the virtual environment.
8) Post-processing of the program created in the virtual envi-

ronment for the language of the selected manufacturing
cell.

9) Controlled simulation of the new program in the actual
environment.

10) Validation of the new process in the robotic cell to achieve
automotive manufacturing.

3.1. 3D model of robotic cell

The initial stage involved utilizing CoppeliaSim software in
version 4.0.0 to delineate the operational region, thereby enabling
the newly derived process values to be implemented. The robot was
configured with linear values of 3000 mm in each of the three axes,

Figure 1
Real cell x virtual cell

Pdf_Fol io:404



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2025

Figure 2
Cell programming

Figure 3
Real programming of the robot after validation of the virtual system

designated as X, Y, and Z, and a helpful handling area of 9000 m3.
The load to be managed weighed 700 grams, and a flat plate geom-
etry shaped like an automotive stamping platen. Therefore, it was
decided to attach them using suction cups.

Once the working region and clamping method had been
defined based on the geometry, the trajectory was defined by ana-
lyzing it from point to point, from its origin, designated as P1 in
the program, to the end of the manipulation cycle. The data entered

the virtual environment was then simulated, and the result was that
there was no risk of collision, as illustrated in Figure 1.

Subsequently, the variables to be analyzed were declared and
assigned within the programming development environment using
the Lua language. The robot’s movements were then simulated
according to the new process. After that, the absence of collisions
was checked and confirmed with all the parameters declared, the
trajectory defined, and the robot configured.
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Figure 4
Tool center point

The next stage involved the creation of a program to define
the trajectory traced by the robot. In the eighth stage, the coordi-
nates generated by the program were post-processed to insert the
values obtained into the cell. This transformation of the coordinates
into ISO language commands for the actual environment enabled
the robot to begin operating.

The final stage of the process involves using the actual environ-
ment in conjunction with the programming generated and validated
by the virtual environment.At this point, the cell has already received
all the parameters needed to start the new process, including those
relating to the reference, the end-of-travel check, the program direc-
tory, and the reduction in axis speed to increase safety during the
initial test. The result of this activity can be seen in Figure 2.

Once the simulated programs had been validated in the virtual
environment, post-processed, and installed in the robot’s directories,
they were all validated individually in the cell, respecting the safety
procedure. Given the success of the robot’s trajectory, characterized
by the absence of a collision, the cell was released to conduct the
new activity, as shown in Figure 3.

3.2. Cell kinematics

The most crucial aspect of the kinematics of the cell is the
study of the robot’s movements. To achieve this, it is essential to
define the devices’ positions, references, trajectories, velocities, and
accelerations.

A fundamental procedure for ensuring the accuracy of the posi-
tions is the setting of the “TCP” (Tool Center Point), defined as the
distance between the center of the flange of the robot’s sixth axis
and the tip of the tool.

In CoppeliaSim, the TCP is defined by parameterizing the
Dummy, which, once inserted, is considered an integral part of the
robot in its movements, see in Figure 4.

Another crucial configuration is the definition of the robot’s
mass in kg, its moment of inertia, and its orientation concerning the
angle of the moment of inertia, as illustrated in Figure 5.

For the virtual simulation to correspond to the real process, it
is necessary to configure the object’s properties by the following

Figure 5
Moment of inertia

specifications: collidable, measurable, detectable, and renderable,
as seen in Figure 6.

Once the requisite settings have been established, an interface
screen will be displayed upon simulation execution. This screen
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Figure 6
Object’s properties

allows the user to control the x, y, and z axes following inverse
kinematics. The alpha, beta, and gamma axes may also be oriented
according to the user’s specifications. Furthermore, spatial speed
and workspace velocity may be adjusted. Finally, each axis may be
individually configured for movement. The result of this activity can
be observed in Figure 7.

4. Conclusion

The results found during the project’s development were
divided into three stages: layout of the actual environment, chrono
analysis of the steps of the new process based on the actual envi-
ronment, and simulation in a virtual environment to obtain the best
scenario before validating the new process. The first step involved
adapting the cell’s previous process to a new trajectory model estab-
lished in the project. To allow a precise analysis of each movement
conducted by the robot, timing was created to identify each step
within the cell. The positioning process was then segmented into
three parts: updating and efficient movement adjustments. The first
stage of the movements involved defining the trajectory, which
included leaving the initial position (Home Position) toward sup-
port 1, passing through the Home, P1, and P2 marking points. Then,
from support 1, it was moved to support 2, passing through points
P2 and P3, and finally, support 2 was returned to the initial position,
passing through points P4, P3, and Home. These initial movements
are represented in Figure 8.

In the second stage, chrono analysis was conducted, recording
the eight movements of each phase of the process for visual vali-
dation and data insertion in the virtual environment. This ensured
that the data provided was concrete and allowed partial analysis of
the system’s performance before implementation. Detailed records
enabled an in-depth understanding of operations, identifying areas
for improvement and refinement of the project. This procedure
contributed to the precision and reliability of the results, strength-
ening the validity of the proposed model. This step helped verify
bottlenecks and provided a solid basis for decision-making in the
development of the validation process, as seen in Table 2.

The third stage began with table data insertion into the Cop-
peliaSim software to declare the variables, replicating the actual
environment. Next, the parameters, including positioning, speeds,
and collision analysis, were checked to ensure compliance with the
established technical specifications. A new analysis was conducted
to optimize the trajectories to achieve the ideal scenario for the new
process. This refinement resulted in significant gains in efficiency
and performance, adding value to the project.

After generating the favorable scenario, post-processing
was conducted on the program developed in the virtual envi-
ronment by the CoppeliaSim software, using the Lua language

Figure 7
Robot interface
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Figure 8
Robot interface

Table 2
Chrono analysis of trajectories

Position of activities 1 2 3
Description Home Position to Support 1 Support 1 to Support 2 Support 2 to Home Position
1st timing 3.06 5.85 2.53
2nd timing 2.97 5.85 2.47
3rd timing 3.09 5.88 2.56
4th timing 2.91 5.56 2.40
5th timing 3.15 6.20 2.62
6th timing 2.97 5.67 2.45
7th timing 3.03 5.82 2.50
8th timing 3.10 6.12 2.50
Meantime (s) 3.03 5.87 2.50
Accumulated time (s) 3.03 8.09 11.4

for the KUKA Robot Language (KRL) to prepare it for inser-
tion into the cell robot for actual manufacturing. This process
involved converting code coordinates to ensure proper compati-
bility and functionality in the physical environment. Finally, the
post-processed program was successfully inserted into the real
cell, as shown in Figure 9.

Eliminating the risk of robot collisions within the manufactur-
ing cell was one of the main advances achieved, ensuring the safety
of the equipment and the integrity of the work environment. The
simulation of different scenarios in the virtual environment allowed
the search for the best positions, optimizing trajectories, and directly
reflecting on the robot’s manipulation speed.

One of the points analyzed in the study was the possibility
of validating new processes derived from existing activities, which
provided continuous development and improvement of industrial
practices. Reducing the time and total costs involved in developing
new projects was another benefit achieved, resulting in savings in
financial resources and time for companies in the automotive sector.
Table 3 compares the scenarios before and after the optimization,

based on the times presented in Table 1 to present the impact of the
improvement.

In Table 2, it is possible to visualize the result by comparing
the times before and after optimizing the trajectories, highlighting
the reduction obtained in each activity and the impact on the total
cycle execution time.

Although the results are promising, the study has limitations.
The generalization of the results is restricted, as the simulation used
specific parameters and configurations, not reflecting the diversity
of layouts and equipment in different factories. The complexity
of optimization algorithms and the need for constant adjustments
can represent challenges in the practical context of the automotive
industry, especially in relation to operational demands and delivery
times. Unforeseen factors, such as sensor failures and environmental
variations (temperature, humidity), were not considered and may
affect the applicability of the results in real scenarios.

The study demonstrated the effectiveness of trajectory opti-
mization in validating automotive processes, reducing implementa-
tion time and eliminating operational bottlenecks.
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Figure 9
Validation of the new process in the virtual environment

Table 3
Comparing the times before and after optimizing

Activity Initial time (s) Optimized time (s) Reduction (s) Reduction (%)
Home position to Support 1 3.03 2.80 0.23 7.59
Support 1 to Support 2 5.06 4.74 0.32 6.32
Support 2 to Home position 3.31 2.98 0.33 9.97
Total 11.40 10.52 0.88 7.72

Recommendations

The steps conducted in this study provided advances in vali-
dating new projects in the automotive industry. Eliminating the risk
of robot collisions within the manufacturing cell was one of the
main results obtained, ensuring the safety of the equipment and the
integrity of the work environment. Furthermore, the simulation of
different scenarios in the virtual environment allowed the search
for the best positions and the optimization of trajectories, directly
reflecting on the robot’s manipulation speed.

Also noteworthy is the possibility of validating new processes
derived from existing activities, which provided industrial practices’
development and continuous improvement. Another positive point
observed was the reduction in time and total costs involved in devel-
oping new projects, resulting in savings in financial resources and
time for companies in the automotive sector.

Future research can explore the application of trajectory opti-
mization in different factory layouts, such as in-line arrangements,
production cells, or modular layouts. For example, simulations can
be used to test how rearranging workstations impacts robot deliv-
ery speed and material flow. Variations in machine configurations,
such as the inclusion of collaborative robots or adjustments to stor-
age areas, can be demonstrated. Simulated data can be compared
to actual cycle time and cost specifications, offering actionable
insights for real-time adjustments and measurable improvements in
the production environment.
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