
Received: 2 September 2024 | Revised: 11 November 2024 | Accepted: 21 November 2024 | Published online: 31 December 2024

Journal of Computational and Cognitive Engineering
2024, Vol. 00(00) 1–9

DOI: 10.47852/bonviewJCCE42024233
RESEARCH ARTICLE

Whale Optimization Algorithm for Feature
Selection Enhances Classification in Malware
Datasets

Mariam Al Ghamri1,∗ , Dyala Ibrahim1, Rami Sihwail1 and Mohammad Shehab1

1College of Computer Sciences and Informatics, Amman Arab University, Jordan

Abstract: Malicious programs are increasing abnormally, affecting our everyday lives. Modern sophisticated and agile malware programs
are not always detected by traditional malware detection methods that use signature-based techniques. As a result, researchers use behavior-
based techniques to analyze malware behaviors (features). However, malware features derived from behavioral analysis commonly suffer
from high dimensionality. Accordingly, this work applies the Whale Optimization Algorithm (WOA) to find the optimal subset of features in
the CIC-MalMem-2022 dataset. Feature selection contributes significantly to reducing high-dimensionality issues and improving malware
detection performance. WOA is employed to enhance the efficiency of the selection process for the optimal features and determine the most
advantageous set of features by omitting redundant and irrelevant features. In addition, we apply the K-nearest neighbor algorithm (KNN)
to detect malware. Using WOA and KNN, this study improves the detection efficiency of CIC-MalMem-2022. According to the findings,
the proposed method outperforms existing malware detection systems, including detection fitness value, accuracy, consuming time, and the
number of selected features.

Keywords: malware, K-nearest neighbor algorithm (KNN), feature selection, Whale Optimization Algorithm (WOA), classification

1. Introduction

Malware detection systems refer to software applications that
are specifically engineered to penetrate or impair a computer sys-
tem with a consent from the user, hence posing a significant risk to
the overall security of the system. Emerging viral strains, including
polymorphic variants, employ sophisticated obfuscation methods,
rendering them far more intricate and elusive in terms of detection.
In contemporary, malware detection systems, one of the predom-
inant methods employed by malware detection software involves
the utilization of techniques that rely on identifying patterns and
those that monitor actions to recognize potential threats. Signatures
refer to concise sequences of bytes that possess program-specific
characteristics [1]. The aforementioned technique has a low error
rate and possesses the capability to discern certain viruses that are
live in electronic files, boot data, or data repositories [2]. How-
ever, the efficiency of the signature-based method is compromised
when faced with malicious executables that have changed or are
unknown. Behavioral-based recognition has a higher propensity to
protect against novel and unforeseen risks. Nevertheless, the process
of detecting this particular form of virus is commonly associated
with significant expenses and is time-consuming [3]. In the past,
malware programs were developed using simple coding techniques,
which made them prone to detection, especially by sophisticated
and agile security systems. In contemporary times, there has
been a discernible trend among malware creators to enhance the

*Corresponding author: Mariam Al Ghamri, College of Computer Sciences and
Informatics, Amman Arab University, Jordan. Email: m.alghamry@aau.edu.jo

complexity of their code, leading to a situation where even
sophisticated detection methods are ineffective. Differentiating
next-generation malware files from traditional malware, which is
specifically engineered to operate within the kernel, poses a consid-
erable challenge [1]. These forms of malicious software can evade
security systems such as firewalls and antivirus software with rela-
tive ease. The entities exhibit a persistent presence within a system
or network, proliferating across various extensions, and engaging in
targeted attacks against the user. There exist multiple malware detec-
tion approaches that rely on diverse features such as signature-based,
heuristic-based, behaviour-based, model checking, cloud-deployed,
mobile device-centric, Internet of Things (IoT)-oriented, machine
learning-driven, and deep learning-powered approaches [4]. In the
initial stages, conventional techniques that rely on signature-based
detection are commonly utilized for identifying malware. Although
it possesses speed, it cannot detect complex malware [5].

The conventional approach of utilizing signature-based meth-
ods, such as pattern matching, proved to be inadequate in fulfilling
the necessary criteria for effective malware detection [6]. There-
fore, the implementation of advanced security approaches poses
significant challenges for both end users and security providers [7].
Additional novel techniques are suggested, drawing upon a range of
features such as heuristics and model checking. The utilization of
sophisticated data mining and machine learning algorithms is inte-
grated into these methodologies to recognize and discover harmful
programs. Although signature-based detection is fast and efficient
at identifying known threats, it struggles when dealing with new
or modified malware variants. The main issue is that signature-
based methods cannot keep up with the constantly changing nature
of malware, especially with the rise of polymorphic strains and

Pdf_Fol io:1

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://doi.org/10.47852/bonviewJCCE42024233
https://orcid.org/0009-0008-7470-3469
https://orcid.org/0000-0003-0211-3503
mailto:m.alghamry@aau.edu.jo
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

obfuscation techniques. As a result, it falls short in providing
complete protection [8].

As an alternative, behavior-based detection tackles the prob-
lem by monitoring the actions of software and spotting patterns
that suggest malicious activity [9]. This approach has the advan-
tage of being able to adapt to new threats. However, it comes
with its own set of challenges, particularly the need to analyze
a large number of features, which can result in complex, high-
dimensional problems in the feature space [10]. The abundance of
features not only complicates the analysis but also imposes com-
putational burdens, hindering the overall efficiency of the detection
process [11]. Feature selection aims to optimize the performance
of behavior-based detection, enhancing accuracy and efficiency in
distinguishing between malicious and benign software.

Feature selection is crucial in machine learning since it serves
as the most potent defense against the “curse of dimensionality”
problem. Usually, the feature space consists of a variety of features
that can be either valid, irrelevant, or redundant. Undoubtedly, the
inclusion of unnecessary and duplicative features reduces the effi-
ciency of the classification process. According to this, the selection
of optimal features aims to address the issue of high-dimensional
feature spaces, decreasing the execution time, and improving classi-
fication performance [12]. Logically, the best feature subset consists
of the fewest features while achieving the highest classification
performance. Optimization algorithms are well-known algorithms
that have been utilized for feature selection in various research
problems. They have been effectively utilized for feature selection
across various datasets [13]. It is a swarm intelligence technique that
is particularly built to handle continuous optimization challenges.
Empirical data suggest that this algorithm outperforms or is on par
with various state-of-the-art approaches [14]. The hunting technique
of humpback, Whales has influenced the creation of WOA. Whales
try to fill the new place in the search area by finding the optimal
components in the group in the proposed technique. The suggested
method of feature selection using nature-inspired optimizers has been
shaped by its ability to solve optimization problems efficiently and
effectively, achieving global optimization while circumventing the
constraints of local optima. The utilization of techniques inspired
by nature is observed by Chen et al. [15] and Abualigah et al. [16]
to choose and optimize solutions.

The major objective of this work is to propose a new malware
detection system based on Whale Optimization Algorithm (WOA)
for feature selection and K-nearest neighbors (KNN) on the CIC-
MalMem-2022 dataset. The proposed system for malware detection
is designed to efficiently and accurately identify different malware
variants. The core contribution of this paper is reducing the redun-
dant, irrelevant features. Therefore, minimizing the feature set for
the subset and simplifying the model’s structure. Through experi-
mental analysis and evaluation results, we will prove the efficiency
of the proposed system and show its potential impact on enhancing
cybersecurity resilience in malware detection.

The following sections of the paper are organized into
clear parts. Section 2 gives an overview of the relevant literature.
Section 3 describes the WOA and outlines the proposed model
based on its principles. Section 4 presents the experimental anal-
ysis and results. Lastly, Section 5 wraps up with conclusions and
recommendations for future research.

2. Related Literature

In this section, recent malware detection systems will be pre-
sented. All the malware detection systems that are discussed in this
section use the same dataset.

Abualhaj et al. [17] improved the accuracy and efficiency of
the malware detection system based on a K-nearest neighbor by
modifying the distance metric. They have examined various dis-
tance measurements, such as Minkowski, Manhattan, and Euclidean
metrics. Also, they used KNN to classify the captured samples
for various aspects of similarity. The MalMem-2022 dataset was
utilized to evaluate the efficiency of the proposed detection sys-
tem. The outcomes showed good results with binary classifications.
But for multi-class classification, KNN got better results on the
Manhattan distance metric.

Damaševičius et al. [18] used many machine-learning tech-
niques to evaluate malware detection by calculating the average
precision, accuracy, and recall across 100 different random states.
The author improved the accuracy and precision of the mal-
ware detection system by using random forest. However, the
componential time for the proposed system is high.

Al Saaidah et al. [19] enhanced the performance of the detec-
tion malware system using the Firefly optimization algorithm KNN.
Also, the authors presented an intelligence detection system for uti-
lizing Machine Learning to Combat Ransomware Threats in Cloud
Computing Environments. Genetic algorithms and particle swarm
optimization techniques are employed to enhance the accuracy and
efficiency of network traffic classification through effective feature
selection. Then, the random forest technique was used for classifica-
tion. The system has good accuracy in detecting ransomware attacks
but needs to improve its performance [20].

Dener et al. [21] integrated machine learning and deep learn-
ing methods inside a structure for massive data to use memory
data for virus detection. Using the CIC-MalMem 2022 dataset, the
researchers ran trials and highlighted that the logistic regression
approach had the highest best rate. When combined with the logis-
tic regression method, the accuracy of the gradient-boosted tree
approach is quite high—99.94%. In the field of malware analysis
using memory data, the Naive Bayes method recorded the lowest
accuracy at 98.41%.

Shafin et al. [3] investigated a novel method for detecting mal-
ware, that is both multiclass and lightweight, allowing it to identify
contemporary infections and be suitable for execution on built-in
equipment. The authors combined the feature extraction strengths
of convolutional neural networks (CNNs) with the temporal mod-
eling abilities of bidirectional long short-term memory (Bi-LSTM)
networks. Comprehensive evaluations on the CIC-MalMem-2022
dataset show that this approach outperforms other machine learn-
ing techniques discussed in previous studies. The proposed solution
offers a strong and streamlined model that can run on IoT devices
to protect against obfuscated malware.

Alawad et al. [22] proposed a strategy to address the binary
domain of feature selection in the IDS prediction model by
improving the WSO technique. They create an initial popula-
tion with notable diversity using two transfer functions and an
altered K-means technique. There are three improved rounds of the
binary WSO process that are suggested: BIWSO1, BIWSO2, and
BIWSO3. The authors assess the effectiveness of these iterations
utilizing a dozen publicly available real-world IDS and IoT datasets.
An investigation is conducted in which the BIWSO3 is compared to
established meta-heuristic techniques. The results demonstrate the
effectiveness of the BIWSO3 strategy in terms of recall, accuracy,
precision, and F1 metrics of categorization.

Although a range of optimization algorithms, such as parti-
cle swarm optimization (PSO) and genetic algorithm (GA), are
commonly applied in feature selection, WOA was chosen for this
study due to its efficacy in balancing exploration and exploita-
tion during the optimization process. This balance is essential for
selecting relevant features without sacrificing detection accuracy.

Pdf_Fol io:202



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

A comparative analysis with PSO and GA further highlights WOA’s
effectiveness, particularly in minimizing the number of selected
features while maintaining high accuracy. This approach not only
enhances the speed of malware detection but also reduces system
demands, making it a suitable choice for real-time applications in
cybersecurity.

One of the main challenges with PSO and GAs is finding the
right balance between exploring new solutions and making the most
of what’s already known. They can also struggle with larger and
more complex problems. Plus, their effectiveness can vary greatly
depending on the specifics of the problem at hand. However, the
WOA addresses these issues effectively. WOA often outperforms
traditional methods like PSO and GAs, thanks to its unique way
of mimicking natural behaviors, which helps it navigate compli-
cated search spaces more efficiently. Then, we choose WOA after an
in-depth comparison with PSO, and other optimization techniques
according to time and accuracy. Then, we use WOA in an enhanced
method because it outperforms other optimization techniques in the
feature selection process [23].

By identifying the optimal set of features, this WOA-enhanced
model effectively manages large datasets, detecting complex mal-
ware patterns with increased accuracy and lower rates of false
positives and negatives. This capability is crucial for organizations
aiming to stay ahead of emerging threats and implement proactive
defense measures. Consequently, this study provides a valuable con-
tribution to cybersecurity by introducing a streamlined and effective
methodology for robust and precise malware detection.

3. Preliminaries

3.1. Whale Optimization Algorithm (WOA)

The WOA is a swarm intelligence technique inspired by the
social behaviors observed in whale populations. Usually, these
whales depend on their foraging behavior for survival. While various
strategies have been developed to address optimization challenges,
the whale algorithm stands out for its distinctive approach of using
either a randomly chosen or optimal agent in the search space to tar-
get its prey. By employing spiral patterns, the model can replicate
the bubble-net feeding strategies observed in humpback whales [23].

Specifically, humpback whales employ a distinctive forag-
ing strategy characterized by the targeted pursuit of aggregations
of small fish in proximity to the water’s flatten. As depicted in
Figure 1, the whales execute a discernible technique involving the
creation of spiral bubble formations.

These spiraling bubbles serve to encircle and capture prey
effectively. The foraging process encompasses the generation of

Figure 1
The spiral bubble-net attack strategy’s schematic

cochleate bubbles surrounding the victim, synchronized with the
whales’ descent and ascent from the water’s surface.

This algorithm contains three operations that emulate the
behavior of humpback whales through the steps of looking for the
prey. The algorithm is designed using three operators that replicate
the behavior of humpback whales throughout the stages of look-
ing for victims (i.e., exploration technique). After that, enclosing
victims by surrounding them and prey them (i.e., exploitation tech-
nique). The explanation of the mathematical model for WOA is
mentioned in detail in the following pseudocode. More information
can be found in Tan and Mohamad-Saleh [24]. Algorithm 1:

Algorithm 1: Pseudocode of the whale optimization algorithm

Initialize the whales population 

Compute the fitness of each whale.

Set as the best whale.

While (t < maximumnumberofiterations) do 

for (eachsearchwhale) do

Update a, A, C, and p.

if (p < 0.5) then

if (| |< 1) then

The whale position is updating by the

Eq. (1).
else

if (| | ≥1) then

Select the random whale 

The whale position is updating by the

Eq. (9).

end 

end 

else 

if ( ≥ 0.5)

Modify the whale position by the

Eq. (5).

end 

end 

end

Check if any search agent goes beyond the search

Space and amend it. 

Compute the fitness of each search agent.

Update if there is a better solution.

t = t +1

end

3.2. The proposed feature selection method

In this section, the steps for WOA will be explained for using it
in the feature selection stage in the context of the malware detection
system illustrated in Figure 2. The following subsections will go
over each of the major stages in detail.

3.2.1. Dataset description
Obfuscated malware is a type of harmful software that uses

different techniques to avoid being detected and removed. The
main purpose of the obfuscated malware dataset is to test how well
different malware detection methods work.

The CIC-Malmem-2022 dataset, released by the Canadian
Institute for Cybersecurity, aims to advance academic research in
malware classification, focusing specifically on techniques for iden-
tifying obfuscated malware. The dataset was designed to reflect
real-world conditions by including common types of malware, such
as Spyware, Ransomware, and Trojan Horses. Figure 3 shows
memory dump categories. This dataset can be utilized to evaluate

Pdf_Fol io:3 03



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

Figure 2
Proposed model architecture

Figure 3
Memory dump categories

Benign,2916

Trojan Horse, 948

Spyware, 982

Ransomware,986

and enhance machine learning techniques for the detection of
obfuscated malware, specifically those that rely on metaheuristic
algorithms [25].

To expand the dataset, an automated method was employed,
which involved executing 2,916 malware samples across three dis-
tinct categories using a virtual machine (VM). Acknowledging the
importance of interspersing benign processes during the generating
of malicious memory dumps, various applications were launched
simultaneously within the Windows virtual machine alongside the
execution of the malware samples. For each malware sample, 10
memory dumps were generated at intervals of 15 s, yielding 29,298
memory snapshots to comprehensively document possible mal-
ware activities [26]. For benign dumps, typical user behavior was
recorded by activating various applications on the machine. The
synthetic minority over-sampling technique (SMOTE) algorithm
was employed to balance the dataset by generating synthetic values.
In contrast to traditional oversampling methods, SMOTE creates
new samples that closely resemble real values. This approach

promotes a more balanced and comprehensive dataset, which is
crucial for precise analysis and classification in future research.

The dataset is evenly balanced, with 50% of the entries being
malicious and 50% benign memory dumps. In total, there are 58,596
entries, divided into 29,298 benign samples and 29,298 malicious
ones. Figure 4 illustrates the breakdown of malware families in each
category [25].

3.2.2. Preprocessing dataset
To uphold consistency and enhance the performance of opti-

mization algorithms, the dataset underwent preprocessing as shown
in the following points.

Normalization: Scaling numerical characteristics in the dataset is
crucial to ensure all features are comparable. This process prevents
any single feature with larger values from overshadowing others,
which is vital for accurate data classification. To achieve this, Min-
Max scaling was utilized, normalizing values to a uniform range of
0 to 1. This method ensures uniform and unbiased data analysis. To
accomplish this, Min-Max normalization was employed, using the
formula:

Normalize Values = Original Value − Min (A)
Max (A) − Min (A) (1)

where the initial value denotes the original numerical entries of the
dataset, Min(A) represents the smallest value observed for feature
A in the dataset, and Max(A) represents the highest value attained
by feature A within the dataset.

Features scaling: Rounding the numerical values in the CIC-
Malmem-2022 dataset to four decimal places aims to improve gen-
eralization and mitigate overfitting, ensuring precise representation
of numeric data.

Synthetic Minority Oversampling Technique (SMOTE): Given
the natural imbalance in malware and benign samples, SMOTE
was selected to address class imbalance by synthetically generating

Pdf_Fol io:404



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

Figure 4
Malware breakdown

new samples for minority classes. Instead of traditional oversam-
pling, which can introduce biases by duplicating existing samples,
SMOTE creates synthetic samples that interpolate between real
instances, promoting a more realistic and diverse representation of
minority class data. This method was chosen for its ability to provide
a balanced dataset, which is essential for training robust classifi-
cation models. By equalizing the number of benign and malicious
samples, SMOTE enhances the classifier’s ability to identify both
classes accurately, improving model generalization and reducing the
risk of bias in favor of the majority class.

3.2.3. Optimize features using WOA
WOA is employed for feature selection, which is a crucial step

in enhancing the efficiency of the classification process. The cen-
tral idea here is to optimize the feature set used for classification
by the KNN classifier. KNN is a widely recognized classification
technique where an unknown example is classified and determined
by the most frequent class among its KNNs in the feature space
[27]. In this paper, KNN serves as the classifier that assesses the
classification performance of the selected feature subset. KNN is
implemented to classify malware and benign software using the
selected feature subset. The dataset is split with 80% allocated for
training and 20% reserved for testing to assess the model’s perfor-
mance. The KNN classifier is then trained on the training data, using
the optimized feature subset. The adaptive utilization of WOA in
this paper, which aims to identify the most suitable feature subset
that maximizes the classification performance. Within the frame-
work of WOA, whales exhibit the ability to adapt their positions
within a given search space. Initially, they tend to mimic the move-
ments of the most successful search agent. Afterward, they strive
to improve their rankings with the most effective search engine, as
shown in the following equations.

D⃗ = C⃗ . X⃗∗ (t) − X (t) , (2)

X⃗ = (t + 1) X⃗∗ (t) − A⃗ . D⃗ (3)

where t refers to the exiting iteration, A⃗ and C⃗ refer to coefficient
vectors, X⃗∗ indicates the position of the optimal solution, and X⃗
refers to the vector’s position. In case more than one optimal solu-
tion is determined, the variable X⃗∗ will be upgraded by iterative
procedures.

Each solution in the dataset is expressed as a continuous vec-
tor with dimensions identical to those of the original feature space.
The solution vector is bounded inside the interval [0, 1]. The fitness
assessment values of these solutions are dichotomous, usually this
reflects both the classification accuracy and the quantity of features
chosen. This can be expressed by the following equation.

fθ = α.E + (1 − α) ∑N

i
𝜃i

N
(4)

where fθ refers to the fitness function evaluated for a vector θ of
size N, 𝜃i refer to the binary elements indicating selected (𝜃i = 1) or
unselected (𝜃i = 0) features. N represents the overall count of fea-
tures present in the dataset. E denotes the classification error linked
to the chosen subset of features. 𝛼 is a constant parameter that gov-
erns the balance between the classification error and the number of
selected features.

The WOA is employed to enhance feature selection, aiming to
enhance classification accuracy by selecting the most informative
subset of features. The following steps explain the proposed WOA
algorithm.

Initialization of WOA parameters: The WOA parameters
were initialized as follows:

1)  Population Size: The algorithm was executed with a population
size of whales, each representing a potential feature subset.

2) Maximum Iterations: We defined 30 iterations as the maximum
number of times the algorithm would update and refine the
feature subsets.

Pdf_Fol io:5 05



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

3) Exploration/Exploitation Factors: These factors were set to man-
age the exploration of new solutions versus the exploitation of
promising ones, ensuring a balanced search through the feature
space.

Define objective function: The objective function evaluates the
classification accuracy using KNN with a given feature subset. Use
a KNN classifier to assess the fitness of each whale (feature subset).

Initialization of population of whales: Initialized a population
of whales, where each whale represented a various feature group.
Feature groups were indicated to binary vectors (total number of
features in the dataset), indicating the selection (1) or unselecting
(0) of each feature. Randomly initialize the position of each whale
in the search space.

Calculate fitness: For each whale in the population, calculate the
fitness value (classification accuracy) using KNN classifier.

Find best position (X)∗: Identify the whale with the best fitness
value. This position is denoted as (X)∗.

Update positions: The WOA executed iteratively to optimize fea-
ture subsets each iteration involved updating the positions (feature
subsets) of whales within the search space, determining the best sub-
set of features to enhance classification accuracy. Upon discovering
a superior solution, the variable (X)∗ undergoes iterative updates.

Iterate: Repeat the fitness calculation and position update steps until
the maximum number of iterations has been reached.

Select optimal position (X)∗: After completing the iterations, the
position of the whale the feature subset exhibiting the greatest
fitness value is chosen as the optimal one. Identified the feature
subset that achieved the greatest classification accuracy using the
KNN classifier. This subset was considered the optimized set of
features, selected based on its superior performance in enhancing
classification accuracy.

The integration of WOA into the feature selection process
demonstrated its effectiveness in enhancing the performance of KNN
classification by systematically exploring and exploiting feature sub-
sets. This approach not only improved accuracy but also provided
insights into the most relevant features for the classification.

4. Experimental Results and Discussion

Eventually, the experimental analysis and results demonstrate
that the proposed system is both accurate and efficient. Various sta-
tistical metrics were used to highlight its effectiveness compared to
other recently developed malware detection methods [28]. To con-
firm the efficiency of the presented method, the average number of
features, efficiency, error rate, and accuracy have been compared
among many feature selection methods. Table 1 shows the average
number of features based on 30 runs.

Table 1
Average number of features associated with the

optimization algorithms based on 30 runs

Algorithm Average number of features
GOA 25.5
GA 24.2667
PSO 21.8667
ALO 13.6333
WOA 9.2333
BOA 24.9667
SMA 26.4

GOA algorithm has an average number of features at 25.5,
indicating that it tends to use a slightly greater number of features
compared to certain other algorithms in the list. GA shows an aver-
age of 24.2667 features, which is slightly lower than GOA, but still
relatively high. It might imply a similar usage of features compared
to GOA but with a slightly reduced number. PSO reflects an aver-
age of 21.8667 features. It seems to use fewer features on average
compared to GOA and GA, potentially indicating a more focused
or selective approach. ALO demonstrates a notably lower average
number of features at 13.6333. This algorithm seems to operate
with significantly fewer features compared to the previous ones,
potentially emphasizing efficiency and targeted selection. WOA has
even the lowest average of 9.2333 features, which indicates a dis-
tinct approach that relies on significantly fewer features than other
algorithms in the list. BOA stands at an average of 24.9667 features,
similar to GA, suggesting its similarity in feature utilization. SMA
presents an average of 26.4 features. With a higher average num-
ber of features, suggests a comprehensive feature usage, similar to
GOA, GA, and BOA. These results indicate diversity among these
optimization algorithms in terms of their approach to utilizing fea-
tures. Algorithms like ALO and WOA use notably fewer features
on average, which might imply a more focused and efficient utiliza-
tion of features, with an emphasis on reducing dimensionality and
enhancing performance.

The following are the most features that are significantly
influenced by malware behavior:

Handles average per process (handles.avg handle per proc): This
metric refers to the average number of handles (e.g., file handles,
registry handles) that each process on a system holds. It can indicate
potential malware activity by revealing abnormal handle counts,
which are often associated with malicious behavior such as exces-
sive file manipulation, data exfiltration, resource exhaustion, and
persistence mechanisms. Monitoring handle counts aids in detecting
anomalies and profiling process behavior, providing insights into
file-related activities of malware.

Process services (svcscan.process services): This feature tracks
the services running on a system and their associated processes.
It is crucial for understanding malware behavior as it can detect
service hijacking, code injection into services, unauthorized ser-
vice creation, privilege escalation, and anomalous behavior in
service-associated processes. These indicators help identify poten-
tial malware activities and tactics used to gain persistence and evade
detection.

Modules not loaded (ldrmodules.not in load): This feature refers
to modules or DLLs not loaded through standard Windows mecha-
nisms. It is significant for detecting code injection, fileless malware,
stealth and evasion tactics, privilege escalation, and persistence
mechanisms. Monitoring for nonstandard module loading helps
uncover sophisticated malware strategies that bypass traditional
detection methods.

Number of threads (handles.nthread): This metric tracks the num-
ber of threads a process has created. It provides insights into
multithreaded malware behavior, including efficiency improve-
ments, stealth tactics through concurrent execution, thread injection
for evasion, resource consumption, and analysis evasion. Monitor-
ing thread counts aids in detecting resource-intensive activities and
understanding the complexity of malware.

Number of processes (pslist.nproc): This feature monitors the
number of processes running on a system. It helps in identifying
process enumeration tactics, persistence mechanisms, evasion of
detection through process proliferation, resource consumption, and
behavioral profiling. Unusual numbers of processes may indicate

Pdf_Fol io:606



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

malicious activities like denial-of-service attacks or surreptitious
process generation. Monitoring process counts over time aids in
detecting deviations from normal patterns, indicating potential
malware presence.

Table 2 shows the computational time based on 30 runs. The
ALO and WOA present notably lower computational time, indicat-
ing higher efficiency. However, The BOA demonstrates noticeably
extended computational times. This suggests that the process is rela-
tively slower. The GOA, GA, and PSO methods exhibit moderately
comparable computational durations. Therefore, WOA displays
faster convergence, while the other algorithms demand significantly
greater computational resources compared to this one.

Table 2
Average of computational time associated with the

optimization algorithms based on 30 runs

Algorithm Average time
GOA 65.9511
GA 65.2379
PSO 62.2649
ALO 37.7846
WOA 29.0548
BOA 232.9896
SMA 101.8269

Table 3 illustrates the average fitness values based on 30 runs.
The GOA, GA, and BOA showcase similar average fitness values,
implying comparable performance in optimizing fitness. In contrast,
PSO reveals a slightly lower average fitness value compared to GOA,
GA, and BOA, indicating a marginally high effective optimization.
ALO and WOA present notably lower average fitness values, signi-
fying a relatively higher overall performance in achieving optimal
fitness. Notably, the SMA stands out with a higher average fitness
value among the listed algorithms, indicating a relatively more effec-
tive performance in optimizing fitness as shown in Figure 5. That
means, less fitness function reflects higher performance.

Table 3
Average of fitness values associated with the

optimization algorithms based on 30 runs

Algorithm Average fitness
GOA 0.0050531
GA 0.0049528
PSO 0.0044488
ALO 0.0033179
WOA 0.0025686
BOA 0.0050181
SMA 0.0052618

The fitness function calculation incorporates both the classi-
fication error rate and a minimal count of selected features, which
may be expressed mathematically as

Fitness−−−−→= 𝛼𝛾 (R) + 𝛽 |F||N| (5)

Figure 5
Comparison of fitness values

where 𝛾(R) refers to the classifier error rate, |F| refers to the number
of selected features, and |N| is the total number of features. 𝛼 ∈ [0,1]
and 𝛽 = (1 − 𝛼) are two variables. Algorithm 1 also includes the
pseudocode for the original WOE algorithm.

GOA, GA, PSO, and BOA methods exhibit notably high
average accuracy values, implying a similar level of performance
in achieving accurate solutions as shown in Table 4. However,
ALO and WOA display slightly lower average accuracy values,
suggesting a relatively lower overall accuracy in achieving optimal
solutions. Conversely, the SMA stands out with a higher average
accuracy value among the listed algorithms, indicating a relatively
more effective performance in achieving accurate solutions.

Table 4
Average of accuracy associated with the optimization

algorithms based on 30 runs

Algorithm Average accuracy
GOA 0.99958
GA 0.99945
PSO 0.99952
ALO 0.99915
WOA 0.99910
BOA 0.99952
SMA 0.99953

A wide analysis of optimization algorithms, considering the
number of features, fitness values, accuracy, and computational effi-
ciency, provides valuable insights into the strengths and trade-offs
of each. Notably, the WOA algorithm displays an efficient and
streamlined approach with lower feature usage, superior fitness val-
ues, high accuracy, and quicker convergence. However, to illustrate
these results, a chart in Figure 6 provides a clear and concise repre-
sentation of the comparative performance of each algorithm across
the average of 30 runs on the four-evaluation metrics.

Pdf_Fol io:7 07



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

Figure 6
A comparative of optimization algorithms performance in terms of (a) features, (b) computational time, (c) fitness values, and (d)

accuracy based on an average of 30 runs

0

5

10

15

20

25

30

GOA GA PSO ALO WOA BOA SMA

Number of features 

0

50

100

150

200

250

GOA GA PSO ALO WOA BOA SMA

Average time

0

0.001

0.002

0.003

0.004

0.005

0.006

GOA GA PSO ALO WOA BOA SMA

Fitness value

0.9988

0.9989

0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

GOA GA PSO ALO WOA BOA SMA

Accuracy

(a) (b)

(c) (d)

5. Conclusion

High dimensionality is a common challenge in machine learn-
ing that complicates and slows down malware detection methods.
This paper introduces a new detection method that combines the
WOA with the KNN machine learning technique. WOA addresses
the issues of high dimensionality by eliminating irrelevant and
redundant features. The experimental results indicate that this
approach achieves near-ideal performance across several metrics,
such as the average number of features, accuracy, and processing
time. Notably, the number of features was reduced from 55 to just
9.23 on average, while still demonstrating strong effectiveness in
identifying malware. To our knowledge, this is the first study to
use feature selection to enhance malware detection on the CIC-
MalMem-2022 dataset. Looking ahead, we plan to improve the
method to capture a wider range of malware characteristics, includ-
ing API usage. Additionally, we will enhance the WOA search
engine to better handle optimization challenges and avoid getting
stuck in local optima. There is also the potential for applying WOA
to other diverse datasets, which warrants further exploration.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest in
this work.

Data Availability Statement

Data available on request from the corresponding author upon
reasonable request.

Author Contribution Statement

Mariam Al Ghamri: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Data curation,
Writing – original draft, Writing – review & editing, Supervision,
Project administration. Dyala Ibrahim: Conceptualization, Valida-
tion, Formal analysis, Writing – original draft, Writing – review &
editing, Project administration. Rami Sihwail: Methodology, Val-
idation, Data curation, Writing – original draft, Writing – review
& editing. Mohammad Shehab: Methodology, Software, Valida-
tion, Investigation, Data curation, Writing – original draft, Writing
– review & editing, Visualization.

References

[1] Sihwail, R., Omar, K., & Ariffin, K. A. Z. (2018). A survey
on malware analysis techniques: Static, dynamic, hybrid and
memory analysis. International Journal on Advanced Science,
Engineering and Information Technology, 8(4–2), 1662–1671.
https://doi.org/10.18517/ijaseit.8.4-2.6827

[2] Jerbi, M., Dagdia, Z. C., Bechikh, S., & Said, L. B. (2023).
Immune-based system to enhance malware detection. In IEEE
Congress on Evolutionary Computation, 1–8. https://doi.org/10.
1109/cec53210.2023.10254159

[3] Shafin, S. S., Karmakar, G., & Mareels, I. (2023). Obfuscated
memory malware detection in resource-constrained IoT devices
for smart city applications. Sensors, 23(11), 5348. https://doi.
org/10.3390/s23115348

Pdf_Fol io:808

https://doi.org/10.18517/ijaseit.8.4-2.6827
https://doi.org/10.1109/cec53210.2023.10254159
https://doi.org/10.1109/cec53210.2023.10254159
https://doi.org/10.3390/s23115348
https://doi.org/10.3390/s23115348


Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

[4] Aslan, O., & Samet, R. (2020). A comprehensive review on mal-
ware detection approaches. IEEE Access, 8, 6249–6271. https://
doi.org/10.1109/ACCESS.2019.2963724

[5] Li, Y., Xiong, K., Chin, T., & Hu, C. (2019). A machine learn-
ing framework for domain generation algorithm-based malware
detection. IEEE Access, 7, 32765–32782. https://doi.org/10.
1109/access.2019.2891588

[6] Gaber, M. G., Ahmed, M., & Janicke, H. (2024). Malware
detection with artificial intelligence: A systematic literature
review. ACM Computing Surveys, 56(6), 148. https://doi.org/10.
1145/3638552

[7] Oyewole, O. O., Fakeyede, O. G., Okeleke, E. C., Apeh, A.
J., & Adaramodu, O. R. (2023). Security considerations and
guidelines for augmented reality implementation in corporate
environments. Computer Science & IT Research Journal, 4(2),
69–84. https://doi.org/10.51594/csitrj.v4i2.607

[8] Ahmad, R. W., Salah, K., Jayaraman, R., Yaqoob, I., Ellahham,
S., & Omar, M. (2021). The role of blockchain technology in
telehealth and telemedicine. International Journal of Medical
Informatics, 148, 104399. https://doi.org/10.1016/j.ijmedinf.
2021.104399

[9] Tang, M., Alazab, M., & Luo, Y. (2019). Big data for cyberse-
curity: Vulnerability disclosure trends and dependencies. IEEE
Transactions on Big Data, 5(3), 317–329. https://doi.org/10.
1109/tbdata.2017.2723570

[10] Gibert, D., Mateu, C., & Planes, J. (2019). A hierarchi-
cal convolutional neural network for malware classification.
In International Joint Conference on Neural Networks, 1–8.
https://doi.org/10.1109/ijcnn.2019.8852469

[11] Wang, Q., & Qian, Q. (2022). Malicious code classification
based on opcode sequences and text CNN network. Journal of
Information Security and Applications, 67, 103151. https://doi.
org/10.1016/j.jisa.2022.103151

[12] Sihwail, R., Omar, K., Ariffin, K. A. Z., & Tubishat, M. (2020).
Improved Harris hawks optimization using elite opposition-
based learning and novel search mechanism for feature selec-
tion. IEEE Access, 8, 121127–121145. https://doi.org/10.1109/
access.2020.3006473

[13] Kundu, R., Chattopadhyay, S., Cuevas, E., & Sarkar, R. (2022).
AltWOA: Altruistic Whale Optimization Algorithm for feature
selection on microarray datasets. Computers in Biology and
Medicine, 144, 105349. https://doi.org/10.1016/j.compbiomed.
2022.105349

[14] Amiriebrahimabadi, M., & Mansouri, N. (2024). A compre-
hensive survey of feature selection techniques based on Whale
Optimization Algorithm. Multimedia Tools and Applications,
83, 47775–47846. https://doi.org/10.1007/s11042-023-17329-y

[15] Chen, G., Qin, Q., Ping, Z., Peng, K., Zeng, X., Long, H.,
& Zou, M. (2021). A novel approach based on modified and
hybrid flower pollination algorithm to solve multi-objective
optimal power flow. IAENG International Journal of Applied
Mathematics, 51(4), 1–18.

[16] Abualigah, L., Al-Zyod, M., Ikotun, A. M., Shehab, M., Otair,
M., Ezugwu, A. E., . . . , & El-kenawy, E. S. M. (2024). A review
of krill herd algorithm: Optimization and its applications. In
L. Abualigah (Ed.), Metaheuristic optimization algorithms:
Optimizers, analysis, and applications (pp. 231–239). Mor-
gan Kaufmann. https://doi.org/10.1016/B978-0-443-13925-3.
00017-0

[17] Abualhaj, M. M., Abu-Shareha, A. A., Shambour, Q. Y.,
Alsaaidah, A., Al-Khatib, S. N., & Anbar, M. (2024).

Customized K-nearest neighbors’ algorithm for malware detec-
tion. International Journal of Data and Network Science, 8(1),
431–438. https://doi.org/10.5267/j.ijdns.2023.9.012

[18] Damaševičius, R., Venčauskas, A., Toldinas, J., & Grigal-
iūnas, S. (2021). Ensemble-based classification using neural
networks and machine learning models for Windows PE mal-
ware detection. Electronics, 10(4), 485. https://doi.org/10.3390/
electronics10040485

[19] Al Saaidah, A., Abualhaj, M. M., Shambour, Q. Y.,
Abu-Shareha, A. A., Abualigah, L., Al-Khatib, S. N., . . . ,
& Alraba’nah, Y. H. (2024). Enhancing malware detection
performance: Leveraging K-Nearest Neighbors with Firefly
Optimization Algorithm. Multimedia Tools and Applications,
1–24. https://doi.org/10.1007/s11042-024-18914-5

[20] Ghazi, M. R., & Raghava, N. S. (2022). Detecting ransomware
attacks in cloud environment using machine learning-based
intelligence system in COVID-19 chaos. In IEEE Conference
on Interdisciplinary Approaches in Technology and Man-
agement for Social Innovation, 1–6. https://doi.org/10.1109/
iatmsi56455.2022.10119441

[21] Dener, M., Ok, G., & Orman, A. (2022). Malware detection
using memory analysis data in big data environment. Applied
Sciences, 12(17), 8604. https://doi.org/10.3390/app12178604

[22] Alawad, N. A., Abed-Alguni, B. H., Al-Betar, M. A., & Jaradat,
A. (2023). Binary improved white shark algorithm for intrusion
detection systems. Neural Computing and Applications, 35(26),
19427–19451. https://doi.org/10.1007/s00521-023-08772-x

[23] Nadimi-Shahraki, M. H., Zamani, H., Asghari Varzaneh, Z.,
& Mirjalili, S. (2023). A systematic review of the whale
optimization algorithm: Theoretical foundation, improve-
ments, and hybridizations. Archives of Computational Meth-
ods in Engineering, 30(7), 4113–4159. https://doi.org/10.1007/
s11831-023-09928-7

[24] Tan, W. H., & Mohamad-Saleh, J. (2023). A hybrid whale opti-
mization algorithm based on equilibrium concept. Alexandria
Engineering Journal, 68, 763–786. https://doi.org/10.1016/j.
aej.2022.12.019

[25] Carrier, T., Victor, P., Tekeoglu, A., & Lashkari, A. (2022).
Detecting obfuscated malware using memory feature engineer-
ing. In Proceedings of the 8th International Conference on
Information Systems Security and Privacy, 1, 177–188. https://
doi.org/10.5220/0010908200003120

[26] Hossain, M. A., & Islam, M. S. (2024). Enhanced detection
of obfuscated malware in memory dumps: A machine learning
approach for advanced cybersecurity. Cybersecurity, 7(1), 16.
https://doi.org/10.1186/s42400-024-00205-z

[27] Li, A. D., Xue, B., & Zhang, M. (2021). Improved binary
particle swarm optimization for feature selection with new ini-
tialization and search space reduction strategies. Applied Soft
Computing, 106, 107302. https://doi.org/10.1016/j.asoc.2021.
107302

[28] Smith, D., Khorsandroo, S., & Roy, K. (2023). Supervised and
unsupervised learning techniques utilizing malware datasets. In
IEEE 2nd International Conference on AI in Cybersecurity, 1–7.
https://doi.org/10.1109/icaic57335.2023.10044169

How to Cite: Al Ghamri, M., Ibrahim, D., Sihwail, R., & Shehab, M. (2024).
Whale Optimization Algorithm for Feature Selection Enhances Classification
in Malware Datasets. Journal of Computational and Cognitive Engineering.
https://doi.org/10.47852/bonviewJCCE42024233

Pdf_Fol io:9 09

https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/access.2019.2891588
https://doi.org/10.1109/access.2019.2891588
https://doi.org/10.1145/3638552
https://doi.org/10.1145/3638552
https://doi.org/10.51594/csitrj.v4i2.607
https://doi.org/10.1016/j.ijmedinf.2021.104399
https://doi.org/10.1016/j.ijmedinf.2021.104399
https://doi.org/10.1109/tbdata.2017.2723570
https://doi.org/10.1109/tbdata.2017.2723570
https://doi.org/10.1109/ijcnn.2019.8852469
https://doi.org/10.1016/j.jisa.2022.103151
https://doi.org/10.1016/j.jisa.2022.103151
https://doi.org/10.1109/access.2020.3006473
https://doi.org/10.1109/access.2020.3006473
https://doi.org/10.1016/j.compbiomed.2022.105349
https://doi.org/10.1016/j.compbiomed.2022.105349
https://doi.org/10.1007/s11042-023-17329-y
https://doi.org/10.1016/B978-0-443-13925-3.00017-0
https://doi.org/10.1016/B978-0-443-13925-3.00017-0
https://doi.org/10.5267/j.ijdns.2023.9.012
https://doi.org/10.3390/electronics10040485
https://doi.org/10.3390/electronics10040485
https://doi.org/10.1007/s11042-024-18914-5
https://doi.org/10.1109/iatmsi56455.2022.10119441
https://doi.org/10.1109/iatmsi56455.2022.10119441
https://doi.org/10.3390/app12178604
https://doi.org/10.1007/s00521-023-08772-x
https://doi.org/10.1007/s11831-023-09928-7
https://doi.org/10.1007/s11831-023-09928-7
https://doi.org/10.1016/j.aej.2022.12.019
https://doi.org/10.1016/j.aej.2022.12.019
https://doi.org/10.5220/0010908200003120
https://doi.org/10.5220/0010908200003120
https://doi.org/10.1186/s42400-024-00205-z
https://doi.org/10.1016/j.asoc.2021.107302
https://doi.org/10.1016/j.asoc.2021.107302
https://doi.org/10.1109/icaic57335.2023.10044169
https://doi.org/10.47852/bonviewJCCE42024233

	Introduction
	Related Literature
	Preliminaries
	Whale Optimization Algorithm (WOA)
	The proposed feature selection method
	Dataset description
	Preprocessing dataset
	Optimize features using WOA


	Experimental Results and Discussion
	Conclusion

