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Abstract: Traditional optimization approaches for irrigation canal design have primarily focused on identifying cost-effective structural dimensions 
for simple cross-sections. However, these methods are inadequate for steep terrains where the construction of single or multiple rectangular inclined 
drops (RIDs) becomes essential. This study introduces a novel three-dimensional optimization model tailored for the optimal design of irrigation 
canals in such challenging environments. By integrating geospatial data with a particle swarm optimization (PSO) algorithm, the model establishes 
a continuous search space that facilitates the identification of cost-effective alignments while satisfying hydraulic and construction constraints. To 
validate its effectiveness, the model was applied to two synthetic case studies that feature varied terrain and slope conditions. Results demonstrated 
the model’s strong capability in optimizing both canal alignment and RID placement. Comparative analysis with genetic algorithm and ant 
colony optimization revealed that PSO outperformed both in terms of solution accuracy and consistency. Moreover, the proposed model produced 
results comparable to conventional design methods but with significantly reduced computational time. In addition, pre-cost-estimation tables were 
developed for various canal route alternatives and RID configurations, offering practical insights for efficient planning and preliminary design of 
irrigation canals in complex, sloping regions.
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1. Introduction
The design and implementation of a canal route in steep lands 

with a single drop or a set of drops are challenging problems. Similar 
to optimizing highway or rail alignments, they involve time-consuming 
design-related tasks due to various operational, hydraulic, and economic 
constraints [1]. In general, the use of intertwining parameters in the 
conventional design of the canal routes, which include various hydraulic 
structures, requires experienced engineers. It is time-consuming to find 
an optimal canal route due to an infinite number of possible routes 
[2] and positions to locate the hydraulic structures between specified 
starting and ending points. Hence, it is strongly desired to consider 
all alternatives for canal routes and the number and location of the 
hydraulic structures—preliminarily designed and compared with each 
other—to find the best solution from economic and technical points of 
view. Surprisingly, in traditional design, it is only possible to consider 
a very limited number of route options [3–5] and perform design 
calculations—only for the selected alternative. Therefore, it is essential 
to develop an intelligent model in the substrate of factual information 
by taking into account the costs in the design and construction of the 
canal route [6] and its related hydraulic structures. 

Developing an automated model to determine the optimal 
canal route, flow section dimensions, and the number and height of 

rectangular inclined drops (RIDs) while accounting for hydraulic and 
economic constraints between two specified points using geospatial 
data has long been a priority for researchers and engineers. Addressing 
these factors is essential for producing reliable, real-world solutions. 
Since the 1980s, much research has been carried out to determine the 
optimal dimensions of the flow section along a canal route [7–11]. The 
implicit and combined structure of the cost function or constraints, as 
well as solving nonlinear optimization problems in determining the 
optimal dimensions of the flow section, has led to the widespread use of 
heuristic and metaheuristic methods [12]. Swamee et al. [13] developed 
an explicit design equation and the shape factor of rectangular, 
trapezoidal, and circular sections using a nonlinear optimization method. 
They calculated the optimal dimensions of the canal to minimize the 
execution cost and reported that the use of their method was appropriate 
in the early stages of design. Jain et al. [14] solved the aforementioned 
explicit design equation using a genetic algorithm (GA) and found that 
consideration of the velocity constraint led to a 55% reduction in cost. 
However, the cost saving was only 35% without considering the velocity 
constraint. Depeweg and Urquieta [15] designed an irrigation canal by 
combining GIS and Elvis software. They obtained a 300 m reduction in 
the length of the canal and 10% of the total earthwork volume compared 
to the traditional design method. Aksoy and Altan-Sakarya [16] and 
Turan and Yurdusev [17] obtained the acceptable values of the width, 
depth, and side slope of the canal using the analytical solution method 
and the evolutionary difference algorithm, respectively. Furthermore, 
they reported that their algorithms were reliable. Tofiq and Guven [18] 
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calculated the width-to-depth ratio for minimizing the construction cost 
of a water transmission canal using genetic programming and reported 
that the use of the proposed method led to a reduction of approximately 
30% of the cost compared to using conventional methods. El-Ghandour 
et al. [19] used the particle swarm optimization (PSO) algorithm to 
determine the optimal dimensions of the canal to minimize earthwork 
costs by considering leakage and evaporation constraints. They reported 
that the use of the proposed method led to 28% to 41% reduction in total 
cost compared to the traditional approach.

Previous studies have focused on the geometric optimization of 
canal cross-sections, such as trapezoidal, rectangular, and parabolic 
shapes, to achieve efficient water conveyance while minimizing the 
wetted perimeter and seepage losses. Although numerical, analytical, 
and empirical methods have been developed to determine optimal 
canal dimensions, they are often limited to a one-m section and fail 
to account for critical factors such as soil type and land topography—
both of which are essential in the design of effective irrigation canals 
[20]. Analyzing complex terrain—particularly areas with significant 
elevation changes—is challenging to perform manually and often 
results in inefficient or impractical canal alignments. Traditional 
methods are resource-intensive, requiring extensive field studies that 
demand substantial time, effort, and financial investment, especially 
over large areas. Furthermore, these conventional approaches typically 
evaluate only a limited set of route alternatives, which increases the 
risk of selecting a suboptimal alignment. As a result, the solutions 
derived from such methods cannot be reliably considered optimal or 
even feasible for real-world implementation. In practical applications, 
an optimized canal route must be location-specific, accounting for 
both alignment and volume-related construction factors. Therefore, 
any applicable optimization model must incorporate both horizontal 
and vertical optimizations. Horizontal optimization, in particular, 
requires a wide range of detailed information, including soil type, land 
use, topographic maps, and other geospatial data [21–26]. The main 
task of horizontal optimization models is to determine the optimal 
canal crossing route based on the geospatial information used in the 
model. The vertical optimization model is developed with the aim of 
evaluating the cost of earthworks, transportation, and controlling the 
longitudinal slope of the route [27–29]. To arrive at a realistic and 
truly optimal solution, it is essential to simultaneously optimize both 
the horizontal and vertical alignments—an approach known as a three-
dimensional (3D) optimization model [30]. 3D optimization models 
use different metaheuristic algorithms integrated with a geospatial or 
geographic information system (GIS) as a search space [31, 32]. In 
this integrated approach, the algorithm generates random alignment 
paths, simultaneously evaluates the associated horizontal and vertical 
costs, and selects the option with the lowest total cost that complies 
with engineering constraints. Although numerous studies have explored 
3D optimization—particularly in the context of highway and railway 
design—those investigations lie beyond the scope of this study. 
Nevertheless, they consistently validate the method’s practicality and 
effectiveness in real-world alignment planning [1, 22, 33–36].

The literature review highlights that determining the optimal 
canal alignment and the strategic placement of RIDs necessitates the 
development of an automated model capable of evaluating alternatives 
from economic, technical, and hydraulic perspectives. Accordingly, 
this research presents an intelligent optimization model integrated with 
geospatial data to design efficient canal routes in steep-slope terrains, 
where the incorporation of RIDs is essential.

2. Canal Alignment Optimization Model
The proposed canal alignment optimization model has four 

components: layers of geographical information, an objective function, 

hydraulic and executive constraints, and design variables. These 
components will be discussed in detail in the subsequent sections.

3. Canal Costs
As the proposed model aims to identify the most economically 

optimal canal route incorporating RID sets, it is essential to accurately 
define the cost components associated with canal construction. The total 
construction cost can be broadly categorized into four types: (1) length-
dependent costs, (2) volume-dependent costs, (3) location-dependent 
costs, and (4) construction-dependent costs. Each type of cost may 
influence the optimal alignment differently—for instance, construction-
dependent costs favor minimizing the number of RIDs, whereas volume-
dependent costs may favor increasing them along certain alignments. 
Therefore, a comprehensive and precise cost formulation is necessary 
to effectively optimize the canal route by minimizing the total cost.

3.1. Length-dependent cost
The length-dependent cost includes lining and trimming, which 

is calculated by multiplying the cost of the unit length of the canal along 
the route.

where Klen is the total cost of the lining and trimming for 1 m of canal 
length and L is the total length of the route.

3.2. Volume-dependent cost
 Volume-dependent costs are construction expenses that change 

in proportion to the amount of material excavated, moved, or placed 
in canal projects. These costs are primarily associated with earthwork 
activities and hauling. As they directly relate to the physical volume of 
work, accurate estimation is essential for effective planning and cost 
control in infrastructure development.

3.3. Earthwork cost
The volumes of embankment and excavation are calculated using 

the average end area between two consecutive station points. At these 
points, the bed elevation of the canal is calculated using Equation (2). 
The terrain level is also extracted from the corresponding matrix of the 
rasterized elevation map. 

where  is the elevation of the canal bed at the jth station point,  
and  are the elevations of two consecutive intersection points,  
is the distance from the jth station point to the intersection point, and 

 is the horizontal distance of the PI points from the beginning of the 
route. On the basis of the elevation of the canal bed, the terrain elevation 
at the station points, and the determination of excavation or fill in that 
section, the area of consecutive sections is calculated and the volume 
of each type of earthwork (cut or fill) is obtained. Figures 1–3 show the 
cross-section of the canal in the state of excavation, embankment, and 
simultaneous excavation and embankment, respectively. 

The equations below are used to determine the volume of 
earthwork and its total cost.

(1)

(2)

(3)
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where EN, Ec, Ef , and Ecw are the net volumes of earthwork, cutting, 
embankment, and soil related to canal works, respectively; Kc, Kf, and 
Kl are the costs per cubic meter of excavation, embankment, and canal 
works, respectively; Kl is the transportation cost for moving 1 m3 of soil 
to the landfill; Kb represents the cost of transporting 1 m3 of soil from 
the borrow pit; Cvol is the total cost related to the volume; and λ is the 
expansion coefficient of the soil.

3.4. Construction-dependent cost
The costs related to the construction include the costs for 

constructing each hydraulic structure along the canal route, limited only 
to the costs for RIDs. After the determination of each RID’s and stilling 
pool’s dimension, construction cost, including reinforcement (Creinf), 
concreting (Ccncrt), and framework (C fw), is calculated for each of the 
structures separately using Equation (5).

where  and  are the length of the ith drop and its stilling 
pool, respectively.

 3.5. Location-dependent cost
One of the most critical factors in determining the cost of a canal 

route is the location-dependent cost, which reflects variations in soil 

type, land use, and restrictions on canal passage through certain areas. 
This cost quantifies the cumulative expense associated with traversing 
each location, enabling the optimization algorithm to identify the 
most cost-effective route. By incorporating location-dependent costs, 
planners can design economically viable alignments that also comply 
with technical and environmental constraints.

4. Model Development

4.1. Data processing and information layers 
Optimizing canal alignment requires the integration of GIS 

tools and spatial data to effectively balance technical and economic 
considerations. The process begins by clearly defining the alignment 
objectives—such as minimizing construction costs—while satisfying 
constraints such as avoiding environmentally protected zones or areas 
with unsuitable soil conditions. To support this goal, relevant GIS 
layers are collected, including topography, soil type, land use, and other 
critical factors influencing route selection. All datasets are standardized 
to a common coordinate system to ensure spatial consistency. When 
maps are available only in hard copy, they are digitized and rasterized, 
and each layer is assigned a weight to represent its relative importance in 
the decision-making process. In Figure 4, zones with different land uses 
and characteristics are digitized (Figure 4(a)) and valued (Figure 4(b)) 
based on the available information layers. The valuation of each zone is 
determined either by its actual economic cost or by the user’s judgment 
regarding its suitability for canal passage. To enhance computational 
efficiency, the spatial data are rasterized and stored in a matrix format, 
representing the entire search space. Each matrix cell traversed by the 
proposed canal route contains digitized attributes, including elevation 
data, descriptive information, and the assigned cost valuation.

(4)

(5)
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 Figure 1
The view of cutting cross-section

Figure 2
The view of filling cross-section

 Figure 3
The view of transition cross-section (cut & fill)

 Figure 4
(a) Digitizing and (b) valuating the search space
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4.2. Definition of 3D alignment
This research aims to develop a 3D intelligent optimization 

model for canal route alignment in steep-sloping terrains, where the 
inclusion of RIDs is essential. By incorporating multiple geospatial 
data layers into a continuous search space, the resulting alignments 
are expected to be more practical and representative of real-world 
conditions—offering a significant improvement over previous studies 
that focused solely on optimizing cross-sectional parameters. The 
alignment is defined by a series of intersection points in 3D space, 
referred to as cutting plans. These points are generated randomly, 
and a continuous 3D trajectory is established by connecting the start 
and end points of the canal route through these intermediate points. 
To speed up the optimization process, after the determination of 2D 
alignment (Figure 5(b)), the height parameter of the intersection points 
(Zi) is updated by applying a random longitudinal slope to the existing 
route. At this stage, A 3D-inclined path with a standard longitudinal 
slope (0.0005–0.001 for lined canals) is constructed with an epsilon 
distance to the endpoint (see the initial path in Figure 5(a)). Now the 
route consists of a specific number of tangents (loci), each of which has 
a unique number (Figure 5(b)). To optimally place each RID along a 
canal route, it is necessary to consider the maximum allowable number 
of RIDs. By choosing the highest number of drops at the beginning of the 
optimization, lower numbers can be achieved at the end of the process. 
The initial number of drops can be determined in three different ways: 
1) user experience, 2) hydraulic consideration of the distance between 
successive drops, and 3) choosing the highest number of drops with 

the lowest standard height. Here, the number of each tangent (loci) is 
randomly generated, and the standard slope of the inclined part (2H:1V 
or 1.5H:1V) is applied to each tangent. Accordingly, at each iteration 
of the optimization algorithm, a set of RIDs with different slopes and 
heights is placed in different locations on the route (see Figure 5(a), 
drops in i’th and j’th iterations). Figure 6 shows the process, input, and 
output values of the 3D optimization model for determining the route of 
the canal and the set of RIDs. The spatial information of each alignment 
is encoded into a matrix format, and the dominant cost components 
are assessed in the PSO module. Each alignment candidate is evaluated 
using an objective function, and the movement of each particle is 
guided by both its own best-known position (local best) and the overall 
best position found by the swarm (global best) based on the minimum 
construction cost. This evolutionary process is repeated iteratively 
until the best global solution shows no significant improvement over a 
predefined number of iterations.

4.3. Coordinate system
Spatial information is extracted from georeferenced maps stored 

in standardized coordinate systems. For computational simplicity, 
this research employs a local coordinate system. Given the critical 
role of terrain elevation in estimating construction costs—particularly 
for earthworks—and in defining the canal alignment, coordinate 
transformation is applied only in two dimensions. The local system is 
defined such that the origin is set at point (0, 0, Z), and the coordinate 
values extend along the X and Y axes [4].

4

 Figure 5
Basic parameters of the proposed model for path generation and placing the RIDs throughout the vertical alignment
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4.4. Constraint handling
The 3D optimization model for determining the canal alignment 

and the placement of RIDs is designed to minimize the total construction 
cost while adhering to established design standards. These standards 
are incorporated into the model as constraints. This section outlines 
the hydraulic and operational (executive) constraints that influence the 
selection of the canal route, the dimensions of the flow cross-section, 
and the positioning and elevation differences of the RIDs.

4.4.1. Manning equation and Froude number
The Manning formula, also known as Strickler’s equation, has 

been proven to be the most reliable in designing fluid flow sections. [37] 
This equation has been used in this research to design the flow section 
across the canal route. The values of the longitudinal slope, side slope, 
depth, and width of the flow section are generated by the algorithm and 
inserted into Equation (6). Equation (6) is expressed as follows:

where A and R represent the flow area and hydraulic radius, respectively, 
which are functions of the canal’s bed width, flow depth, and side slope. 
S and n are the longitudinal slope and Manning’s roughness coefficient, 
respectively. To achieve the expected flow rate, the difference between 
the flow rate obtained by the model and the design discharge is found by 
magnifying this difference using two user-defined coefficients, namely, 
α and β. It is expressed as follows:

The Froude number describes different flow regimes of the open 
channel flow, which is considered a limitation in determining the flow 
velocity. It is expressed as follows:

where D, V, and g are the hydraulic radii, flow velocity, and gravity 
force, respectively. 

4.4.2. Drops and basin elevation
The RID is a widely used regulatory structure to reduce the water 

level and to dissipate excess water energy using its stilling basin located 
after the inclined section. This structure has a rectangular section to 
transfer water from a higher to a lower elevation [38]. It is designed 
and implemented with a height difference of 1–5 m in unlined canals 
and 1–8 m in concrete canals. Using Equations (9) and (10), the bottom 
width of the inclined part (in meters) for RIDs and stilling basin is 
obtained for discharge up to and greater than 3 m3/s, respectively. 
Notably, to obtain Equation (10), it is assumed that the upstream depth 
(Hmax) does not exceed 1.5 m in height.

where bd is the width of the inclined drop and its stilling basin (m), 
and Q is the discharge (m3/sec). The location and distance between two 
consecutive drops are determined according to economic and hydraulic 
considerations. From an economic perspective, the distance between 
drops should balance embankment and excavation, considering the 
density of the local soil and the canal body [39]. Economic advantage 
also plays a vital role in choosing the number and height of drops. 
More drops with lower heights reduce the volume of earthworks and 
increase the construction costs of structures and vice versa [39]. From 
a hydraulic perspective, water surface elevation is required for water 
intake. An adequate space for the development of uniform flow should 
be provided [38]. Empirically, the minimum distance between two 
consecutive drops for a flow of up to 3 cms is 60 m. Therefore, a height 
difference of up to 8 m in the lined channels and a distance of 60 m 
between consecutive drops for the flow of up to 3 m3/sec are applied as 
control restrictions [40]. The basis for determining the distance between 
two successive drops for higher flow rates is the distance required to 

(6)

(7)

(8)

(9)

(10)
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 Figure 6
Structure of the proposed model for canal and drop set alignment optimization using the PSO algorithm



Journal of Computational and Cognitive Engineering Vol. 00  Iss. 00  2025

fully form the M2 water surface profile. If the profile does not extend, 
a control notch or other types of regulatory structures would be used 
to adjust the water level. A penalty function  is applied to the 3D 
model to prevent the reverse slope at the end of the path. Following 
this approach, the net difference between the height of the starting 
point and the end of the path minus the sum of the heights of the drops 
and the height difference caused by the longitudinal slope of the canal 
is penalized in a magnified way. Equation (11), as presented below, 
ensures that the longitudinal slope and height difference of the routes 
are within feasible bounds.

where α and β are user-defined coefficients, S is the longitudinal slope, 
L is the total canal route length,  and  are the elevation of 
the starting and ending points of the path, respectively, and  is 
the height difference of each of the RIDs.

5. Research Methodology

5.1. PSO algorithm
The PSO algorithm is a widely used evolutionary algorithm for 

solving optimization problems involving continuous and nonlinear 
functions [3, 41–44]. The goal of an optimization process is to find 
the best solution of a given optimization problem without violating 
the prescribed constraints [45]. In a PSO algorithm, an optimization 
technique is proposed with the option of changing the velocity of the 
particles in each iterative step to achieve the best individual and social 
position [46]. The basis of this algorithm is that each particle adjusts its 
location according to the best location that it has ever been and the best 
location in its entire neighborhood. In the present research, the PSO 
algorithm has been employed using a constriction factor introduced by 
Clerc [47]. The velocity vector and position of each particle are updated 
using Equation (12) and Equation (13) to minimize the fitting function. 
These equations are expressed as follows:

where W is the inertia weight, C1 and C2 are acceleration constants, 
r1 and r2 are randomly distributed matrices, Xlb(t) and Xgb(t) are the 
best local and global positions of the particles at time t, and Vi(t + 1) 
and Xi(t + 1) are the velocity and location of particle i at time (t + 1), 
respectively. Finding a balance between exploration and exploitation is 
essential for the algorithm to be able to find the best position [48]. The 
inertia weight, W, has always been considered an essential parameter 
in PSO, which significantly improves the exploration–exploitation 
trade-off [49]. Choosing a significant value of inertia weight increases 
the exploration, whereas a lower value leads to an increase in the 
exploitation ability. The scale and unit variation of the variables in 
the PSO algorithm require a delicate balance of the sensitivities of the 
variables. The flexibility in adjusting the parameters [50], convergence 
speed and simplicity [51], and ensuring the continuity of the search 
space have led us to use the PSO algorithm as an efficient tool to achieve 
the goals in the present research.

6. Summarized Optimization Model
The optimal design of the canal route requires the use of one 

or more RIDs in finding the least expensive feasible variant while 

considering the design, technical, and operational limitations. This 
requires successive evaluation and refinement of costs related to 
construction, volume, location, and length. Ultimately, the optimal 
placement and dimensions of the RIDs, the flow section dimensions, 
and the canal route are determined. 

The final 3D alignment optimization model is formulated as 
follows: 

 

Subject to:

The objective function includes the location-dependent cost 
(CLoc), length-dependent cost (CLen), volume-dependent cost (CVol), 
construction-related cost (CCons), and penalty function (CP). In addition, 
dL(i) and dU(i) are the lower and upper limits of the search space, and 
Zdrop is the allowable range of the drop height in the lined channel.

7. Numerical Examples
To verify the model’s ability to calculate the optimal design of 

canal routes and the number of RIDs, two artificial examples and a 
real-world example are discussed. A stopping criterion of 300 iterations 
is defined for convergence based on an empirical observation that no 
significant improvement in the objective function is noted beyond 300 
iterations.

7.1. Example 1
In example 1, a route was created with a height difference of 18.6 

m at a distance of 400 m. Along the route, three height jumps of 5, 2, and 
3 m are made at nearly identical intervals. Considering such variations 
in the terrain would help us understand whether the placement of drops 
is optimal. Figure 7 shows the perspective view of the artificial terrain. 

After applying the initial parameters in the proposed model, 
including the costs and the design standards (see Table 1), the model 
starts the optimization process with the maximum allowable number of 
drops and the lowest height difference. Figure 8 shows the improvements 
over successive iterations in the early (a) and intermediate (b) steps 

(11)

(12)

(13)

(14)
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 Figure 7
Perspective view of the elevation map of example 1
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of the optimization process. Figure 9 shows that the model has 
successfully passed the canal through the highland areas, significantly 
reducing the volume of earthworks. The optimal solution consists of 
three drops instead of six at the early stages of the process, which shows 
the ability of the proposed model to select the optimal number of drops. 
The values related to the distance and height difference of the drops 
are listed in Table 2. Along the optimal route, three drops with height 
differences of 7.30, 6.30, and 6.95 m and distances of 148.2 and 182.4 m 
from each other are considered the optimal option. Choosing the slope 
of the inclined part floating between the 2H:1V and 1.5H:1V range 
helps in reducing the penalty specified in Equation (11). Conversely, 
because the inclined slopes are within the permitted design range, it is 
operationally feasible. However, it needs more structural consideration, 
which is outside the scope of this paper. The position of the drops is 
chosen in steep areas, which facilitates the ease of implementation and 

reduction of the construction costs. In Table 3, the cost items considered 
for drop construction are listed. The excavation-to-embankment ratio is 
a critical factor in construction planning and can significantly reduce 
earthwork costs. Assuming that the local soil is suitable for use and 

7

Value Item
3 (m3/s) Discharge
0.014 Manning coefficient
6 Initial number of drops
2.5 (m/s) Maximum flow velocity
0.001 Maximum longitudinal slope
1:1 – 2:1 Side slope
1 Soil shrinkage factor (ʎ)

Volume-dependent cost
Embankment 74100 (IRR/m3)
Cutting 193000 (IRR/m3)
Canal works 582000 (IRR/m3)

Transportation cost for 
moving 1 m3 of soil to landfill

9810 (IRR/m3/km)

Haul Transportation cost for 
moving 1 m3 of soil from 
borrow pit + loading

9810 (IRR/m3/km) 
+ 192000 (IRR/m3)

Length-dependent cost
Lining Bed width between 

(0.6–1.2 m)
4689000 (IRR/m3)

Bed width > 1.2 m 4461000 (IRR/m3)
Trimming 76000 (IRR/m2)
Embedding longitudinal seams 111500 (IRR/dm3)
Preparation of materials and filling of 
concrete joints

38400 (IRR/dm3)

Construction-dependent cost
Concreting hydraulic 
structures

3997000 (IRR/m3)

Reinforcement 137500 (IRR/kg)
Framework 1540000 (IRR/m2)

Others
Surcharge Polishing 76400 (IRR/m2)

Concreting in reinforced concrete 99800 (IRR/m3)
Concreting hydraulic structures 507500 (IRR/m3)

Table 1
Research gaps

 Figure 8
Route alignment and placement of RIDs in the (a) initial and (b) 

middle steps of the optimization process

 Figure 9
Optimized horizontal and vertical alignments at the 300th 

iteration of example 1
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applying a compaction factor of 1, this ratio is taken as 1. Under 
this condition, transportation costs are limited to movement between 
sections, excluding loading expenses. For flow parameters, the canal is 
designed with a bed width of 1.2 m, a depth of 0.95 m, a longitudinal 
slope of 0.001, and a side slope of 1. The flow velocity is approximately 
1.5 m/s, which falls within the standard range (0.6–2.5 m/s) for lined 
channels to prevent sedimentation and erosion. These dimensions also 
ensure that the Froude number remains within acceptable limits. On 
the basis of these assumptions and an iteration cap of 300, the model’s 
average runtime was recorded at 304 s across 10 executions.

7.2. Example 2
In example 2, a continuous surface with varying slopes was 

constructed to evaluate the model’s ability to optimize the placement 
and height of RIDs across different gradients. To achieve this, an 
artificial terrain was created with successive slopes of 0.16%, 1%, 2%, 

and 0.125% (Figure 10). In this case, the design discharge is equal to 10 
m3/s, and the height difference between the starting and ending points 
of the route is equal to 12 m. Nine RIDs have been selected as the 
initial number at the beginning of the optimization process (Figure 11). 
Observing the optimal variant of the model for example 2 shows that it 
is needless to build a drop at the beginning and end of the path due to the 

8

Items Unit Cost per unit Amounts Total cost
Canal work in different cross-sectional shapes with bottom widths 
less than 4 m

m3 582000 27.996 16294205.12

Trimming and regulating the bed for lining m2 76000 0.4916 37367.8372
Excavation and transportation up to a distance of 50 m m3 193000 10.210 1970579.695
Spreading, spraying water, leveling, adjusting, and compacting 
embankment layers

m3 74100 51.793 3837880.014

Preparation and implementation of concrete with washed sand and 
250 kg of cement per cubic meter of concrete

m3 3997000 10.595 42350168.17

Surcharge for concreting item if the concrete is used in reinforced 
concrete

m3 99800 10.595 1057429.768

Surcharge for concreting item if the volume of each hydraulic 
structure is 4 to 10 m3

m3 507500 10.595 5377210.494

Surcharge for concreting item to polish concrete surfaces of hydraulic 
structures exposed to water flow

m2 76400 31.705 2422304.251

Reinforcement and rebar bending with a diameter of 12–18 mm for 
use in reinforced concrete

kg 137500 1792.2446 246433636

Framework m2 1540000 47.664 73403298.37

Table 3
Example of cost-estimation output table for the ith RID

Item Value Item Value
Bottom width 1.2 Height of drops 7.26
Flow depth 0.95 6.30
Longitudinal slope 0.001 6.95
Side slope 1:1 Volume-dependent cost 1923.6
Velocity 1.48 Length-dependent cost 1610
Froude number 0.57 Construction-dependent cost 2499.4
Embankment 3877 Penalty cost 1.16
Cutting volume 3877 Total cost 6034.2
Distance between drops 148.2

182.4

*** It should be noted that the dimensions are in the SI unit and the costs are in rials.

Table 2
Outputs of the proposed model for example 1

 Figure 10
Ground profile for example 2
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mild slope (Figure 10). The optimal option consists of seven drops with 
almost the same heights and distances in the area with a 1% slope and 
one drop with a height of 3 m in the area with a 2% slope, which can be 
a suitable option in this part due to its shortness (approximately 200 m) 
and steep terrain slope. The selection of a short and consecutive set of 
drops in relatively long routes with a uniform slope has reduced the 
volume of earthworks. In this section, the excavation-to-embankment 
ratio is 1.76, which, when compared to the overall ratio of 2.18, 
indicates a greater equilibrium in earthworks owing to the meticulous 
choice of RIDs. The aspect ratio (depth/bottom width) for this choice 
is 0.7. Although this ratio meets the technical and economic standards 
according to conventional principles, it can be deduced that the value 
obtained are unique for the least-cost feasible option, taking into account 
the available topography and other assumptions related to the problem. 
Table 4 and Table 5 show the model outputs of the optimal variant and 
cost estimation for the canal, excluding the structures, respectively. On 

the basis of the assumptions of this example, with 300 iterations and an 
approximate canal length of 200 m, the model’s average runtime was 
recorded at 433 s over 10 executions. A comparison between examples 
1 and 2 reveals that achieving an optimal design is not solely a matter 
of minimizing the number of drop structures along the route. Instead, it 
must account for topographic conditions, construction costs, and design 
constraints to ensure overall efficiency and feasibility.

7.3. Comparative performance analysis of PSO, GA, 
and ACO in the proposed optimization model

To assess the performance of the proposed PSO-based canal 
alignment optimization model, two other population-based metaheuristic 
algorithms— GA and ant colony optimization (ACO)—were evaluated 
under the same experimental conditions. Example 2 was selected as 
the test case due to its complex topography and variable slope profile, 
providing a challenging benchmark for comparative algorithm testing.

The evaluation centered on key performance metrics: the final 
objective function value, average computation time, and solution 
robustness across multiple independent runs.

As shown in Table 6, PSO consistently delivered the most 
favorable outcomes, yielding the lowest objective function values 
and exhibiting strong convergence behavior. Although GA achieved 
the shortest average runtime (398 s), the quality of its solutions was 
slightly inferior to those obtained with PSO. ACO, although capable 
of producing acceptable solutions, displayed higher variability and 
required extensive parameter tuning to achieve reliable performance.

In contrast, PSO demonstrated low sensitivity to initialization 
parameters and scaling, enhancing its reliability and ease of use. These 
results highlight PSO’s practical advantages in solving complex, large-
scale, nonlinear optimization problems—particularly in the domain of 
3D canal alignment and optimal placement of RIDs.

7.4. A real-world example
To demonstrate the practical applicability of the proposed model, 

a real-world scenario was analyzed using actual project data. In this 
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Item Value Item Value
Bottom width 2.18 Height of drops 1.60
Flow depth 1.53 1.17
Longitudinal slope 0.0007 1.60
Side slope 1:1 1.60
Velocity 1.76 1.17
Froude number 0.54 1.60
Embankment 10708 1.60
Cutting volume 23420 3.20
Distance between drops 104 Dominant costs

138 Volume-dependent cost 13698
136 Length-dependent cost 9823.5
114 Construction-dependent cost 7740.7
132 Penalty cost 44.6
120 Total cost 31307
108

*** It should be noted that the dimensions are in SI units, and the costs are in million rials

Table 4
Outputs of the proposed model for example 2

 Figure 11
Total cost changes in successive iterations and the best vertical 

alignment for example 2
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case, the optimization focused specifically on two critical parameters: 
the placement and height of the drops. By optimizing these variables, 
the total earthwork volume was reduced by 29%, primarily through the 
strategic adjustment of both the number and location of the drops. This 
reduction translated into a 9% decrease in the overall project execution 
cost.

These results highlight the model’s effectiveness in achieving 
substantial cost and resource savings, even when applied to a single 
aspect of project design. A comparison with conventional methods, 
presented in Table 7, shows that the optimized model maintains an 
acceptable cut-to-fill ratio. Figure 12 further illustrates the difference in 
drop placement between the conventional approach and the optimized 
design.

8. Sensitivity Analysis
Choosing the appropriate values for the parameters of velocity, 

inertia weight, population, and individual and social learning coefficients 
of the PSO algorithm has a significant impact on the performance and 
efficiency of the algorithm. There is no specific method for the optimal 
selection of these values. It is determined based on the user’s experience 
and the type of optimization problem [52]. In general, these coefficients 
should be chosen to maintain the trade-off between exploration and 
exploitation, which means helping the algorithm get rid of the local 
optimum and find the global optimum.

8.1. Swarm size
The swarm size or number of particles is influenced by both 

the number of decision variables and the complexity of the objective 
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Cost items Unit Cost per unit Amounts Total cost
Demolition operation m2 790 35817.5871 28295893.81
Trimming and regulating the bed for lining m2 76000 1299.36612 98751824.79
Loading of materials from earthwork and its depletion m3 70000 12712.1488 889850416.8
Spreading, spraying water, leveling, adjusting, and compacting 
embankment layers

m3 74100 10648.3902 789045714.8

Excavation of soil in any land for embankment m3 192000 0 0
Canal works m3 582000 19562.8512 11385579413
Excavation and transportation up to a distance of 50 m m3 193000 586.348778 113165314.2
Preparation of materials and implementation of concrete 250 kg of 
cement per cubic meter for lining

m3 4461000 1459.71109 6511771168

Embedding of all types of seams in concrete works with all neces-
sary materials and tools

dm3 111500 36782.8655 4101289504

Transportation of materials obtained from excavation and canal 
digging for use in normal embankments

m3_km 9180 12712.1488 116697526.1

Transportation cost for moving 1 m3 of soil from borrow pit m3_km 9180 0 0
Preparing materials and filling concrete joints with sand dm3 38400 38865.9231 1492451446

Table 5
Canal cost estimation table of the output of the optimization model 

 Figure 12
Placement of drops in the conventional and proposed models

Outputs Traditional method Proposed model
Height (m) 2.68 2.95

2.33 3.11
1 -

Earthwork cut & fill 
(m3)

2908.9 4281.9
12219 6582

Total cost (million 
rials)

9600 8700

Table 7
Outputs of the proposed model in a real-world example

Criteria PSO GA ACO
Objective value 2.7E+10 3.3E+10 3.6E+10
Best result 2.5E+10 2.9E+10 3.4E+10
Average runtime (s) 433 398 570
Population size 72 72 72
Iteration 300 300 300
Parameter sensitivity Low Medium High

Table 6
Performance metrics of PSO, GA, and ACO algorithms
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function. Although a larger population can increase computational 
time, an overly small population may cause the algorithm to converge 
prematurely to a local optimum. Previous studies have shown that 
using fewer than 50 particles can significantly degrade the algorithm’s 
performance [53]. Accordingly, this study ensures a minimum swarm 
size of 50, with adjustments made based on the number of variables 
involved to maintain adequate exploration capability.

8.2. Velocity modification and inertia weight
To ensure that particles remain within the defined search space, 

their velocity is constrained within a specific range. Excessively high 
velocities can destabilize the algorithm, whereas very low velocities 
increase the risk of premature convergence to a local optimum. 
To facilitate a smooth transition from the exploitation phase to the 
exploration phase, an inertia weight coefficient is employed to gradually 
reduce velocity over the course of the algorithm’s execution.

In this study, experimental results suggest that an initial inertia 
weight of 0.9 and a damping coefficient of 0.99 significantly improve 
the algorithm’s performance. Table 8 displays the objective function 
values from 10 independent runs under different velocity settings. The 
findings indicate that a velocity of 0.2 leads to premature convergence 
to a local optimum, reducing efficiency. Conversely, a velocity of 0.3 
promotes more reliable convergence to the global optimum, enhancing 
overall algorithm performance.

8.3. Accelerator constant
In the PSO algorithm, cognitive (C1) and social components 

(C2) are accelerators that enable particles to share their best individual 
and global experiences in the search space. Choosing large values of 
cognitive coefficients compared with the social component leads to 
the wandering of the particles in the search space [54]. In addition, 
choosing higher values of the social component (C2) than the cognitive 
component (C1) leads to the rapid movement of particles to the local 
optimum [55]. Different values of C1 and C2 were calculated using the 
relationship C1 = 4-C2, for C2 = [1.5 1.7 2 2.3 2.5], and applied in the 
model. Figure 13 shows the maximum, minimum, and average values 

of the objective function for 10 times of running the model for each 
pair of accelerator coefficients. The results show that the objective 
function moves away from the global optimum when the values of C1 
and C2 are chosen significantly more than 2 (C2>2>C1) or (C1>2>C2). 
In contrast, the reduction of this difference leads to an improvement in 
the algorithm’s performance. Therefore, as mentioned above, applying 
constant 2 for both C1 and C2 enhances the model’s performance and 
provides a better solution.

8.4. Summary of the model performance
The proposed 3D optimization model—integrating PSO with 

GIS capabilities—was benchmarked against traditional canal design 
methods to assess its performance. Unlike conventional approaches 
that often depend on manual alignments and heuristic adjustments, 
this model automates the generation of multiple alignment alternatives 
and systematically identifies the most cost-effective route and cross-
sectional parameters all while adhering to hydraulic and design 
constraints.

The model demonstrated a clear advantage in optimizing the 
placement and height of RIDs. In synthetic test scenarios, it effectively 
filtered out suboptimal solutions and adapted to varying terrain 
characteristics. For example, in the first test case, reducing the number 
of drops led to significant cost savings, and the second scenario showed 
that using more frequent, lower-height drops produced better results—
demonstrating the model’s ability to tailor solutions dynamically to 
site-specific conditions.

When applied to a real-world case, the model achieved a 9% 
reduction in implementation costs compared to conventional methods, 
solely through optimized drop placement—even with limited input 
data. This highlights its superior performance in practical settings. The 
combination of cost efficiency, adaptability, and automated analysis 
positions the model as a valuable decision-support tool for preliminary 
canal alignment planning. Its use of a continuous search space and GIS-
driven variant generation sets it apart from previous methodologies, 
enabling more precise and economically optimized designs, particularly 
for sloped and complex terrains.
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Velocity 0.2 0.3 0.4 0.5
Number of runs Cost function (IRR)
1 6.29E+09 5.90E+09 6.38E+09 6.38E+09
2 6.32E+09 7.41E+09 7.10E+09 8.09E+09
3 7.34E+09 6.58E+09 6.16E+09 7.29E+09
4 6.34E+09 6.21E+09 6.24E+09 6.66E+09
5 6.67E+09 6.08E+09 6.52E+09 7.39E+09
6 6.62E+09 7.03E+09 7.71E+09 7.25E+09
7 6.96E+09 6.54E+09 7.17E+09 6.60E+09
8 7.05E+09 5.96E+09 6.78E+09 7.24E+09
9 6.21E+09 6.03E+09 6.77E+09 6.72E+09
10 6.64E+09 6.67E+09 6.16E+09 6.87E+09
Average 6.59E+09 6.44E+09 6.48E+09 7.16E+09
Max 7.34E+09 7.41E+09 7.10E+09 8.09E+09
Min 6.21E+09 5.90E+09 6.16E+09 6.38E+09

Table 8
Variation of cost functions against velocities
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9. Conclusion
This research presents a novel 3D optimization model that 

integrates a PSO algorithm with a GIS to address the challenge of 
designing canal alignments on sloping terrains. The primary objective 
is to minimize associated costs while satisfying engineering and 
hydraulic design constraints. The model automatically generates 
multiple alignment alternatives and identifies the most economically 
viable canal route along with optimal flow section parameters. It also 
determines the best placement and height of RIDs, balancing both 
construction feasibility and hydraulic requirements.

The model’s performance was evaluated through two synthetic 
case studies using artificial terrain layers and one real-world application. 
Results confirmed the model’s ability to overcome terrain-related 
constraints, discard suboptimal configurations, and identify cost-
effective solutions. In the first example, reducing the number of drops 
led to a noticeable decrease in implementation costs. In contrast, the 
second example showed that a higher number of lower-height RIDs 
yielded the most efficient design. These outcomes underscore the 
model’s adaptability and intelligence in dynamically optimizing drop 
placement based on specific terrain conditions.

In the real-world scenario, despite limited input data, the 
model achieved a 9% reduction in implementation costs compared to 
conventional design approaches—purely through optimization of drop 
location and height. This highlights the model’s capability to meet both 
economic and technical objectives.

The continuous search space, coupled with GIS-based variant 
generation, enhances the model’s ability to automate early-stage design 
and deliver optimized canal alignments in complex terrains. Future 
research may further refine the model by incorporating additional real-
world datasets and broader design parameters.
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