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Abstract: Renewable and ecologically friendly energy sources have piqued the attention of researchers due to the increasing usage of fossil
fuels and the looming problem of global warming. One potential solution that might pave the way for sustainable growth is biohydrogen,
which could significantly reduce reliance on fossil fuels. The co-gasification process is garnering attention as a promising method for the
production of hydrogen from plastic waste and biomass. In this context, optimizing the process is crucial for improving and predicting
biohydrogen production. The recent advancements in deep learning models have opened up promising new possibilities. Training these
models with small in situ samples, however, results in poor accuracy. Hence, this research is the first of its kind to explore the possibility of
using a variational autoencoder (VAE) to provide high-quality synthetic data and aid the identification of process parameters that can improve
hydrogen generation in co-gasification. VAE-augmented training set is utilized to guide one-dimensional convolutional neural network
(1D-CNN) to accurately capture the relationship between hydrogen production and the process parameters. The efficiency of VAE and 1D-
CNN is verified by comprehensive comparison evaluations with different data augmentation (DA) schemes and regression models. The
experimental findings demonstrate that the proposed VAE network significantly improves prediction performance by generating data that
is more realistic in comparison to other DA schemes. With the synthetic data from VAE, 1D-CNN was able to optimize the co-gasification
process for increased hydrogen production, with a 32% improvement in maximum error and a 7% improvement in root mean squared error.
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1. Introduction

The accelerating growth of the global population and intensi-
fied industrialization have led to a dramatic rise in energy demand.
This demand has, for decades, beenmet primarily through fossil fuel
combustion, which emits large amounts of carbon dioxide (CO2)
into the atmosphere [1]. These CO2 emissions have contributed sig-
nificantly to global warming, leading to environmental issues such
as melting ice caps, rising sea levels, ocean acidification, and more
frequent extreme weather events. With CO2 concentrations reach-
ing alarming levels, there is an urgent need to adopt cleaner energy
sources to mitigate these environmental impacts.

Simultaneously, urbanization and improved living standards
have changed consumption patterns, increasing waste genera-
tion across residential and industrial sectors. This waste, often
non-biodegradable, poses severe environmental and health risks,
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impacting ecosystems and public health [2]. By 2030, global pro-
duction of electronic and electrical waste is expected to reach
millions of tons. This underscores the urgent need for sustainable
strategies that tackle both waste management and energy demands
[3]. In response to these challenges, this research proposes a tech-
nology paradigm that uses waste materials to generate clean, green
energy. This approach offers a sustainable alternative to fossil fuels
while addressing the global waste crisis.

Thermochemical conversion methods, particularly
co-gasification, are promising solutions to these issues [4].
Co-gasification converts waste materials into hydrogen-rich gas,
creating a valuable pathway for clean energy production. However,
maximizing hydrogen output from complex feedstocks requires
optimizing numerous operational parameters. Achieving this is
challenging due to the high dimensionality and variability of
co-gasification conditions. Traditional methods, such as thermo-
dynamic and kinetic modeling, attempt to capture these dynamics.
Yet, they often fall short because of the complexity of gasification
processes and their reliance on simplifying assumptions [4].
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Recent advancements in artificial intelligence (AI) offer new
possibilities for overcoming these challenges [5]. Machine learning
(ML) has shown great potential in bioenergy optimization, although
its effectiveness depends heavily on the availability of large, high-
quality datasets [6]. Experimental data collection for co-gasification
models is often costly and labor-intensive, limiting data availabil-
ity. This has motivated research into using synthetic data to expand
datasets without extensive physical trials. The deep learning (DL),
particularly with generative models like variational autoencoders
(VAEs) and Generative Adversarial Networks (GANs), can now
generate synthetic data closely resembling real datasets [7, 8]. This
study utilizes VAEs, which are particularly suitable for producing
continuous, structured data like hydrogen yield, maintaining feature
coherence necessary for effective co-gasification modeling. VAEs
are preferable to GANs due to their stable training process and abil-
ity to avoid issues such as mode collapse. This stability makes VAEs
a powerful tool for generating synthetic data that enhances pre-
dictive modeling, ultimately supporting optimized co-gasification
processes for sustainable energy solutions.

Our research pioneers the use of VAE to address this persistent
data limitation in co-gasification optimization. While the focus is
on enhancing the co-gasification process, the proposed model offers
adaptability and potential applicability across other domains. This
paper seeks to determine whether high-quality synthetic data can
be generated to improve co-gasification process optimization. The
primary contributions of this study include:

1) Developing a DL model utilizing VAE to generate syn-
thetic tabular data, enhancing prediction accuracy for hydrogen
production in biomass-plastic co-gasification.

2) Conducting an in-depth analysis evaluating the efficacy of
VAE-generated synthetic data compared to conventional data
augmentation (DA) methods.

3) Validating the effectiveness of augmented training sets on pre-
dictive accuracy, comparing a one-dimensional convolutional
neural network (1D-CNN) model with other ML models for
hydrogen yield prediction.

2. Literature Review

With a rising demand for sustainable energy, research into
advanced thermochemical processes like co-pyrolysis and co-
gasification has accelerated. Integrating AI into these processes
shows promise for optimizing chemical conversions and boosting
hydrogen yield, especially from waste. AI-driven models, partic-
ularly ML and DL, have been increasingly used to predict and
enhance yield outcomes. For instance, a study [9] using artificial
neural networks (ANN) demonstrated the potential of radial basis
functions and multilayer perceptrons (MLP) in modeling hydrogen
production from co-gasification of rubber and plastic waste.

Building on this, recent ML efforts emphasize ensemble meth-
ods to overcome individual algorithm limitations and improve
hydrogen production accuracy. For instance, Devasahayam and
Albijanic [10] explore tree-based ensembles effective in captur-
ing complex interactions in biomass-plastic co-gasification, while
Ajorloo et al. [11] use statistical modeling and response surface
methodology to analyze variable effects, optimizing co-gasification
parameters.

A comprehensive investigation into the use of ML for predict-
ing hydrogen yield from biomass and plastic co-gasification was
conducted by Khan et al. [12], whose findings demonstrate that
ANN outperform other models in predictive accuracy. Extending
this line of research, Devasahayam [8] examined the capabilities of

advanced DL architectures, testing various models to gain deeper
insights into hydrogen production processes. Additionally, Ramos
et al. [13] reviewed recent advancements in gasification and co-
gasification, focusing on waste-to-energy conversion technologies
and their potential applications.

Another body of research underscores the importance of ML
in optimizing pyrolysis processes for biomass and waste plastics,
which is essential for sustainable conversion technologies [14].
For example, Mishra et al. [15] studied hydrogen production from
biomass-plastic co-pyrolysis and co-gasification, while Block et al.
[16] reviewed literature on co-pyrogasification, analyzing product
distribution, conditions, feedstock, and synergistic effects.

Our review shows that most studies emphasize the role of
operating conditions in hydrogen production. Despite AI’s potential
to improve predictive accuracy, data scarcity remains a challenge
[17, 18]. This study proposes a VAE model to generate synthetic
data resembling real-world data, enhancing DL models for more
accurate, generalizable predictions in co-gasification. This approach
helps bridge data gaps, expanding AI’s applicability in bioenergy
research.

3. Research Methodology

This section outlines the proposed model, which combines a
VAE with a 1D-CNN regressor for synthetic data generation and
prediction, as shown in Figure 1. Observational data are initially pre-
processed and then input into the VAE to generate synthetic data,
which is evaluated for quality using statistical measures. The high-
quality synthetic data then used to train the 1D-CNN regression
model to predict hydrogen production. Detailed descriptions of each
component are provided in the following subsections.

3.1. Synthetic data generation using VAE

An autoencoder (AE) is an unsupervised neural network that
encodes the input x into a low-dimensional vector z and subse-
quently reconstructs the original data, ensuring that the output d(z)
closely approximates the input [19]. VAE is an advanced deep
generative architecture that expands the concept of AEs to pro-
duce novel synthetic data derived from in-situ observation [20],
as seen in Figure 2. The encoder part of the VAE compresses the
actual input to understand the latent probability distributions, while
the decoder creates or replicates the learnt probability distribution
to reconstruct the original input. Few recent studies [21, 22] uti-
lized VAE for the generation of synthetic 1D data. Driven by the
results of their investigation, this study incorporates the VAE to
produce synthetic data for predicting hydrogen production in co-
gasification process. The equation below outlines the process from
computational perspective,

G (x) = V(Decode (Encode (x)) (1)

In Equation (1), G(x) denotes the generated synthetic data, x sig-
nifies the in situ observations, and V is the VAE function that
processes x to produce (x). Furthermore, the Encode() function
serves as the encoder of the VAE model by learning the latent dis-
tribution from the available in situ observations, while the Decode()
function acts as the decoder of VAE by analyzing the latent dis-
tributions to produce the synthetic data for co-gasification process.
To generate new high-quality data points, a constraint is applied to
the learning of the latent space, ensuring that it represents the latent
characteristic as a probability distribution. The encoding concept is
delineated as follows [23],
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Figure 1
Experimental framework designed for assessing the proposed model VAE-CNN for hydrogen yield prediction

Figure 2
The proposed VAE-CNN model schematic design with its control flow

z = 𝜎 (x) ∗ N (0, 1) + 𝜇 (x) (2)

Here 𝜎(x) and 𝜇(x) represent the standard deviation and mean of the
in situ observations, respectively. The VAE normalizes the encod-
ing distribution during training to make the latent space suitable for
synthetic data production. The input data may be used to produce
a large number of new data points with comparable properties by
sampling points from latent space and decoding them. To generate
data closer to the in situ observations, in this study, the loss function
is structured with two components: the reconstruction term, which
enhances the efficiency of the encoding–decoding process, and the
regularization term, which ensures the regularity of the latent space.
The initial term is defined as the MSE, while the subsequent term
represents the Kullback–Leibler divergence (KL) [22], which quan-
tifies the disparity between the two distributions. The loss function
structured in this study is mathematically represented as follows:

R loss = ||x − decode (z) ||2 (3)

KL loss = KL [N (𝜇x, 𝜎x) ,N (0, 1)] (4)

VAE loss = R Loss + KL Loss (5)

In this context, N (0,1) denotes the standard normal distribution
across the in situ observations, whileN (𝜇x, 𝜎x) represents the learn-
ing latent distribution adopted by the encoder network. The VAE
simultaneously learns the mean and covariance of the latent distri-
bution, with the key aim to reconstruct the output while minimizing
reconstruction errors. Doing so, the loss function guides the VAE
designed in this study to generate synthetic samples closer to the
actual data used for training.

Table 1 outlines the structure of the VAE designed for gener-
ating synthetic data in the proposed system. The VAE architecture
begins with an input layer of shape (n, 4), which is processed
through two encoder layers, each increasing dimensionality from
(n, 4) to (n, 16) using ReLU activation functions. The encoder then
outputs mean and variance layers, both with shape (n, 2), which
define the latent space by learning the distribution from the in situ
observations. This latent representation is then decoded through two
layers, reducing dimensionality back to the original shape (n, 4). The
decoder layers also use ReLU activation, ensuring nonlinearity and
effective feature extraction.

This structured network allows the VAE to produce high-
quality synthetic data that closely resembles real data, enhancing

Pdf_Fol io:3 03



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

Table 1
VAE network structure design in the proposed model

Layer Input shape Output shape Activation
Input (n, 4) (n, 4) -
Encoder-1 (n, 4) (n, 8) ReLU
Encoder-1 (n, 8) (n, 16) ReLU
Mean (n, 16) (n, 2) -
Variance (n, 16) (n, 2) -
Latent code (n, 16) (n, 2) -
Decoder-1 (n, 16) (n, 8) ReLU
Decoder-2 (n, 8) (n, 4) ReLU
Output (n, 4) (n, 4)

predictive accuracy for the co-gasification process. Upon comple-
tion of training, the encoder generatesmeans and covariances, which
are used to sample new latent vectors. These vectors are subse-
quently processed through the decoder to generate new synthetic
samples.

3.2. Hydrogen yield prediction using 1D-CNN

A CNN is a specialized form of feed-forward neural network
within DL [24]. It autonomously learns features through the opti-
mization of filters, also known as kernels. The CNN processes input
data by applying a sequence of convolution and pooling layers. The
convolution operation is an essential step in the process of extracting
useful characteristics from input data, usually images. Convolution
scans the input data using trainable filters, called kernels. These ker-
nels systematically traverse the input, calculating a weighted sum of
pixel values within their designated receptive fields. The core idea
is that these learned kernel functions act as feature detectors to iden-
tify underlying patterns. In the convolution procedure, the kernel’s
weights are uniformly distributed over the whole input, consider-
ably decreasing the number of parameters in comparison to dense
or fully connected layers. This characteristic of parameter sharing
enables CNN to learn hierarchical representations of features and
makes them computationally proficient. The convolution procedure,
in essence, progressively converts the input image into a collection
of feature maps. Each feature map indicates the response gener-
ated by a specific kernel to a particular feature present in the input
data. Multiple convolutional layers are stacked to allow the network
learn progressively more complicated and abstract features, which
facilitates the recognition of intricate patterns within the data. The
convolution process can be described mathematically as [24],

C [i] = ∑k−1

n=0
x [i + n] · K [n] (6)

In this context, x refers to the input feature map, K and k repre-
sent the filter and dimension of the filter, respectively. While C[i]
indicates the value of the feature map output at position [i]. This
study employs a 1D-CNN, designed for processing one-dimensional
sequences of data. The 1D CNN first learns and captures the sig-
nificant features from the sequences of input data. Subsequently, it
delineates the intrinsic features of the input sequence data. A CNN
model typically has the following layers: input, convolutional, pool-
ing, dense, and output as shown in Figure 2. Hence, it is imperative
tometiculously arrange convolutional layers in a logical manner and
fine-tune the width and depth of the deep neural network (DNN)

when working with intricate co-gasification process data to achieve
highest possible outcome.

Table 2
1D-CNN structure design in the proposed model

Layer Input shape Output shape Activation
Input (n, 4,1) (n, 4,1)
Conv-1D (n, 4,1) (n, 4,8) ReLU
Up-sampling (n, 4,8) (n, 8,8)
Conv-1D (n, 8,8) (n, 8,16) ReLU
Up-sampling (n, 8,16) (n, 16,16)
Dropout (n, 16,16) (n, 16,16)
Flatten (n, 16,16) (n, 256)
Dense (n, 256) (n, 1) ReLU

The 1D-CNN designed for the proposed system, as detailed in
Table 2, begins with an input layer of shape (n, 4,1), followed by two
Conv-1D layers with output shapes (n, 4,8) and (n, 8,16), respec-
tively, each using ReLU activation for capturing nonlinear features.
These convolutional layers are interspersed with upsampling layers,
expanding the dimensionality to (n, 8,8) and (n, 16,16), preserving
spatial relationships in the data. To prevent overfitting, a dropout
layer with the same shape (n, 16,16) is included. The network then
utilizes a flatten layer to reshape the data to (n, 256), followed by a
dense layer with output shape (n, 1) using ReLU activation to com-
plete the model. This structured architecture, with ReLU activations
throughout, enables the 1D-CNN to effectively process and extract
complex features, optimizing predictive accuracy by minimizing
MSE loss through gradient descent during training [25].

4. Experimental Design and Setup

4.1. Data description

A previous study on co-gasification of waste plastic and rubber
has compiled and published the data used in this work, as men-
tioned in Devasahayam [8], Ayodele et al. [9], and Chin et al. [26].
The dataset is comprised of thirty separate experiments that were
conducted using a central composite design. The independent vari-
ables included parameters such as gasification temperature, amount
of plastic in the mixture, size of the rubber seed shell (RSS) biomass
particles, and HDPE particles. Whereas, one of the dependent vari-
ables that has been measured is the amount of hydrogen produced
during the co-gasification process of waste plastic and rubber.
A thermogravimetric analyzer coupledwith amass spectrometer has
been used to carry out the investigations.

Figure 3 [26] illustrates correlation among the variables in
the dataset used for the co-gasification study. Most correlations
are close to zero, indicating weak or negligible linear relationships
between variables such as temperature, RSS size, HDPE particle
size, plastic content, and hydrogen (H2) yield. Notably, RSS size
and HDPE show a slightly negative correlation with H2, while
plastic content has a minor positive correlation (0.13) with H2 .
These results suggest that, individually, these variables have min-
imal direct linear impact on hydrogen yield within the observed
range.

Table 3 provides a statistical summary, highlighting key
details: the particle sizes for both HDPE and biomass RSS vary from
0.13 to 0.63 mm, and the plastic content in the mixture ranges from
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Figure 3
Correlation between independent and dependent variables in

the study dataset

Table 3
Descriptive statistics of the study dataset

Temp RSSSize HDPE plastics H2

Count 30.00 30.00 30.00 30.00 30.00
Mean 700.00 0.38 0.38 20.00 44.71
std 90.97 0.11 0.11 9.10 3.65
min 500.00 0.12 0.12 0.00 38.57
25% 600.00 0.25 0.25 10.00 42.21
50% 700.00 0.38 0.38 20.00 45.64
75% 800.00 0.50 0.50 30.00 47.33
max 900.00 0.62 0.62 40.00 50.12

0% to 40%. The gasification temperature spans 500 °C to 900 °C,
with a mean of 700 °C. For hydrogen (H2) yield, the mean value
is 44.71, with values ranging from 38.57 to 50.12. The descriptive
statistics, including standard deviation, minimum, and maximum
values for each variable, offer insights into the variability and dis-
tribution within the dataset, which is critical for understanding
parameter influences on hydrogen production outcomes.

4.2. Traditional DA schemes for comparison

This subsection presents traditional DA methods [19]—
SMOTE, SMOTEBL, and ADASYN—selected for comparison in
this study as shown in Figure 1, along with rationale for their
inclusion:

SMOTE (Synthetic Minority Over-sampling Technique):
Although primarily used for classification, it can be adapted for
regression tasks by generating synthetic samples along the line
between neighboring data points in the feature space. This method
serves as a foundational comparison for improving predictive
accuracy in regression.

SMOTEBL (SMOTE Borderline): a variant of SMOTE,
focuses on generating synthetic samples near regions of high vari-
ability or challenging data boundaries. For regression, this approach
aims to enhance data diversity in critical regions, allowing for
more accurate modeling of complex relationships in co-gasification
parameters.

ADASYN (Adaptive Synthetic Sampling): adapts the gen-
eration of synthetic samples based on data density, adding more
samples where data is sparse. In regression, this approach helps

to reinforce underrepresented areas in the feature space, improv-
ing model robustness and predictive accuracy in hydrogen yield
estimation.

These methods provide benchmark DA techniques, facilitat-
ing a comprehensive comparison with the proposed VAE-based data
generation to identify the most effective approach for enhancing
predictive accuracy in the co-gasification dataset.

4.3. ML regression models for comparison

This subsection discusses theML regressionmodels chosen for
comparison in this study as shown in Figure 1. These models offer
varied and effective approaches to predictive modeling in complex
datasets, making them highly suitable for hydrogen yield prediction
in co-gasification processes. Brief notes on these models [12, 27]
are as follows:

Support Vector Regression (SVR): is adept at managing non-
linear relationships through the use of kernel functions, making it
ideal for capturing intricate interactions among variables. It controls
error margins around a decision boundary, which enhances accuracy
in hydrogen yield predictions, particularly in datasets with limited
samples or outliers.

Random Forest Regression (RFR): As an ensemble method,
RFR builds and combines multiple decision trees for a more robust
prediction. This approach captures interactions among multiple
variables effectively andminimizes the risk of overfitting, especially
useful in datasets with high variance and nonlinear relationships, as
seen in co-gasification data.

Gradient Boosting Regression (GBR): is another ensemble
technique, iteratively refines model accuracy by addressing errors
from previous iterations. Its adaptive learning approach optimizes
predictive performance, making it well-suited for datasets with com-
plex dependencies and enabling refined predictions for hydrogen
yield.

Multilayer Perceptron (MLP): is a neural network-based
model that processes data throughmultiple layers of neurons, allow-
ing it to learn complex patterns. Its ability to model intricate data
distributions makes MLP valuable for uncovering hidden patterns
in the data, essential for generating nuanced predictions.

These models were selected to provide a comprehensive anal-
ysis of different regression models, covering a spectrum of linear,
ensemble, boosting, and neural network approaches. This variety
supports a balanced comparison of each model’s strengths and lim-
itations, tailored to address the complexities of predicting hydrogen
production in co-gasification processes.

4.4. Evaluation metrics

This subsection outlines the metrics employed to evaluate
the proposed model for hydrogen yield prediction, along with
the rationale for their selection. Root mean squared error (MSE)
quantifies the average squared differences between predicted and
actual values, placing greater emphasis on larger errors, which
supports the identification of models capable of delivering stable,
accurate predictions. Maximum error (ME) measures the largest
deviation observed, providing insight into the model’s worst-case
performance—a critical factor for assessing reliability in sensitive
applications. Additionally, R-squared (R²) is utilized to gauge the
model’s explanatory power by showing how well it captures vari-
ance within the data, thus indicating its effectiveness in reflecting
underlying data patterns. To further assess robustness, standard
deviations across various datasets are considered, offering ameasure
of the model’s consistency and generalizability. Collectively, these
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metrics provide a well-rounded evaluation of the model’s accuracy,
reliability, and applicability in hydrogen yield prediction.

4.5. Experimental framework

This study makes a two-pronged contribution. First, it com-
pares the effectiveness of four DA methods—SMOTE, SMOTE
Border Line (SMOTEBL), ADASYN, and VAE—for generat-
ing synthetic data from limited in-situ observations of the co-
gasification process. Second, it evaluates the predictive accuracy of
the proposed 1D-CNN model for hydrogen yield prediction against
four other regression models (RFR, GBR, SVR, and MLP) using
the augmented training dataset. The experimental framework is
structured into two parts:

4.5.1. Data augmentation process
1) Four DA methods are applied to the training dataset to increase

sample size.
2) The effectiveness of each DA scheme is assessed using scatter-

plot analysis and performance across different expansion ratios
to identify the most suitable augmentation method.

3) A quality filtering step is then performed on the selected DA
method’s synthetic samples. Samples with high reconstruction
errors or flagged as outliers are excluded, ensuring that only
high-quality data are included in the augmented training set. This
step reduces noise and enhances the reliability of the synthetic
data.

4.5.2. Model training and evaluation
1) The augmented dataset is used to train five regression

models—1D-CNN, RFR, GBR, SVR, and MLP—with fivefold
cross-validation to optimize hyperparameters.

2) The effectiveness of each model is assessed on both the original
and augmented datasets to evaluate the impact of DA on predic-
tive accuracy. Key performance metrics such as MSE, ME, and
R² are used to compare model performance.

3) Finally, the best regression model is selected based on these
performance criteria for hydrogen yield prediction.

This experimental process facilitates a comprehensive eval-
uation of the impact of DA, particularly VAE, on enhancing the
training set and improving model accuracy. It demonstrates the
advantages of quality-filtered synthetic data in robust hydrogen
yield prediction, contributing to the reliability and effectiveness of
the proposed approach for practical applications.

4.6. Implementation details

The proposed model and the ML models examined in this
study were implemented using the sklearn package in Python [28].
Additionally, Python libraries such as matplotlib, seaborn, and
statsmodels were employed for exploratory data analysis to examine
relationships between the target variable and predictors. The study
was conducted within the Jupyter notebook interface on the Google
Colaboratory platform [29], offering an interactive environment that
eliminates the need for local system setup. All experiments in this
study were performed using this platform.

4.7. Hyperparameter tuning

This study employs two distinct DNNs: a VAE for syn-
thetic data generation and a 1D-CNN for regression. Given the
limited data samples, specific strategies were implemented to

enable the VAE to produce high-quality synthetic data despite
constraints typically requiring larger datasets. To address this,
the VAE’s hyperparameters—learning rate, batch size, and latent
space dimensions—were carefully tuned to maximize the model’s
capacity to capture essential patterns with fewer samples. Regular-
ization techniques and early stopping were also applied to prevent
overfitting, supporting stable and robust training.

While VAEs are generally optimized with extensive data,
research suggests that, with targeted hyperparameter tuning and
model configuration aligned to the dataset structure, VAEs can still
perform effectively on smaller datasets [30]. Thus, a grid search
method, using original in-situ observations, guided the selection of
hyperparameters to ensure optimal performance. For the 1D-CNN,
additional parameters such as dropout rates and weight decay were
also tuned, and both networks employed the Adam optimizer to
enhance the optimization process. Table 4 provides a summary of
the final hyperparameter values determined for each model.

Table 4
Tuned hyperparameters for the proposed VAE-CNN

Parameters VAE 1D-CNN
Batch size 32 32
Learning rate 0.001 0.001
Optimizer Adam Adam
Epochs 15 15
Activation function ReLU ReLU
Loss function MSE+KLD MSE
Dropout - 0.01

5. Results and Discussion

This section presents the experimental results that support the
study objectives and demonstrate the advantages of the proposed
model at each stage of the research process. The interpretation
of these results provides a foundation for the research findings.
Initially, we evaluate the effectiveness of the VAE by compar-
ing the quality of its synthetic data with that generated by three
other DA methods. Subsequently, we assess the 1D-CNN’s predic-
tion accuracy against four selected ML regression models using the
VAE-augmented training dataset. To ensure reliable model perfor-
mance evaluations, diverse training, and testing datasets are used to
reduce biases related to overfitting or underfitting. The augmented
dataset is divided using stratified sampling, following the standard
80:20 split ratio, with 80% allocated for training and 20% for testing.

5.1. Performance comparison of VAE

This section aims to evaluate the effectiveness of using a VAE
for DA. To achieve this, we consider three alternative DA strate-
gies: ADASYN, SMOTEBL, and SMOTE. To assess and compare
performance, two sets of experiments are conducted, as detailed
below.

5.1.1. Scatterplot analysis
In this experiment, we design a VAE network with the specified

hyperparameter values and use in situ observations from the “Data
Description” section to evaluate the quality of the synthetic tabular
data generated by the network. Figure 4 provides a visualization of
the loss values for both the training and validation sets, highlighting
the model’s performance and stability during the training process.
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Figure 4
Learning curve of VAE in DA process

The training loss and validation loss are indicated by blue
and green curves, respectively. Details of the specific loss func-
tions used are provided in the “Research Methodology” section. In
Figure 4, as the number of iterations increases, a significant reduc-
tion in both training and validation loss values is observed. This
decline indicates that the model is progressively learning and adjust-
ing its parameters to fit the data more accurately. Over time, the
losses stabilize, suggesting that the model has reached convergence
and is no longer significantly improving with additional training
cycles. To improve the clarity and interpretability of these train-
ing results, the x-axis in Figure 4 has been set to represent epochs
rather than iterations, as this provides a more comprehensive view
of model progress across full passes through the dataset.

Upon completing the training phase, the quality of the synthetic
data samples was assessed against the original data using a scat-
ter plot with a regression line. This approach is a well-established
technique for visually and statistically evaluating the correlation
between generated and original data samples, making it a fundamen-
tal strategy in assessing generative model efficacy in data-driven
studies [23]. The degree of correlation, measured by the correlation
coefficient, provides insight into the similarity between synthetic
data (G) and original data (O), with stronger correlations indicating
greater similarity as follows.

∅G,O = ∑F

i=1
1 − |Gi − Oi|

2 (7)

A successful DAmodel produces synthetic data that clusters closely
around the regression line with minimal error. In an ideal scenario,
synthetic data points align perfectly with in situ observations along
the diagonal [1:1] regression line.

Figure 5 uses a scatter plot and regression line to compare the
quality of synthetic data generated by the VAE with that of the orig-
inal data and other DA methods. Here, the red line represents the
ideal [1:1] regression line, where data points from synthetic sam-
ples would align with original samples if identical. The blue points
denote the distribution of in-situ samples, while the orange points
represent synthetic data generated by the VAE and alternative DA
methods.

Upon examining Figure 5, it becomes evident that the VAE
model-generated samples cluster more closely around the [1:1]
regression line than those from the other DA methods. This close
clustering indicates a high degree of correlation between the VAE-
generated samples and the original data, suggesting that the VAE has
effectively learned the underlying patterns in the data. The improved

alignment with the regression line highlights theVAE’s superior per-
formance in capturing essential features andmaintaining the original
dataset’s distribution, outperforming the alternative DA methods in
generating high-quality, representative synthetic data. This finding
underscores the VAE’s efficacy in DA for this study.

5.1.2. Performance against expansion ratio
In this experiment, DA was applied iteratively, with augmenta-

tion factors ranging from 1 to 20. Each increment factor represents
the volume of additional data integrated into the training dataset.
Starting with an initial augmentation doubling the training set size,
subsequent iterations expanded the dataset to three times its origi-
nal size, continuing up to a total of 20 iterations. Each iteration thus
contributes an expanded training set aimed at improving the model’s
predictive performance.

Figure 6 presents the performance comparison across different
DA strategies as the augmentation ratio increases. Here, the 1D-
CNN regressor trained on the original dataset without DA serves
as a baseline for performance comparison. As illustrated, all four
DA strategies lead to substantial improvements over the baseline
model, with the regressor performance consistently enhanced byDA
as the augmentation ratio rises. Notably, the model’s performance
improves markedly with each increase in the augmentation factor,
particularly up to an expansion ratio of eight.

Beyond an expansion ratio of eight, however, performance
begins to decline, likely due to model overfitting as the regressor
becomes excessively tuned to the augmented training data. This
pattern suggests an optimal augmentation ratio range that maxi-
mizes performance without inducing overfitting. Among the DA
techniques, ADASYN and VAE exhibit greater stability and con-
sistently superior results compared to SMOTE, particularly as the
augmentation ratio increases.

The results indicate that VAE is particularly effective in opti-
mizing regressor performance. This advantage may stem from the
unique structure of the VAE, where the generator and latent-space
components enable the model to learn intricate features from the
original dataset and produce synthetic samples closely aligned
with the original data distribution. This feature allows the VAE-
augmented dataset to enhance model generalizability, supporting
robust performance across varied expansion ratios.

5.2. Performance comparison of 1D-CNN

The purpose of this experiment is to validate the research find-
ings through a comparative analysis of the effectiveness of the
1D-CNNmodel versus four selected ML models: SVR, RFR, GBR,
and MLP. As outlined in the “Hyperparameter Tuning” section,
cross-validation and grid search were performed on each algorithm
to identify optimal hyperparameters, enhancing model generaliza-
tion and ensuring a fair performance comparison. The prediction
performance metrics for all five regression models, both without
DA and with VAE-based DA, are summarized in Table 5, with
results visually represented as bar charts in Figure 7 for clearer
interpretation.

The application of VAE DA leads to marked improvements
in prediction accuracy across all models. Without DA, the models
show varying R² values, from 0.41 for MLP to 0.76 for SVR, indi-
cating a moderate fit between predictions and actual values. With
VAE DA, R² scores increase significantly for each model, reflect-
ing stronger alignment with actual outcomes. The 1D-CNN model
achieves the highest R² score of 0.97, followed by GBR at 0.88
and RFR at 0.87, demonstrating the effectiveness of VAE DA in
boosting predictive accuracy.
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Figure 5
Performance comparison of VAE against other DA schemes using scatterplot

Figure 6
Performance comparison of different DA schemes against

expansion ratio

0

0.05

0.1

0.15

0.2

0.25

0 2 3 4 6 8 10 12 14 16 18 20

M
S

E

Augmented Dataset Expansion ra�o

SMOTE SMOTEBL ADASYN VAE

Similarly, MSE and ME values, representing prediction error
rates, decrease substantially with VAE DA. For example, SVR’s
MSE decreases from 0.18 to 0.09, andME from 0.27 to 0.15, indicat-
ing that VAEDAeffectively reduces prediction errors. The 1D-CNN
model shows the lowest MSE (0.06) and ME (0.11), highlight-
ing its superior accuracy and reduced error rate for hydrogen yield
prediction.

Figure 7 illustrates that VAE DA has the most pronounced
impact on MLP and 1D-CNN. These DL models benefit more
from synthetic samples than traditional ML models (SVR, RFR,
and GBR) because they can capture complex, nonlinear relation-
ships in larger, more diverse datasets. While traditional models
generally perform well with smaller datasets, MLP and 1D-CNN
leverage VAE-augmented data to achieve improved accuracy and
adaptability.

Table 5
Comparison of prediction performance for hydrogen yield without DA and with VAE DA

Hydrogen yield prediction without DA Hydrogen yield prediction using VAE DA

Regression models R2 MSE ME R2 MSE ME
SVR 0.76 0.18 0.27 0.84 0.09 0.15
RFR 0.66 0.22 0.35 0.87 0.12 0.20
GBR 0.56 0.24 0.33 0.88 0.10 0.18
MLP 0.41 0.27 0.43 0.91 0.11 0.18
Proposed 0.58 0.13 0.67 0.97 0.06 0.11
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Figure 7
Visual comparison of prediction performance for hydrogen

yield without DA (top) and with VAE DA (bottom)
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Additionally, MLP and 1D-CNN can handle high-dimensional
data and intricate feature representations, allowing them to make
the most of the diverse synthetic data generated by VAE. This
enhances their generalization capability, leading to greater accuracy
gains than simpler models. By filling feature space gaps, VAE DA
provides MLP and 1D-CNN with the necessary data diversity to
generalize effectively, resulting in substantial improvements in R²,
MSE, and ME.

Overall, while VAE DA enhances performance across all mod-
els, its impact is most notable for 1D-CNN and MLP, underscoring
its value for DL models that benefit from rich, varied datasets to
model complex patterns accurately.

5.3. Interpretation ability analysis

In practice, when a researcher identifies an ML model that
demonstrates an acceptable level of accuracy, the next step is
to delve into the prediction process and derive insights to make
informed decisions based on expert domain knowledge. The opaque
nature of ML models poses difficulties in comprehending how
input parameters affect the target during the modeling process.
This experimental analysis goes beyond a step in solving the issue
by investigating the interpretability of the developed ML models
and providing rationale for their predictions, regardless of how
complicated they may be [31].

In this direction, the global explanation of the Shapley method
for the proposed model is illustrated in Figure 8, which effec-
tively showcases the importance of features. It also emphasizes the
positive and negative associations with the target, which are repre-
sented by red and blue colors, respectively. The examination of the
summary plot in Figure 8 shows that, on average, all process param-
eters have the greatest influence on hydrogen generation during

Figure 8
Summary plot depicting the feature importance for the

proposed VAE-CNN model

biomass-plastics co-gasification. It is worth noting that the pro-
posed model identifies HDPE, RSSize, and temp as the primary
process factors when compared to plastics. This explanation about
the effects of process parameters aligns with the prevailing liter-
ature on co-gasification and existing knowledge in the discipline.
The detailed examination of data distribution along the X axis
reveals that the proposed model successfully captured the combined
influence of HDPE and RSSize on hydrogen generation.

5.4. Computational complexity and feasibility

The VAE and 1D-CNN models in this study are computation-
ally intensive due to their structural design and data processing
requirements. The computational complexity of the VAE primar-
ily arises from the encoder and decoder architectures, where each
layer’s operations scale with the input dimensionality. Specifically,
the VAE has a complexity of O(N × d × h), where N is the num-
ber of samples in training dataset, d is the input dimensionality,
and h is the number of hidden units per layer. As the dataset size
or input dimensionality increases, the memory and processing time
required for encoding and decoding grow proportionally, which can
be challenging for very large datasets.

Similarly, the 1D-CNN model’s complexity depends on the
number of layers, with each convolutional layer having a time com-
plexity of O(N × d × f × k), where f is the filter size, and k is the
number of filters. As more layers and filters are added, the computa-
tional cost increases, which can lead to significant training time and
memory requirements, especially as dataset size grows. Although
this complexity is manageable for smaller datasets, it may pose
challenges for larger ones.

For production environments, these models may be optimized
to ensure feasible implementation. Once training is complete, infer-
ence complexity is relatively low, making the VAE-CNN models
practical for real-time or on-demand predictions in production set-
tings. To reduce training time and memory requirements for larger
datasets, several optimization strategies are recommended. For
example, dimensionality reduction on VAE inputs can help control
feature size, and simplifying the 1D-CNN architecture by reducing
layers or filters can retain accuracy while decreasing computational
load. Furthermore, deploying the models on distributed or parallel
processing systems, such as multiple GPUs or TPUs, can improve
scalability and efficiency, enabling faster processing and handling
of larger datasets.

These strategies indicate that, while computationally intensive
during training, the VAE-CNN framework can be adapted for pro-
ductionwith proper resourcemanagement and optimization, making
it feasible for deployment in production environments.
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6. Conclusion

This study emphasizes the potential for synthesizing biomass-
plastic samples to overcome the challenges posed by rigorous
experimentation and limited availability of data in analyzing the co-
gasification process. Following a thorough performance comparison
with VAE-generated data, this study proposed to incorporate VAE
for the development of synthetic tabular data to achieve improved
the prediction accuracy for hydrogen production. Furthermore, we
established a novel reconstruction loss for the VAE network within
the proposed model by integrating the latent loss and divergence
loss. Incorporating this loss allowed the VAE to enhance its abil-
ity to understand the relationship between process parameters and
produce samples that more closely align with in-situ observations.

After augmenting the modest in situ observations using the
VAE network, the experiments included training a 1D-CNN regres-
sion model and the chosen four ML models on augmented dataset.
The findings confirmed the efficacy of 1D-CNN, demonstrating
enhanced predictive performance relative to its equivalents in terms
of R2, MSE, and ME. Lastly, the SHAP framework was used to
perform an interpretation ability study of the proposed VAE-CNN
model. This analysis aimed to shed light on the biomass-plastics co-
gasification process and pinpoint the critical components that affect
hydrogen production. The findings aligned with the prevailing liter-
ature on the co-gasification process and existing knowledge in the
discipline.

To the best of our knowledge, this work is the first to use VAE
and 1D-CNN in the context of hydrogen production research, with
the goal of reducing the required sample size. While our methodol-
ogy is presented within the framework of hydrogen generation, it is
readily adaptable to other application areas where data collection is
challenging, or data sensitivity is high.
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