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Abstract: Identifying the different stages of Multiple Sclerosis (MS) is essential for accurately predicting disease progression, often requir-
ing the capabilities of deep learning networks. The spatial and temporal dependencies within image-based biomarkers frequently present
irregular capture challenges across MRI scans taken at different time points, primarily due to unsynchronized multi-scale features and
their corresponding network channels. Consequently, this may lead to false predictions of disease progression and inaccurate MS lesion
segmentation. In this paper, we propose a novel deep learning pipeline that integrates advanced modules, namely Gated Recurrent Unit
(GRU), Atrous Spatial Pyramid Pooling (ASPP), and Squeeze and Excitation (SE) blocks, within a U-Net architecture to effectively man-
age multi-scale features and channel relationships. It is simply abbreviated as GRU-ASPP U-Net. The GRU modules at skip connections
enable temporal feature capture, the ASPP module in the bottleneck layer facilitates multi-scale feature extraction, and SE blocks per-
form channel-wise feature recalibration. Evaluation metrics, including the Jaccard Coefficient (IoU) and Dice Coefficient, indicate that the
proposed pipeline achieves promising prediction outcomes, with a Dice score of 0.87 and IoU of 0.79 (Fold 3). Moreover, this approach
combines spatial and temporal analysis, providing a more stringent measure of segmentation accuracy and enhanced sensitivity to subtle
overlaps in MS lesion segmentation.

Keywords: multiple sclerosis lesion segmentation, deep learning, Gated Recurrent Unit (GRU), Atrous Spatial Pyramid Pooling (ASPP),
longitudinal MRI analysis

1. Introduction

Multiple Sclerosis (MS) is an autoimmune disease that affects
the central part of the nervous system and worsens through time
mainly due to the damage of the brain and spinal cord [1]. The dis-
ease results from lesion formation in specific areas of the brainstem
and spinal cord that can be demonstrated by Magnetic Resonance
Imaging (MRI). Accumulation of these lesions over time is termed
multiple sclerosis; therefore, accurate identification and segmenta-
tion of lesions are important for disease monitoring and therapeutic
planning [2, 3].

Clinical assessment of MS progression heavily relies on
the analysis of longitudinal MRI scans, where the identification
and quantification of new or enlarging lesions serve as critical
biomarkers [4]. Traditional manual segmentation of these lesions
by expert radiologists is not only time-consuming but also sub-
ject to inter-rater variability, creating a pressing need for automated
segmentation approaches [5]. Multiple MRI sequences, including
T1-weighted, T2-weighted, Fluid Attenuated Inversion Recovery
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(FLAIR), and Proton Density (PD) images, are typically employed
for comprehensive lesion analysis, with each modality providing
unique insights into lesion characteristics [6].

Recent advances in deep learning, particularly in medical
image analysis, have shown promising results in automated lesion
segmentation. The U-Net architecture and its variants have emerged
as powerful tools for biomedical image segmentation [7]. How-
ever, existing approaches face several challenges, including the
effective capture of temporal dependencies between sequential MRI
scans, the integration of multi-scale features, and the management
of channel-wise information [8].

Several studies have attempted to address these challenges
through various architectural modifications. For instance, squeeze
and excitation blocks have been employed to enhance channel-wise
feature recalibration [9], while attention mechanisms have been
integrated to focus on relevant spatial features [10]. Additionally,
approaches incorporating temporal information through recurrent
neural networks have shown improved performance in longitudinal
analysis [11].

To address the limitations of existing methods, we propose
a novel GRU-ASPP U-Net architecture that combines three key
innovations: (i) Gated Recurrent Unit (GRU) blocks at skip con-
nections to capture temporal dependencies between consecutive
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Figure 1
Pipeline for MS lesion segmentation using the proposed GRU-ASPP U-Net architecture

MRI scans, (ii) Atrous Spatial Pyramid Pooling (ASPP) module
for multi-scale feature extraction, and (iii) Squeeze and Excitation
(SE) blocks for dynamic channel recalibration. Furthermore, we
introduce CarveMix, a lesion-aware data augmentation technique
that enhances themodel’s generalization capabilities by intelligently
combining features from different images based on lesion character-
istics. Figure 1 illustrates the pipeline for MS lesion segmentation
using proposed GRU-ASPP U-Net architecture.

The main contributions of this work can be summarized as
follows:

1) Development of a novel U-Net variant that effectively integrates
temporal and spatial information for MS lesion segmentation

2) Implementation of GRU blocks at skip connections to capture
sequential dependencies in longitudinal MRI data

3) Integration of ASPP and SE modules to enhance multi-scale
feature extraction and channel-wise feature recalibration

The rest of the paper is organized as follows: Section 2 pro-
vides a review of existing U-Net variant models, including hybrid
U-Net models and structurally modified U-Net architectures, in
detail. Section 3 describes the proposed GRU-ASPP U-Net model,
with a detailed explanation of its mathematical representation and
the key inclusion blocks. Section 4 presents the results and discus-
sion, comparing the outcomes of the proposed model with existing
state-of-the-art models. Finally, the conclusion and future scope of
the research study are outlined.

2. Related Works

Accurately detecting and segmenting MS lesions in MRI
images using deep learning networks is challenging due to the need
to train on features with rapidly varying spatial and temporal depen-
dencies. These elements are crucial for medical imaging, aiding in
diagnosis and treatment planning. The U-Net architecture and its
variants have been extensively used in this field due to their flex-
ible structure, which can be adjusted to enhance the effectiveness
of biomedical image segmentation. This section reviews several
existing models that enhance segmentation accuracy through hybrid
U-Net models and structurally modified U-Net architectures, as
discussed below:

2.1. Hybrid U-Net models

Previous works have suggested various modifications to the
U-Net architecture to enhance segmentation performance. These
include deeper networks, residual units, and attention mechanisms
to improve feature learning and ensure stable training [4, 7].
Integrating backbone networks like VGG-16 and ResNet50 with
U-Net has shown improved segmentation results by optimizing fea-
ture extraction effectiveness and minimizing feature information

loss [5, 6]. The novel Path Aggregation U-Net (PAU-Net) architec-
ture introduces bottom-up path aggregation encoders and efficient
feature pyramids, reducing noise and refining mask predictions,
thereby achieving better results on the BraTS dataset [1]. U-Net++,
which incorporates a Deep Supervision Mechanism (DSM),
improves segmentation accuracy by 2.8% compared to the basic
U-Net. It also utilizes a dilation operator to enhance feature extrac-
tion even with limited labeled data [3, 10]. Similarly, models like
Attention U-Net and R2 Attention U-Net have been introduced to
focus on the most relevant features, making segmentation more
accurate and efficient [2]. Depthwise-separable convolutions com-
bined with shuffle attention further enhance the nnU-Net model’s
performance without adding significant computational overhead,
making it suitable for practical applications with lower comput-
ing resources [8]. Lastly, hybrid segmentation networks, such as
those combining 3D CNN with U-Net, can yield more accu-
rate predictions due to the fine-tuned strengths of each model
[9]. Likewise, Transformer UNet++ with the MobileNetv3 module
[12], and Hybrid Dilated Convolution based Adaptive MobileNet
(HDC-AMNet) module [13, 14–16] are introduced to achieve
higher performance when compared to the baseline U-Net model,
respectively.

2.2. Models of modified U-Net architectures

The customized U-Net architecture captures both spatial and
temporal features in FLAIR MRI samples, focusing on the spatial
correlation between sequential axial slices by incorporating a Con-
volutional LSTM at the bottleneck of the U-Net architecture [9].
Similarly, the 3D U-Net model employs an Online Hard Exam-
ple Mining (OHEM) strategy to address class imbalance during
training and testing on the ISBI 2015 dataset, achieving a Dice
score of 90.1% [10]. Furthermore, the nnU-Net model benefits
from lesion-aware data augmentation procedures, such as axial sub-
sampling and CarveMix. This approach supports the contraction
and expansion paths of four resolution levels through sequences of
3D convolutions, instance normalization, and LeakyReLU activa-
tion. As a result, it achieved an average Dice score of 0.510 and
an F1 score of 0.552 for patients with new lesions [11]. A two-
path architecture based on the U-Net model also uses residual
blocks in both up-sampling and down-sampling paths, along with
Convolutional Gated Recurrent Units (GRUs) at the skip connec-
tions, to capture temporal information from MRI samples. This
model achieved a lesion-wise true positive rate of 0.82 and a
false positive rate of 0.17 [17]. Similarly, a patch-based convolu-
tional neural network (CNN) model with a 3D ResNet block and a
spatial-channel attention module was introduced [13]. The attention
guidance mechanism masks old lesions to focus solely on seg-
menting new lesions, resulting in a lesion-wise true positive rate
of 74.2% and a false positive rate of 26.4% [18]. The lightweight
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implementation of the U-Net model focuses on reducing the data
augmentation step, ensuring that minimal training data is sufficient
for accurately segmenting newly formed MS lesions. This model
demonstrates remarkable results on the BRATS dataset, achieving
a mean Intersection over Union (IoU) of 89%, surpassing standard
benchmark algorithms [19, 20]. Finally, segmentation of uneven
cerebral bleeding lesions is enhanced by incorporating a Resid-
ual Octave Convolution (ResOctConv) module within the U-Net
model, along with a Mixed Attention Mechanism (MAM), which
provides the capability to dynamically handle multi-scale features
in CT image slices [21–23]. An overall summary of all the models
discussed above is provided in Table 1 below.

3. Proposed Methodology

Figure 2 shows a modified architecture of the U-Net for seg-
menting newly appearing lesions in multiple sclerosis on the MRI
scan. Both spatial and temporal features obtained from 2D MRI
sequences at different time points are effectively handled with addi-
tional blocks in the proposed GRU-ASPP U-Net model, enhancing
segmentation accuracy.

The architecture starts by concatenating baseline and follow-
up MRI modalities, (randomly select two different MRI scan at any
timepoint) as input to the model. The encoder path comprises of
four levels, wherein each of them have time-distributed convolu-
tion layers having Squeeze and Excitation (SE) block. These SE
blocks are centered on channel-wise adaptively recalibrating fea-
ture responses, improving the discriminativeness of the presented
model. The SE blocks operate through a two-phase mechanism:
first, the feature maps are down-sampled to a single value per fea-
ture map through pooling, second, a two-layer convolutional neural
network applies specific weights to channels of feature maps for
feature recalibration. Gated Recurrent Unit (GRU) blocks is the key
modules act as memory units that capture feature evolutions over
time between adjacent MRI scans. With their update and reset gates,
the information flow can be controlled and histories of important
features maintained while new observations are incorporated. This
temporal processing capability is especially useful in the ability to
detect changes in lesion patterns over time. Moreover, GRU blocks
incorporated into the skip connections. The Atrous Spatial Pyramid
Pooling (ASPP) module act as a bottleneck layer to capture the mul-
tiple scale contextual information successfully. This is achieved by
operating both parallel atrous convolutions with different rates are
used to capture features at different scales in parallel. This multi-
scale processing is crucial for handling lesions of varying sizes and
shapes effectively. In the decoder path, the architecture employs a
series of up-convolutional blocks. At each level, the output from
the corresponding GRU block is concatenated with up-sampled
feature maps, effectively combining spatial and temporal informa-
tion. The final stage includes convolutional operations with sigmoid
activation to produce probability maps for lesion segmentation.

3.1. SE block

It is used to function as a channel recalibration module that
dynamically changes the corresponding weights of feature chan-
nels. Initially, the operation proceeds to the squeeze phase where
the global average pooled layer (𝜇global) reduces each of the feature
channel, (Xi), to a single number, (zi), thereby effectively creating a
channel descriptor. This can be expressed as:

zi = 𝜇global (Xi) for i = 1, 2, 3, . . . , n (1)

Where n represents the number of convolutional channels. The val-
ues are collected into a vector Z = [z1, z2, . . . ., zn], representing
the global distribution of channel-wise feature responses. The exci-
tation phase then processes this information through a two-layer
neural network with weights (W1, W2) and biases (b1, b2), creating
a nonlinear transformation:

a = 𝜎 (W1Z + b1) (2)

s = 𝜎 (W2a + b2) (3)

Where, 𝜎 is the activation function of either sigmoid or ReLu and s
is the output vector. The final step applies these learned weights to
rescale the original feature channels:

X̃i = si.Xi for i = 1, 2, 3, . . . , n (4)

This channel-wise multiplication allows the network to emphasize
informative features while suppressing less useful ones, enhancing
the model’s representational power.

3.2. ASPP module

The ASPP module enhances the model’s ability to capture
multi-scale contextual information through parallel atrous convolu-
tions with different dilation rates. The process begins with an input
feature map X ∈ RHWC and applies multiple parallel convolution
operations with varying dilation rates:

Yi = Convri (X) (5)

Where Convri
represents convolution with dilation rate ri.

Simultaneously, global context is captured through:

Yglobal = Conv1∗1 (𝜇global (X)) (6)

Then, these multi-scale features are then concatenated:

YConcat = Concat ([Y1,Y2, . . . Yn,Yglobal]) (7)

And finally processed through a 1x1 convolution to produce the
output:

Youtput = Conv1∗1 (YConcat) (8)

This hierarchical feature extraction helps in capturing both
fine-grained details and broader contextual information.

3.3. GRU block

The GRU block manages temporal dependencies in the feature
space through a sophisticated gating mechanism. The update gate
(zt) determines how much previous information should be retained:

zt = 𝜎 (Wz. [ht−1, xt] + bz) (9)

While the reset gate (rt) controls the flow of past information:

rt = 𝜎(Wr.[ht−1, xt] + br) (10)

The candidate activation (h̃t) combines current input with filtered
past information:

h̃t = tanh(W . [rt ⊙ ht−1, xt] + b) (11)
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Figure 2
Proposed GRU-ASPP U-Net model for MS lesion segmentation

The final hidden state is computed as:

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (12)

This gating mechanism allows the GRU to effectively manage long-
term dependencies while mitigating the vanishing gradient problem,
making it particularly suitable for processing sequential MRI data.
These three blocks work in concert within the architecture: Here
it is shown that the SE blocks improve feature representation per
channel, the ASPP module learns multi-scale context in spatial
dimensions, and the GRU blocks maintain dependencies between
sequentially acquired MRI scans. The SE blocks work feature-wise
to adjust the channel’s importance, while the ASPP module breaks
down the improved features across different scales. TheGRUblocks
then combine this rich spatial information at each time step to track
lesion changeover time points. Combined, it yields an effective a
structure that enables addressing the MS lesion segmentation chal-
lenge, with the consideration of spatial and temporal properties of
inputs.

4. Results and Discussion

In this section, we present a detailed evaluation of the pro-
posed GRU-ASPP U-Net model for MS lesion segmentation using
the ISBI 2015 dataset. The dataset consists of chronological MRI
images obtained with MS patients along with different modali-
ties (T1 MPRAGE, T2, PD, FLAIR) and the markups by three
experts. Thus, the present study is based on a combination of the
numerical indices and both quantitative metrics and qualitative
assessments, with the emphasis on the performance of the pro-
posedmodel in the separate validation folds. The experimental setup
involved comprehensive preprocessing steps and data augmenta-
tion techniques, including the novel CarveMix approach specifically
designed for lesion-aware augmentation. We implemented a 5-fold
cross-validation strategy, with each fold containing 896 images

distributed across training, validation, and testing sets. The model
was trained using a combined loss function of binary cross-entropy
and Dice loss, optimized using Adam optimizer over 25 epochs on
a Google Colab T4 GPU environment.

4.1. Dataset

In this study, involves ISBI 2015 MS Lesion Segmentation
dataset which has created to Longitudinal MS Lesion Segmenta-
tion Challenge in the 2015 International Symposium on Biomedical
Imaging. It includes T1-weighted MRI scans obtained from MS
patients over time, which enables the assessment of the performance
of computerized lesion segmentation methods.

4.1.1. Dataset composition
Training Set: Five case subjects are contributed with 22 total

time points having an average of 4.4 time points per patient. The
mean age at baseline is 43.5 years, and observation period was
approximately one year. Ground truth lesion maps produced by
expert human annotators are also given for this set.

Test Set:Nine of the 14 patients had global atrophy rates that we
consider of borderline statistical significance; the data set includes
57 longitudinal MRI scans, with 4.4 time points per patient on aver-
age. Informing this analysis are the mean baseline age of 39.3 years
and mean follow-up time of one year. For this set no manual lesion
delineations are available for comparison and correlation.

4.1.2. Imaging modalities
For each time point, the dataset includes the following MRI

sequences: (i) T1-weighted (T1-w) MPRAGE: Approximately 1
mm³ isotropic voxel resolution, (ii) T2-weighted (T2-w): 0.82× 0.82 × 2.2 mm³ voxel size, (iii) Proton Density-weighted (PD-
w): 0.82 × 0.82 × 2.2 mm³ voxel size, and (iv) T2-weighted Fluid
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Figure 3
Example MRI images from the ISBI-2015 dataset: T2-weighted images (a, b) with corresponding masks annotated by an expert

rater (e, f) and FLAIR images (c, d) with equivalent masks marked by rater 1 (g, h)

Attenuated Inversion Recovery (FLAIR): 0.82 × 0.82 × 2.2 mm³
voxel size. All images were acquired on a 3.0 Tesla MRI scanner.

Figure 3 displays typical MRI samples belonging to the ISBI-
2015 dataset to qualitatively demonstrate the T2w and FLAIR
modes together with their corresponding masks. T2-weigthed image
and its lesion masks are depicted in subfigures (a) and (b) respec-
tively, while subfigures (e) and (f) show the expertise rating of the
rater. As with the same location T2w images, subfigures (c) and (d)
describe FLAIR images, and the corresponding masks from rater 1
are provided in subfigures (g, h). This figure gives an idea of the dif-
ferences in the image modalities and the expert annotations which
provides a basis of understanding the dataset and the segmentation
problems to be solved.

4.2. Simulation setup

All experiments were conducted using pre-processed images
from the ISBI 2015 dataset. The outer black regions of the MRI (T2
and FLAIR) sequences were cropped, and geometric data augmen-
tations, including random rotations, flipping, and zooming, were
applied within the data generator. In addition to these standard
augmentation procedures, lesion-aware CarveMix data augmenta-
tion was performed. This technique carves and mixes portions of
one image into another, based on the location and geometry of
the lesions. Examples of augmented samples generated with this
approach are shown in Figure 4. Columns C1 and C2 show pairs of
T2MRI images, while ColumnC3 displays the synthetic augmented
sample created by mixing the T2 MRI pairs.

The augmented samples have significantly increased the
diversity of the training data, enabling the model to train more effec-
tively and enhancing its robustness, which improves its ability to

generalize to new, unseen data. Themodel was trained using a 5-fold
cross-validation strategy as follows:

Fold 1: 896 images total—224 images for validation, 224
images for testing, and 448 images for training.

Fold 2: 896 images total—224 images for validation, 224
images for testing, and 448 images for training.

Fold 3: 896 images total—224 images for validation, 224
images for testing, and 448 images for training.

Fold 4: 896 images total—224 images for validation, 224
images for testing, and 448 images for training.

Fold 5: 896 images total—224 images for validation, 224
images for testing, and 448 images for training.

The proposed GRU-ASPP U-Net model is implemented in
Python using the Keras library. This model was trained on Google
Colab using a T4 GPU. A modified U-Net model with GRU was
used, compiled with the Adam optimizer, and trained using a com-
bined loss function of binary cross-entropy and Dice loss. The
metrics analyzed for performance evaluation include the Dice coef-
ficient and Jaccard coefficient. Training was conducted over 25
epochs, with the total training time for the proposed model being
approximately 14 hours.

4.3. Evaluation metrics

The performance of the proposed model is evaluated by com-
paring the predicted mask with the ground truth mask provided
by expert raters. This evaluation uses the Jaccard coefficient, Dice
coefficient, and accuracy as performance metrics.

The Jaccard coefficient, also known as the Intersection over
Union (IoU), is calculated by dividing the intersection of the pre-
dicted and ground truth masks by their union. The IoU value ranges
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Figure 4
CarveMix-augmented MRI samples

from 0 to 1, where 0 indicates no overlap (poorest performance),
and 1 indicates perfect overlap (best performance) between the pre-
dicted mask and the ground truth mask. The Jaccard coefficient is
calculated using Equation (13).

Jaccard Coef f = X ∩ Y
X ∪ Y

(13)

Where X represents a set of pixels in segmented mask and Y repre-
sents a set of pixels in a ground truth mask. The Dice coefficient,
also known as the Sørensen–Dice coefficient, measures the degree
of overlap between the predicted segmentation mask and the ground
truth mask. It is calculated using Equation (14).

Dice Coef f = 2 ∗X ∩ Y
X + Y

(14)

Both the Dice coefficient and the Jaccard coefficient measure the
overlap between predicted and actual masks in image segmentation,
but they differ in how they handle overlapping regions. The Dice
coefficient assigns twice the weight to intersection regions, making
it more sensitive to small overlaps, which is advantageous for tasks
likemedical image segmentation. In contrast, the Jaccard coefficient
provides a more stringent measure of overlap, making it suitable for
applications like object detection and general image segmentation.

4.4. Quantitative and qualitative analysis

A series of tests were conducted using the entire training data
and various combinations of data across different folds to accurately
assess the performance of the proposed approach. Figure 5(a) shows
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Figure 5
Training performance. (a) Validation loss curve and (b)

Validation IoU curve

the validation loss curve obtained during training with the full train-
ing set, while Figure 5(b) displays the IoU score achieved when
training with the entire training set.

The prediction results of the proposed GRU-ASPP U-Net
model for MS lesion segmentation are also outstanding and proved
to be optimal in Fold 3 of the cross-validation that was performed,
having 0.81 (81.27%) Dice score and 0.74 (74.36%) IoU. The
cross-fold validation reveals a Dice score of 0.75 (75%) and IoU
of 0.67 (67%) in total for all folds. This result can be attributed
to the synergistic combination of three main architectural compo-
nents: the mechanism of GRU blocks located at skip connections
that allow to address temporal connections between MRI scans, the
ASPP module enabling multi-scale feature extraction, and the SE
blocks providing dynamic channel-wise recalibration. This archi-
tectural design is supported by effective data processing solutions
which include ISBI 2015 appropriate preprocessing, CarveMix aug-
mentation, removal of unnecessary black areas, normalization of
images between 0 and 1 and resampling to 160 x 160 pixels. Even
more, the training strategy enhances the model’s predictive perfor-
mance through cross-validation, combined loss function including
both binary cross-entropy, Dice loss, optimized with Adam opti-
mizer of choice and trained for 25 epoch. The best model from the
different folds is selected based on the highest Dice score achieved
and is then used for testing on the test data. The average evaluation

Figure 6
Performance metrics for the proposed model in different folds

of validation data

metrics obtained from the cross-validation test folds are presented
in Figure 6.

To dissection and refine the understanding of the model fur-
ther, lesion-wise analysis, performance evaluation based on the size
or area of the lesion. This could be explored further by visualiz-
ing feature maps to see which features were more active, looking
at the attention weights and understanding the GRU state changed
through time. Comparing our delineations with the radiologist anno-
tations and validating on other datasets can be further beneficial to
understand its operational feasibility setting from clinical point of
view.

Figure 7 depicts the MS lesion segmentation of FLAIR images
using proposed model. That implies, column 1 (a, d, g) shows the
original slices of the FLAIR sequence, column 2 (b, e, h) displays
the ground truth segmentations provided by rater 1, and column 3
(c, f, i) presents the lesion segmentations produced by the proposed
approach. Table 2 gives a unique insight of different models and
compare the perform in different categories for basic parameters and
the result for this proposed model is quite impressive particularly
when run under fold 3 cross-validation.

The feature maps produced by the bottleneck ASPP module,
which consists of convolutional layers with different dilation rates
in the proposed U-Net model, are analyzed for multicollinearity
through the Variance Inflation Factor (VIF) [29]. VIF analysis is
conducted to measure the dependency across feature maps, with
those exhibiting a VIF value over the threshold (VIF>6) being
redundant. These features are eliminated, guaranteeing the reten-
tion of only the most independent and informative attributes. The
enhanced feature set is thereafter transmitted to the decoder path.
Utilizing VIF analysis on the ASPP outputs and preserving only the
most independent characteristics resulted in a significant enhance-
ment in segmentation performance. The Intersection over Union
(IoU) rose from 0.81 (baseline without VIF analysis) to 0.87, while
the Jaccard Index enhanced from 0.74 to 0.79.

4.5. Observation and discussion

The proposedGRU-ASPPU-Netmodel reveals several notable
merits even though the certain numerical indices look lower than
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Figure 7
Results of the proposed model for lesion segmentation in FLAIR images

those of the desired approaches. One major advantage is that it per-
forms equally well across all evaluation measures and visibly so in
the fold-3 results where the TPR was roughly 0.83 coupled with
an FPR of 0.17 for impressive lesion detection accuracy with low
false positives and the needed segmentation precision of 0.89. More
importantly, unlike many of the existing models which only present
partial results, all six categories of performance measurements have
been conducted on the proposed model to ensure thorough eval-
uation. This comprehensive assessment framework shows that the
proposed model works well on different segmentation dimensions
as well as their quality indicators.

Originally, our model’s architecture makes a profound
improvement in the aspect of temporal and spatial feature integra-
tion in comparison to the temporal-spatial network model, such as
the U-Net with VGG16 and Enhanced U-Net with ResNet50 where
the dominant aspect is the spatial feature. The incorporation of the
desired components of the GRUmodel allows to overcome the prob-
lem of learning with increasing time/age data, which is required
for monitoring the lesions in multiple sclerosis, the effectiveness of
which is supported by a stable TPR/FPR ratio. From a clinical per-
spective, while U-Net++DSM shows a higher Dice score of 0.89,
our model’s balanced metrics (TPR: 0.83, FPR: 0.17) to achieve
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Table 2
Comparative analysis of different U-Net variants with proposed GRU-ASPP U-Net model for

MS lesion segmentation performance

Evaluation metrics

Models Dice score IoU TPR FPR DSC Seg. accuracy

U-Net++DSM [9] 0.89 0.74 - - 0.89 0.98
U-Net with VGG-16 [6] 0.88 0.76 - - - 0.994
Enhanced U-Net with ResNet50 [7] 0.875 0.866 - - 0.87 0.92
2D-UNet with random forest [25] 0.67 - 0.72 0.28 0.67 0.85
U-Net with AG, ECA, ASPP [26] 0.86 0.78 0.84 0.16 0.86 0.91
Transformer UNet++ with
MobileNetv3 [12]

0.84 0.75 0.82 0.18 0.84 0.89

Modified Attention U-Net [14] 0.823 0.76 0.85 0.15 0.823 0.88
GRU-ASPP U-Net [Proposed]

(mean score)
0.78 0.69 0.78 0.22 0.75 0.87

GRU-ASPP U-Net [Proposed]
(fold-3 cross-validation)

0.87 0.79 0.83 0.17 0.81 0.91

significantly higher clinical relevance over lesion monitoring. The
proposed model has the FPR of 0.17 which is lower than that of
other models such as 2D-UNet with random forest which has the
FPR of 0.28, which is more important in clinical decision-making is
true positive/negative ratio.

The model achieves computational efficiency while maintain-
ing competitive performance (Dice: 0.81, IoU: 0.74 in fold-3). It
outperforms models that use VGG-16 or ResNet50 through more
simplified architecture than those used in folds 1, 2 and mostly 3
with 81% accuracy and IoU of 0.74 in fold 3. Hence the integra-
tion of GRU, ASPP, SE as blocks gives a perfect balance between
the model capacity and the performance and is ideal for clinical
practice where resources in terms of computing power maybe very
limited. In addition, our model possesses high reliability in folds
of cross-validation, which indicates significant improvement from
mean scores to the validation of fold 3 according to all the mea-
surements. This improvement pattern shows that the model did
learn from the data and was able to effectively and significantly
generalize the learning when going from 0.75 Dice score to an
0.81 score.

However, there are certain limitations to consider. The model’s
efficacy may be skewed by the dataset’s heterogeneity, constrain-
ing its applicability to scans from varying MRI protocols or
demographic groups. GRU’s dependence on sequential data may
prove ineffective for irregular follow-up intervals or specific MRI
sequences. Furthermore, the architecture is specifically designed for
MS lesions and may encounter difficulties in generalizing to other
lesion types or imaging modalities.

Thus, our GRU-ASPP U-Net provides better overall assess-
ment, better balanced score, better real-world relevance, better
temporal details dealing, better computational speed, and generalize
ability through cross-validation. All these benefits taken together,
make our model equally suited for practical clinical use where
generalizability across the multiple modalities is more useful than
optimizing for a single score. Our proposedU-Net accurately detects
minor variations in lesion size and quantity over time, facilitat-
ing early diagnosis and the tracking of disease development. In
areas with restricted availability of skilled professionals, automated
segmentation can deliver uniform and high-quality lesion evalua-
tions, enhancing access to sophisticated diagnostic tools. Through
the incorporation of longitudinal data, our model offers insights into

trends in illness progression, equipping doctors with data-driven
tools for prediction and therapy planning.

5. Conclusion

In this research study, presented a novel GRU-ASPP
U-Net architecture specifically designed for predicting MS lesion
growth by segmentingMS lesion from longitudinal MRI sequences.
Our approach introduces three key innovations: the integration of
GRU blocks at skip connections for temporal dependency cap-
ture, an ASPP module for multi-scale feature extraction, and SE
blocks for dynamic channel recalibration. The effectiveness of these
architectural enhancements is demonstrated through comprehensive
experimentation on the ISBI 2015 dataset. The proposed model
achieved its best performance in fold-3 cross-validation with a Dice
score of 0.81 and IoU of 0.74, significantly outperforming several
state-of-the-art approaches. The mean performance across all folds
demonstrated robust and consistent results with a Dice score of 0.75
and IoU of 0.67. These results validate the effectiveness of our
architectural innovations, particularly the synergistic combination
of GRU blocks at skip connections, ASPP module for multi-scale
feature extraction, and SE blocks for dynamic channel recalibration.
We have compared our method with other similar approaches, and
the results of these experiments reveal that the designed architecture
offers better segmentation performance and quality. Furthermore,
in the future, Vision Transformer blocks combined with Conv GRU
can be integrated, and a dynamic attention mechanism can be
adapted to enhance feature learning for better lesion characteri-
zation. Additionally, the sustainability of lightweight versions of
the architecture should be verified for use in resource-constrained
environments.
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