
Received: 4 September 2024 | Revised: 14 October 2024 | Accepted: 7 November 2024 | Published online: 8 January 2025

Journal of Computational and Cognitive Engineering
2025, Vol. 4(2) 151–160

DOI: 10.47852/bonviewJCCE52024248
RESEARCH ARTICLE

Strengthening Security in Clouds Through
Cloud Computing Authentication Using Facial
Image Forensics

Pranali Dahiwal1,* and Vijay Khare2

1Vishwakarma Institute of Information Technology, Savitribai Phule Pune University, India
2Department of Defence and Strategic Studies, Savitribai Phule Pune University, India

Abstract: Numerous cyber threats may succeed in cloud platforms owing to unproductive authentication methods. Multiple credential
authentication is a vital precautionary measure that helps reinforce cloud security for warding off imminent data breaches and illegal
access. This kind of authentication approach strongly guarantees that trustworthy clients are only ratified to get cloud services, making it
less tiresome for clients and more secure for organizations. This study proposes an Image Forensics-based Dual Credential Authentication
(IF-DCA) based on username (i.e., preferably email ID to avoid replica) and client photographs as password. Along with a username, a
rapid and acquainted user action of capturing a photograph using a web camera is adequate for this method; hence it does not need any
expensive, special hardware devices. During the registration phase, along with the username, the user’s face image is stored on the cloud
server as a password.When registered clients need to access cloud resources or data, they should log in on the server with their username and
their photograph. To improve the authentication approach, this work proposes an Attribute-controlled Conditional Generative Adversarial
Network (ACC-GAN) to generate face images of the same user at various age groups. ACC-GAN includes an additional attribute control
unit and an age prediction unit to synthesize photo-realistic face images with aging effects. After matching the username and face image
with the registered username and ACC-GAN-generated images, the face identification module provides access to the authorized cloud user.
The performance of IF-DCA is assessed through the Cross-Age Celebrity Dataset using the MATLAB R2018b/deep learning toolbox. The
empirical analysis reveals that the ACC-GAN achieves better performance measures such as 98.40% accuracy, 99.3% sensitivity, 90.0%
specificity, and 95.7% precision. The performance of IF-DCA is analyzed using the verification time for username, user image, and complete
authentication against the number of users.
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1. Introduction

Recently, the reputation for cloud services has witnessed a dra-
matic acceleration, thanks to big cloud providers including Alibaba,
Microsoft, Google, Oracle, and Amazon [1]. Cloud computing,
which was instigated as a mere storage solution, has now become
an all-encompassing computing paradigm in quite a short span. In a
nutshell, cloud technology is the mainstay of enterprise infrastruc-
ture, essentially transforming the way organizations collect, process,
store, and communicate data. As security engineers are aware, how-
ever, all the technology that grows into prevalent in the cyber world
will inexorably become a potential target of malicious attackers, and
cloud technology is the same [2]. Of late, the power of cyberattacks
to gain illegal access to cloud services and applications is getting
undue as the complexity of password hacking methods grows and
processing complex calculations becomes very cost-effective.
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Incidentally, cloud cyberattacks accounted for 20% of all inter-
net threats in 2020, making this paradigm the third most beleaguered
digital technology globally [3]. The Indian Computer Emergency
Response Team (CERT-In) divulges that Indian media experienced
almost 1.4 million cyber threats in 2022, and among these, threats on
the cloud were the maximum. Phishing threats on the cloud servers
have now increased by 65% in the six months ending October 2022
related to the preceding year, and 76% of organizations recorded
sophisticated phishing attacks in the last year [4]. The cyber threats
are also becoming complex and are transcending beyond emails
to instant messages and different types of private communication.
Currently, we are more vulnerable to account stealing threats that,
statistically, as a minimum one of our digital accounts (e.g., social
media accounts, email, banks, etc.) will be hijacked or encountered
to hack in the next 12-month period [5]. Therefore, it is indispens-
able to develop more secure and robust access methods to secure
systems and data.

Authentication is the process of validating cloud user identities
to decide whether he/she is reliable to authorize resources, ser-
vices, data, and applications. The deficiency of robust and efficient
cloud authentication schemes leads to the incidence of some dual
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credential. Data exposure, data altering, account hacking, spoof-
ing identity, repudiation, denial-of-service (DoS), and promotion of
access rights are some of the most general attacks in cloud plat-
forms [6]. Traditional cloud authentication mechanisms, including
simple text-based passwords (also called one-factor authentication),
have exposed susceptibilities to diverse cyberattacks. Indeed, 61%
of all attacks encompass credentials, whether hacked through brute
force or pinched through social engineering. Hence, a strong user
authentication approach is important to develop a safe and sound
environment. Integrating text-based passcodes with pictorial pass-
words in a multiple credential authentication (MCA) can be an
efficient method. Some cutting-edge authentication mechanisms
(e.g., biometrics) are efficient methods but need extra hardware for
effective application.

MCA is intended to provide high-level security against threats
by adding complexity for invaders to obtain access to cloud
resources and data, even if secret words are cracked by applying
attacks or other methods. MCA achieves to do this with a hier-
archical method. In this system, a client is asked to submit an
amalgamation of two or more factors to authenticate his/her identity,
so access can be approved [7]. The number of log-in credentials dif-
fers according to the architecture of the security framework and the
anticipated security level. MCAmethods typically hinge on biomet-
ric systems, which are automatic identification of users, according
to their activities [8], and biological features including the face, iris,
palm print, fingerprint, palm/finger vein, and voice [9]. On the other
hand, the application of biological features has its technical hitches,
primarily attributed to convenience, which mostly affects the appli-
cation of the MCA method. Additionally, biometric authentication
involves more expensive implementation and is still susceptible to
numerous cutting-edge cyber threats including DoS, replay attacks,
sensor result capture, presentation attacks, etc.

While numerous research works on validation for cloud plat-
forms have used the concept of MCA, the decisive goal of any
security tool is to ensure safe communication by averting con-
ciliation and threats on the current validation approaches. In this
context, this research proposes an Image Forensics-based Dual Cre-
dential Authentication (IF-DCA) based on usernames and client
photographs as passwords. The contributions of this research are
four-fold:

We propose an image forensic-based dual-factor authentication
using usernames and client photographs as passwords.

The proposed IF-DCA mechanism integrates a text-based
authentication for user face images. During the registration phase,
the user’s face photo is stored on the cloud server as a passcode.
Whenever registered clients need to access cloud resources, they
should log in on the cloud server with their username and their cur-
rent photograph. After comparing the username and face image with
the registered username and user photographs, the face recognition
module in the proposed system offers access to cloud resources to
the authorized client.

To improve the effectiveness of the proposed authentica-
tion approach and decrease false alarms, this work proposes an
Attribute-controlled Conditional Generative Adversarial Network
(ACC-GAN) to generate face photos of the same person in diverse
age groups. ACC-GAN includes an additional attribute control unit
and an age prediction unit to synthesize photo-realistic face images
with aging effects.

The performance of this model is evaluated through a standard
database such as the Cross-Age Celebrity Dataset (CACD) using the
MATLAB R2018b/deep learning toolbox software.

This article is arranged as follows: We analyze the related
studies about MCA in Section 2. In Section 3, we take a

comprehensive look at the GAN model for empowering face recog-
nition. The proposed IF-DCA model using password and image
forensics is discussed in Section 4. Then the implementation details
and numerical results obtained from experiments are given in
Section 5 and Section 6, respectively. We conclude this work in
Section 7.

2. Literature Review

MCA has become critical in the authentication of cloud
user identity to minimize the jeopardy of illegal access to cloud
resources, services, data, and applications [10–12]. Patel et al. [13]
suggested a systematic approach for validating users by apply-
ing passcode, out-of-band, and biometrics-based access control
methods that are appropriate for access control. This approach
encompasses a client name, passcode, biometrics features, and a
smartphone to get a cyberattacks password (OTP). Kaleem and
Arshad [14] proposed an adaptable user validation model using
MCA for cloud platforms. The intended model provides a suit-
able and creative plan by combining the normal username and
passcode-based authentication schemes. This model provides effec-
tive authentication, which can compete against different types of
cyber threats.

Priya and Sumalatha [15] proposed a multilevel security model
by applying cohesive MCA methods using security interrogations,
biometrics, and OTP on top of passcode-based validation to secure
the cloud services and data from intruders. The cohesive approaches
provide robust and secure validation owing to the dual-level protec-
tion. The biometric validation comprises pictures as a verification
parameter and the exacerbation of the attributes is achieved through
a face recognition framework with the notion of transfer learning.
Hussain et al. [16] proposed a fully secured authentication scheme
to alleviate manifold verifications typically required from a spe-
cific client. The intended model enables a federated trust between
providers and consumers.

Midha et al. [17] suggested a secure MCA protocol for med-
ical applications in a cloud-based Software Defined Network. The
authors used a body area network to assess the enactment of the
intended approach and guarantee that no illegal user can snip sen-
sitive patient data. The outcomes demonstrate that this approach
guarantees safe access to the cloud server regarding identification
and spoofing. Prabakaran and Ramachandran [18] developed an
MCA scheme for secured financial transactions in a cloud envi-
ronment. This work employs a cryptography algorithm to achieve
secure business dealings by applying a robust MCA scheme using
text-based and biometric authentication. The empirical outcomes
demonstrate that the projected approach is to be a perfect method
for real-time applications. Based on this review, MCA is particu-
larly imperative in cloud platforms, in which data and services are
frequently presented by third-party vendors. By applying appropri-
ateMCA, we can decrease the jeopardy of illegal admission to cloud
services, even if hackers can get a user’s passcode. Providers can
select to apply MCA for all clients or only clients who deal with pri-
vate information. MCA can be realized at the application level or
vendor level. In Table 1, MCA-based existing works are mentioned.

3. The Proposed One-Time Model

The proposed IF-DCA model embeds a face identification
module (FIM). This module accepts usernames and their pho-
tographs as passwords for authentication. The proposed IF-DCA
scheme contains four phases: registration, dual credential, authenti-
cation, and update. In the registration phase, users can choose their
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Table 1
MCA-based existing works

Reference Method Feature extraction Limitation
Patel et al. [13] Password, biometrics, and out-

of-band-based access control
Score matching-based feature
extraction

Delay in receiving OTP and
higher false alarm rate

Kaleem and Arshad [14] Choice-based MCA Score matching-based feature
extraction

Leads to latency and
overhead

Priya and Sumalatha [15] MCA with a 2-layer security
method

VGG face model Leads to higher complexity

Hussain et al. [16] Single sign-on with MCA Shibboleth Demands higher
computational power

Midha et al. [17] MCA with hash function Score matching-based feature
extraction

Higher latency

Prabakaran and Ramachandran
[18]

MCA with Elliptical Curve
Cryptography

Score matching-based feature
extraction

Limited users can avail the
service at a time

username, and they are allowed to capture his/her face using facial
recognition cameras on their gadgets. In the log-in phase, the user
must enter the username that was considered during the registration
phase and capture their photo. The shortcoming of this approach is
that when there is a long elapsed time between two log-in events,
clients’ biometric features vary (i.e., facial appearance) over time.
In the authentication phase, IF-DCA matches the username, and the
face recognition module verifies the photograph to provide access
to cloud services for the user. In the updation phase, the currently
captured photograph is stored for future authentications. To solve
the problems related to varying facial features over time, this work
employs an ACC-GAN to generate face images of a user at different
ages. ACC-GAN includes an additional attribute control unit and
an age prediction unit to synthesize photo-realistic face images with
aging effects. It creates a database for each registered user.

3.1. Registration phase

The registration process is performed at one time except the
client enrolls again. During this phase, the client provides their user-
name (email ID) and captures their photo using facial recognition
cameras. Users need to enroll their username to the FIM during
this process. FIM verifies the newly entered username against the
existing usernames stored in the database. The username should not
replicate or match the prevailing client’s email IDs. Once verifying
the availability of the email ID, the face image must be captured
through a camera and transferred to the cloud server as a passcode.
The username and image are authorized and transferred to the cloud
database. After receiving the username and image, the cloud server
searches its records to find out whether the user is new or prevail-
ing. If it is a new user, then the cloud server records the user details
and calculates security measures that are exclusive to the user. Secu-
rity measures are safely stored in a cloud database, making it more
challenging for an attacker to access the cloud services.

3.2. Log-in phase

The log-in phase is employed when the client needs to access
cloud resources or data. The user passes his/her username on a log-in
page which was previously given by the user during the registration
phase. For password authentication, the user’s face image is cap-
tured by a camera. The IF-DCA authenticates the user identities. If
the user fails to enroll the right identities, the IF-DCA should start
an identity failure procedure to evade username-guessing cyberat-
tacks. Conversely, if the client enrolls a valid username and face

image as a password, the IF-DCAwill produce a validation message
and transfer it to the cloud server. Then, the server allows the user
to access cloud data and services.

3.3. Authentication phase

The authentication phase initiates when the verification note is
accepted by the server. Then, the server computes the time variation
between the message arrival time and the time that the verification
note was transferred by the user. This time variation is vital to cir-
cumvent replay cyberattacks. The server performsmany verification
processes to confirm the validity of the message.

3.4. Updating phase

After receiving an authentication message from the server,
IF-DCA updates the user database by adding the newly cap-
tured photographs to the server database. The shortcoming of this
approach is that when there is a long elapsed time between log-
in events of a user, their biometric features change over time. In
the authentication phase, IF-DCA matches the username, and the
face recognition module verifies the photograph to provide access
to cloud services for the user. In the image updation phase, the
currently captured photograph is stored for future authentications.
To solve the problems related to varying facial features over time,
this work employs an ACC-GAN to generate face images of a
user in different age groups. ACC-GAN includes an additional
attribute control unit and an age prediction unit to synthesize photo-
realistic face images with aging effects. It creates a database for each
registered user.

4. GAN for Empowering Face Recognition

A generative adversarial network is an efficient promising log-
in method with the potential to learn the pattern of specified images
and produce analogous record samples. The notion of the GAN
model was developed by Goodfellow et al. [19] in 2014. It com-
prises two autonomous deep networks, called generator or producer
(G) and discriminator of differentiator (D). These modules are chal-
lenging each other to make each other strong. They can engender
pictures with improved quality, identity reliability, and aging exact-
ness related to conventional approaches. The producer provides
photographs that bear a resemblance to real user images with a twist
rendering those fake samples. A differentiator computes the likeli-
hood of a given photograph that fits into the real database. It acts
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as a critic and is improved to find out fake samples from the actual
ones. A GAN-based image generation is then used to improve the
enactment of the IF-DCA. The producer is employed for producing
similar user photos, and the differentiator has a stronger capability
to categorize the users’ images based on their age. These two mod-
ules contest each other during the learning phase so that the producer
is attempting to cheat the differentiator, while the differentiator is
struggling not to be cheated. This exciting min–max game between
two modules allows both to improve their performance.

Given an input face image i = Rw×h×Nand several target age
groups ti = RN, in which w and h signify the width and height of an
attribute vector, N denotes the number of age groups, correspond-
ingly. To produce a fake photo within the target age group, ti can be
shown in Equation (1):

it = G (i, ti) (1)

The producer contains an encoding and a decoding module. The
encoding unit targets to transform the high-dimensional user image
into a low-dimensional embedding space, thus imposing the neu-
ral network to extract the most significant attributes. The encoding
unit is built with a full convolution neural network (FCNN) as given
in Figure 1. To keep the significant data of the image, this work
replaces the fully connected module of the FCNN with a convo-
lutional module. In this structure, the number of input modules is
optimized to be in line with the size of the image vector after includ-
ing one-hot coding. This encoder enables the producer to get the
appearance learning capacity in the latent vector so that the data is
used at the semantic level using conditional implanting or interpo-
lation on the latent space. The decoding unit targets reinstating the
latent matrix of the hidden modules to the original size and making
the result il = i. A small-step convolutional design is developed to
create the decodingmodule. A differentiator unit is employed to find
out the validity of the input fake image it, which is logically depend-
able on the differentiator in the basic GAN, that is, maxD (it, n),
in which D is a differentiator to find the quality of the artificial
face and n is the original image fitting into the target age group it.
Figure 2 depicts the general architecture of GAN.

In the GAN learning process, the images are pigeonholed
based on age group. After including a suitable noise component, the
fake photos are transferred to G and converted into confrontational
images for different age groups. The identified labels are employed

by D to train the classifier. The losses ofD and G are computed from
the results of D and the classifiers. Assuming the noise input from
the embedding space is n and the producer transfer function isG, the
engendered result function becomes (n). Also, i is the actual user
image, which denotes a group of one-dimensional vectors based on
the designated features and D signifies the transfer function of a dif-
ferentiator. As an independent component, D performs as a binary
classifier that trains to measure the target function. The result of D
is described by Equation (2).

Y (i, G (n)) = D (i) + D (G (n)) { 0, Y = D (i)
1, Y = D (G (n)) (2)

The key objective of the producer is to maximize the func-
tion D (G (n)), while D aims to minimize D (G (n)) and maximize
D (i) concomitantly. The producer is rewarded with how supe-
rior it can produce photos that the differentiator finds hard to
categorize. According to the intricacy level with which a differen-
tiator discriminates synthetic (fake) images from real ones, they are
either remunerated or reprimanded. The producer and differentia-
tor modules update their corresponding constraints with an effective
backpropagation model. It is a min–max game employed by the
differentiator to classify real and fake photos flawlessly.

In this model, the mutual effort of these modules is considered.
Hence, a differentiator targets to maximize the function (D). The
first element of Equation (3) is related to the improved recognition
of the real photo, while the second part aids in recognizing counter-
feit photos well. To improve the producer constraints to cheat the
differentiator cost function, (G) has to be minimized. Equations (3)
and (4) display exact depictions of the same.

MaxD V (D) = Eipdata(i)[logD (i) ] + En≈pn(n) [log (1 − D (G (n))]
(3)

MinG V (G) = En≈pn(n)[log (1 − D (G (n)))] (4)

where pdata (i) and pn (n) are the probability distribution and prior
distribution of the real image, correspondingly. D (G (n)) is the
probability of being decided as a real image after the produced
images are recognized by a differentiator. The purpose of the pro-
ducer is to produce synthetic photos to be decided as a real photo.

Figure 1
General architecture of GAN
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Figure 2
Generator and discriminator structure in GAN

Furthermore,D (G (n)) equals to 1, andV (D, G) also decreases. The
purpose of D is to judge i as a real photo. The synthetic photos will
be decided as fake photos, making D (i) ≈ 1 and D (G (n)) ≈ 0.
Hence, Equations (3) and (4) define the joint min–max game of the
related cost function V (D, G). The creation of the learning database
in a GANmodel is shown in Figure 3. The optimization process sus-
tains with more than a few iterations until the Nash equilibrium is
achieved as shown below.

MinGMaxDV (G,D) = Eipdata(i)[log D (i)]+En≈pn(n)[log (1 − D (G (n)))] (5)

As the producer does not know the dataset, it provides arbitrary
guesses. Initially, the differentiator can easily discriminate the
producer’s feeble forecast from actual photos. As the producer’s
approximation starts to improve and resemble actual user photos
from the database, the differentiator may misclassify the producer’s
synthetic photos. If this occurs, the differentiator experiences more
losses, which allows it to train how to sense fake images from the
producer, rather than the actual user photos. The producer retorts
to the improved performance of the differentiator by generating
improved images. Preferably, the training process halts when the
differentiator achieves 50% efficiency.

The actual photo i and its corresponding age group label ti are
considered inputs. The best feature record i∗ and the corresponding
class t∗i are outputs after feature selection. The latent vector n and
condition vector t f ake are taken as input to the producer to generate
the synthetic images i f ake. It is categorized by the differentiator. The
differentiation loss between actual and generated images Lossi f (G)
and the classification loss Lossclass (G) are computed. Then, the
learning process of the producer is collaboratively achieved, and i∗
is accepted by the differentiator. The synthetic and actual data deci-
sion loss Loss∗

i f (G) and the classification loss Loss ∗
class (G) for

i∗ are outputs. In addition, i f ake is transferred to the differentiator
for further processing. The actual and synthetic data decision loss
Loss

f ake
i f (D) and classification loss Loss

f ake
class (D) of i f ake are out-

puts. The learning process of the producer is realized by the loss
functions given in Equations (6) and (7).

Lossi f (G) = En≈pn(n),t f ake≈Pt
[log (1 − D (D (n, t f ake)))] (6)

Lossclass (G) = En≈pn(n),t f ake≈Pt
[LD (t f ake||PG (n, t f ake))] (7)

When the input is random noise n and label t f ake, the pro-
ducer generates images i f ake as the output. LossG of the producer is

Figure 3
Generation of training dataset in GAN

computed from the weighted sum of loss functions. It includes the
discriminant loss Lossi f (G) of r f ake that is decided by the differ-
entiator as real or as fake data. The classification loss Lossclass (G)
of i f ake that is characterized and computed using Equation (8).

LossG = ΨLossi f (G) + 𝜙Lossclass (G) + 𝜂 Losssh (G) (8)

where Losssh (G) is the confrontation loss that i f ake is measured as
the input images. The terms Ψ, 𝜙, and 𝜂 are the weights of the loss
functions, Lossi f (G), Lossclass (G), and Losssh (G), respectively.
GAN is more stable in the learning process related to diffusion mod-
els, which often demand effective optimization of hyperparameters
and noise schedules. GANs typically have faster inference times
since they produce images in a single pass through the generator,
while diffusion models usually need many iterations to generate a
single sample. In some scenarios, GANs can generate high-quality,
high-resolution images that are visually attractive and realistic,
making them suitable for tasks where sample quality is vital.

4.1. Conditional GAN (deep learning)

To generate images with meticulous semantics, the labels of
the fake images must be controlled. Although GAN can produce
new arbitrary trustworthy images for a specific dataset, it is difficult
to regulate the class of images that are created apart from attempt-
ing to recognize the multipart relationship between the generated
images and the latent vector. The C-GAN facilitates a controlled
cohort of images. Image cohort can be controlled by a class label
to control the targeted synthetic data of a specific form. GAN can
be enhanced by integrating with a conditional model. In this inte-
grated model, the producer and differentiator are trained on some
extra statistics𝜛. These statistics are supplementary data, such as
class tags or data from other processes. In this work, the condition-
ing process is achieved by adding 𝜛 into both the producer and
differentiator as an additional input. In the producer, the previous
input noise pn (n) and 𝜛 are pooled in a hidden depiction, and the
adversarial learning framework permits considerable suppleness in
how this anonymous depiction is collected. In the differentiator, i
and 𝜛 are supplied as inputs to a differentiator. The target func-
tion of a dual-factor min–max game for this C-GAN is described in
Equation (9).

MinGMaxD V (G,D) = Erpdata(r)[log D ( r|𝜛)]+En≈pn(n)[log (1 − D (G (n |𝜛 ))) (9)

4.1.1. Attribute-controlled C-GAN (ACC-GAN)
Attribute-controlled C-GAN includes an attribute control unit

and an age classifier to the C-GAN architecture, allowing the real
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user image to produce new photos that maintain the semantic data
and pose better pictorial impacts. The objective of ACC-GAN is
to produce an image of advanced years that follows the target age
group from the actual photo. In the face generation process, the
attribute control unit excerpts the related attribute vectors of the
encoding and decoding modules, correspondingly, and makes them
follow to loss limits. Simultaneously, L2 loss is also employed to
limit the semantic attributes excerpted by the pre-trained model
[20]. The differentiator is employed to classify whether the synthetic
image is correct or not.

Retaining the semantic data of the input image is a vital con-
straint in the face aging procedure. Conversely, only applying the
confrontational loss to generate the synthetic image and target image
may not sufficiently conserve the semantic data. To resolve this
problem, we present the semantic data protection process to control
the image cohort procedure using the attributes excerpted from the
model. The attribute control unit acquires the attribute vectors of the
encoding/decoding modules individually and relates the equivalent
attribute vectors. This requires the encoding/decodingmodules to be
balanced when scheming the framework. The benefit of this is that
the excerpted related attribute vectors are of equal dimension, and
they can be supplied into the pre-trained model, guaranteeing that
the ultimate result is a linear matrix for parameter mapping using L2
normal form. Therefore, to make the equivalent attribute vectors of
equal dimensions, Llayer is computed using Equation (10).

Llayer = ∑
i∈l

|| f k
en − f k

de||2 (10)

In the above equation, the term l is the number of layers, and fien
and fide denote the attribute vectors of the encoding unit and the
decoding unit at the kth layer, correspondingly. To achieve semantic
reliability, the perceptual loss is presented to reduce the difference
in semantics of the input and the resultant image of the producer.
This loss can be calculated using Equation (11).

Lid = ∑
i∈pi(i) ||hi∗

id
− hi

id
||2 (11)

where hi∗
id (.) denotes attributes excerpted from a particular attribute

module during the training process with image i as input. The differ-
ence between the paired attribute vectors can preserve the semantic
data between the input and fake images.

4.1.2. Adversarial training
Adversarial training is a technique for generating synthetic

images and storing them in a learning database to guarantee that the
deep networks learn the latent confrontational features. Adversarial
training has not yet been analyzed entirely in deep network-based
image generation. This new method of learning will increase the
generality and dependability of the image generation by learning
the semantic features of the user photographs. A scarcity associated
with the adversarial training is that it only offers durability against
the adversarial images it was trained on, and the classifier will
still be circumvented by new adversarial perturbations. To address
this problem, we develop an ACC-GAN-based method for con-
frontational training of the IF-DCA model for excluding unrelated
images. The intended IF-DCA integrates the ACC-GANmodel. The
IF-DCA is not only trained on the real user images but also the gen-
erated images. By this process, we can improve the efficiency of

the IF-DCA in face recognition. The pseudo-code of this training is
given in Algorithm 1.

Algorithm 1: AC-CGAN
Input: Training image database and attributes
The noise n for the synthetic image generation
Output: The optimized producer and the differentiator
1: Initialize the producer, the differentiator;
2: for the number of training iterations do
3: for G-steps do
4: Generator engenders the adversarial

data based on loss functions;
5: Apprise the constraints of the

generator based on the loss function
6: end for
7: for D-steps do
8: D classifies the training database as real and

fake images;
9: D classifies the training database;
10: Apprise the constraints of D using loss

functions
11: end for
12: end for

5. Implementation

The intended IF-DCA with ACC-GAN model is realized
on an Intel Core i7-4790 processor with 16GB RAM, 3.6
GHz, and Windows 10 operating system through the MATLAB
R2018b/deep learning toolbox. The hyper-parameter settings for the
experimentation carried out in this work are shown in Table 2.

Table 2
ACC-GAN model parameter settings

Parameter Settings
Batch size 128
Training rate 0.001
Iterations 100
Latent dimension 13
Dropout rate 0.5
Noise dimension 32
Optimizer Adam
Weight initialization Xavier initializer
Loss function Categorical cross-entropy

5.1. Dataset preparation

To evaluate the effectiveness of the proposed IF-DCA with the
ACC-GAN face recognition model, this study employs the CACD
database [21]. This database encompasses around 160,000 face
images with changes in expression, illumination, and pose captured
from 2000 personalities aged from 16 to 62. Each photograph is
marked based on age, however, not very precisely. This work first
applies target detection to standardize the face alignment and then
executes different image improvementmethods, such as fine-tuning,
illumination, flipping, and angle rotation.

Pdf_Fol io:156156



Journal of Computational and Cognitive Engineering Vol. 4 Iss. 2 2025

Figure 4
The generated aged faces by ACC-GAN

After applying preprocessing methods, we select around
146794 images with a size of 400×400 pixels for analysis. This
entire dataset is divided into two fragments. The face images are
divided into five age groups: 10–20 (8656 images), 20–30 (36662
images), 30–40 (38736 images), 40–50 (35768 images), and 50-60
(26972 images) years old. To realize more precise outcomes, the
10-fold cross-validation (10 f-CV) method is used where the whole
database is split into 10 parts. For each fold, one part is employed
for testing, and the other slices are employed for training the classi-
fication algorithm. Now, the average value of all trials is considered
for assessment. Figure 4 shows the general architecture of GAN.

5.2. Performance indicators

To evaluate the performance of ACC-GAN models, this study
employs accuracy, sensitivity, specificity, precision, and 𝜌-values
as performance indicators. These measures (except 𝜌-values) are
essential to be higher to improve the efficiency of the ACC-GAN.
The efficiency of the proposed model is computed in terms of ACC.
The accuracy of the ACC-GAN is computed by Equation (12). In
this equation, true positive (T+) denotes the number of persons
who are correctly classified as authorized persons; false negative
(F−) is the number of illegal users who are wrongly classified as
authorized persons; true negative (T−) is the number of users who
are correctly identified as unauthorized users; and false positive
(F+) denotes the number of images who are wrongly classified
as an unauthorized person. Sensitivity and specificity represent the
ability of the ACC-GAN to differentiate between authorized and
illegal users. Precision is the ratio of T+ of a specific label to the
total number of unauthorized users classified as the relevant class.
The ratio of F+ and F− are also important measures to assess the

enactment of the intended model. These indicators are defined by
Equations (12)–(15).

Accuracy = (T− + T+)(T− + T+ + F− + F+) (12)

Sensitivity = T+
T+ + F− (13)

Specificity = T−
T− + F+ (14)

Precision = T+
T+ + F+ (15)

Wilcoxon’s rank sum test is conducted to determine whether
the ACC-GANmodel provides a significant enhancement compared
to other existing approaches or not. This nonparametric test is car-
ried out by analyzing the effects of the intended ACC-GAN and
relating it with other image generation models at a 5% significance
level. The p-values less than 5% signify that there is a notable dif-
ference at a level of 5%. The p-values greater than 5% signify
that there is no noteworthy difference between the related values.
From the results, it can be concluded that in most of the trials, the
p-values are < 5%, which proves that the enhancement obtained by
our ACC-GAN models is statistically significant.

6. Results and Discussion

This study evaluates to which degree the IF-DCA model is
capable of authenticating user images. This work assesses the effi-
ciency of the proposed model by evaluating (i) the image generation
capability of ACC-GAN and relating its results with some recently
proposed classifiers, such as original GAN [19], Deep face [22],
FaceNet [23], Pixie [24], Deep Convolutional Generative Adversar-
ial Net (DCGAN) [25], and GPT-4o [26]; and (ii) the execution time
of IF-DCA for username verification, user image verification, and
total authentication [27].

6.1. Performance of ACC-GAN

The experimental results gained by the proposed model on
the CACD database for different folds are given in Table 3. From
this table, it is found that the ACC-GAN model has achieved bet-
ter mean value of performance measures such as 98.40% accuracy,
99.3% sensitivity, 90.0% specificity, and 95.7% precision. The pro-
posed ACC-GAN model also achieves less than 5% of 𝜌-value
(1.6%), which designates that the results gained by ACC-GAN are
significant. Furthermore, it realizes a reduced standard deviation
for performance measures such as 0.7% accuracy, 0.3% sensitivity,
2.6% specificity, 2.8% precision, and 0.8% p-value.

Figure 5 shows the complete results obtained by the ACC-
GANmodel for different folds with respect to the mean value of the
performance measure.

Table 4 and Figure 6 show the mean value of performance
measures obtained by all the models including ACC-GAN. From
these results, it is observed that the basic GAN model has achieved
87.60% accuracy, 96.2% sensitivity, 74.20% specificity, 87.90%
precision, and 4.5% 𝜌-value. By applying a 9-layer deep network,
Deep face achieves better performance than basic GAN. This model
includes around 120 million factors through some locally linked
modules without exchanging parameters, instead of the normal
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Table 3
Results of ACC-GAN for different folding

Fold Accuracy Sensitivity Specificity Precision p-value
#1 0.981 0.991 0.865 0.951 0.016
#2 0.982 0.991 0.883 0.932 0.019
#3 0.968 0.990 0.912 0.893 0.028
#4 0.991 0.992 0.940 0.978 0.029
#5 0.981 0.991 0.914 0.974 0.024
#6 0.982 0.998 0.935 0.975 0.022
#7 0.988 0.991 0.885 0.985 0.020
#8 0.992 0.994 0.912 0.961 0.003
#9 0.990 0.997 0.890 0.945 0.019
#10 0.985 0.991 0.867 0.976 0.010
Mean 0.984 0.993 0.900 0.957 0.019
S.D 0.007 0.003 0.026 0.028 0.008

Figure 5
Evaluation metrics obtained by ACC-GAN
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Table 4
Mean value of performance measures in ACC-GAN

Algorithm ACC SEN SPE PRE 𝜌-value
GAN 0.876 0.962 0.742 0.879 0.045
Deep face 0.861 0.970 0.773 0.894 0.043
FaceNet 0.944 0.980 0.794 0.904 0.043
Pixie 0.930 0.979 0.689 0.912 0.044
DCGAN 0.965 0.974 0.804 0.910 0.039
GPT-4o 0.970 0.960 0.885 0.920 0.035
ACC-GAN 0.984 0.993 0.900 0.957 0.019

convolution modules. The Deep face model has achieved 86.1%
accuracy, 97.00% sensitivity, 77.3% specificity, 89.40% precision,
and 4.3% 𝜌-value.

FaceNet employs a deep convolutional network that unswerv-
ingly learns a pattern from images and stores it in a dense
Euclidean space in which distances reflect the amount of face resem-
blance. FaceNet provides 94.4% accuracy, 98.0% sensitivity, 79.4%
specificity, 90.4% precision, and 4.3% 𝜌-value. The face recogni-
tion performance of Pixie, a camera-based dual-factor verification
solution for gadgets, is better than other models. It achieves 93.0%
accuracy, 97.9% sensitivity, 68.9% specificity, 91.2% precision,
and 4.4% 𝜌-value.

By integrating data augmentation methods with the FaceNet
model, DCGAN provides better performance. DCGAN increases
the generalization ability and dimension of the learning dataset.

Figure 6
Mean value of measures in ACC-GAN and other models
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DCGAN provides 96.5% accuracy, 97.4% sensitivity, 80.4% speci-
ficity, 91.0% precision, and 3.9% 𝜌-value. GPT-4o demonstrates
high performance across multiple datasets. It excels in tasks that
require few-shot learning and also provides notable improvements
in multimodal tasks compared to its predecessors. It achieves 97%
accuracy, 96% sensitivity, 88.5% specificity, 92.0% precision, and
3.5% 𝜌-value. However, the model shows variability and faces lim-
itations in handling complex and ambiguous inputs, particularly in
audio and vision capabilities.

From these results, it is found that the ACC-GAN model
has achieved better mean values of performance measures such as
98.40% ACC, 99.3% SEN, 90.0% SPE, and 95.7% PRE. The pro-
posed ACC-GAN model also achieves less than 5% of 𝜌-value
(1.6%), which designates that the results gained by ACC-GAN are
significant. The proposed model exhibits better results with 1.4%
accuracy, 3.3% sensitivity, 1.6% specificity, 3.8% precision, and
8.4% 𝜌-value than GPT-4o. The SD value of the performance mea-
sure gained from the CACD database by each classifier is listed in
Table 5. While considering the SD value of the evaluation metrics,
the proposed model gains minimum SD values with 0.7% accu-
racy, 0.3% sensitivity, 2.6% specificity, 2.8% precision, and 0.8%𝜌-value. From Figure 7, it can be observed that the SD of the ACC-
GAN is smaller than all other intrusion detection models regarding
the evaluation metrics. Hence, the ACC-GAN delivers much more
reliable outcomes for detecting cyberattacks than the others. There-
fore, the ACC-GAN model is considered a very viable model for
detecting cyberattacks.

Table 5
SD value of measures in ACC-GAN

Algorithm ACC SEN SPE PRE 𝜌-value
GAN 0.031 0.007 0.027 0.029 0.014
Deep face 0.017 0.006 0.029 0.038 0.017
Face Net 0.008 0.012 0.034 0.028 0.016
Pixie 0.019 0.003 0.023 0.028 0.018
DCGAN 0.011 0.005 0.021 0.025 0.020
GPT-4o 0.008 0.005 0.025 0.024 0.021
ACC-GAN 0.007 0.003 0.026 0.028 0.008

6.2. Performance of IF-DCA

The performance of IF-DCA is analyzed using the verification
time for username, user image, and complete authentication against
the number of users. As shown in Figure 8, the authentication time
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Figure 7
Results of ACC-GAN in terms of SD values
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Figure 8
Verification time for user name, user image
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for the first factor (username verification) increases linearly with
the increasing number of users. The verification time for checking
a valid username was 210.25 ms for 50 users, while it was 260.52
ms for 1000 users. For checking the user’s facial image, the pro-
posed algorithm takes 320.96 ms for 50 users and 372.11 ms for
1000 users. The overall authentication time also increases linearly
with the increasing number of users. For 50 users, the total verifi-
cation time is 531.21 ms, and 632.63 ms for an environment with
1000 users.

7. Conclusion

Traditional authentication approaches, such as simple text-
based passwords, have exhibited susceptibilities to various kinds
of cyberattacks on cloud platforms. MCA is a vital security mech-
anism to reinforce security for warding off illicit data access in
C-GAN. This mechanism guarantees that only authorized users
can access the cloud services, data, and applications. This paper
proposes an image forensic-based authentication mechanism based
on username and client photograph as password. During the reg-
istration phase, the user registers their username and their face
image as a password. When registered clients need to access
cloud resources, they should log in on the cloud server with their
username and their photograph. To improve the authentication
approach and decrease false alarms, this work proposes ACC-
GAN to generate face images of the same person at different ages.
ACC-GAN includes an additional attribute control unit and an age
prediction unit to synthesize photo-realistic face images with aging
effects. After matching the username and face image as a password
with the registered username and ACC-GAN-generated images,

the face recognition module provides access to cloud services to
the authorized user. The performance of this model is evaluated
through the CACD database. The extensive experimental analy-
sis divulges that the ACC-GAN achieves better results than other
existing models. The effectiveness of the IF-DCA is measured in
terms of verification time for username, user image, and complete
authentication against the number of users.
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