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Abstract: A linear Diophantine fuzzy set (LDFS) is a new mathematical tool that can be used for optimization, artificial intelligence, and
process modeling. The LDFS theory widens the area of fuzzy information via “reference parameters” due to its wonderful characteristic of a
broad depiction zone for allowed doublets. Because the actual world is not exact, and there is a dearth of knowledge, determining and selecting
the optimal choice is a tough and unforeseen decision-making dilemma. The primary goal is to guide decision-makers through the process of
selecting the best option inside a linear Diophantine fuzzy context. We suggested two new aggregation operators: the “linear Diophantine
fuzzy weighted average operator and the linear Diophantine fuzzy weighted geometric operator.” Following that, the proposed model is
validated using a clear example of linear Diophantine fuzzy content. This demonstrates the utility and applicability of the suggested strategy.
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1. Introduction

Since the early twentieth century, one of society’s most urgent
issues has been ambiguous and deceptive information. Data
aggregation is critical for decision-making in a wide range of
fields, including economics, management, sociology, science,
technology, cognitive systems, and autonomous systems. People
have traditionally understood knowledge of the alternative to be a
definite quantity or linguistic number. However, due to the degree
of ambiguity involved, the information is difficult to synthesist.
The “multi-criteria decision-making” (MCDM) approach is a
frequently used intellectual activity instrument whose primary
objective is to pick from a restricted number of possibilities based
on the details provided by decision-makers (DMs). On the other
hand, the MCDM technique frequently results in unclear and
erroneous results due to its propensity for both. This is due to the
fact that it incorporates the complexities of cognitive reasoning
ability, which makes it challenging for DMs to participate in the
evaluation process in a correct fashion. In addition to addressing
the issue of uncertainty, Zadeh (1965) was a pioneer in developing
fuzzy set (FS) theory. It is imperative that a solution be found for
this issue. Atanassov (1986) gave the notion of “intuitionistic fuzzy
set (IFS).” Yager (2014) proposed “Pythagorean fuzzy set (PFS)”
as an extended form of IFS. Yager (2017) added some
generalizations to the IFS and PFS, and he developed the concept
of the “q-rung orthopair fuzzy set (q-ROFS).” A constraint of the
q-ROFS is that the sum of qth “membership degree” (MSD) power
and “non-membership degree” (NMSD) power must be equal to or

less than one. Riaz and Hashmi (2019) established the notion of
the LDFS . After the advent of this notion, a number of academics
were drawn to it and began working in this field.

Xu (2007) andXu andXia (2011) gave someAOs related to IFS.
Wei et al. (2014), Mahmood et al. (2017), Feng et al. (2019), Zhang
et al. (2014), andZhao et al. (2010) offered severalAOs for various FS
extensions.Alcantud et al. (2022) proposed someAOs forN-soft sets.
Feng et al. (2022) proposed some novel score functions related to
orthopair fuzzy set. Senapati and Yager (2020) proposed
Fermatean fuzzy set as the extension of IFS. Smarandache (1999)
and Wang et al. (2010) proposed a novel idea of neutrosophic set.
Ashraf et al. (2019; 2020) proposed some distance metric for
“cubic picture fuzzy set.” Saha, et al. (2021a), and Saha, et al.
(2021b) introduced some hybrid AOs for different extensions of
fuzzy set. Wei and Zhang (2019) gave some Bonferroni power
AOs. Riaz et al. (2021a) proposed a number of AOs, including
interactive and prioritized with PDs Riaz et al. (2021b). Some
extra-ordinary work related to proposed work is given in Karaaslan
and Ozlu (2020); Din et al. (2022); Gul et al. (2022); Alcantud
(2022). Akram et al. (2021) gave the idea of Pythagorean
ELECTRE-II approach. Garg et al. (2022) proposed VIKOR
approach. Garg and Kaur (2022) gave the notion of correlation
coefficients under cubic intuitionistic fuzzy set. Khan et al. (2022)
introduced some complex T-spherical fuzzy AOs. Pramanik and
Dalapati (2022) proposed VIKOR approach for bipolar
neutrosophic set. Liu and Wang (2018) proposed some basic AOs
for q-ROFSs.

This format is maintained for the remainder of the paper. In the
second portion, we will talk about some essential LDFS concepts.
The third section offers several potential AOs for LDFNs.
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In Section 4, an MCDM framework is shown for the recommended
AOs. Section 5 has a test scenario with numerical information. The
most important findings from the research are discussed in the sixth
section.

2. Basic Definitions

In this part, we will go over some of the most fundamental
aspects of LDFS.

Definition 2.1. Riaz and Hashmi (2019) A LDFS Rr in X can be
characterized by

Rr ¼ ��⨿; hζτRr ð⨿Þ; ℸυRr ð⨿Þi; hξħRr ð⨿Þ;ℶγ
Rr ð⨿Þi� : ⨿ 2 X

�
;

where ζτRr(⨿), ℸυ
Rr(⨿), ξℏRr(⨿), ℶγ

Rr(⨿)∈ [0,1] are the MSD, the
NMSD and the corresponding RPs. Furthermore,

0 � ξħRr ð⨿Þ þ ℶγ
Rr ð⨿Þ � 1;

and

0 � ξħRr ð⨿ÞζτRr ð⨿Þ þ ℶγ
Rr ð⨿ÞℸυRr ð⨿Þ � 1

for all ⨿ ∈ X. The LDFS

Rr
X ¼ fð⨿; h1; 0i; h1; 0iÞ : ⨿ 2 Xg

is recognized the “absolute LDFS” in X. The LDFS

Rr
φ ¼ fð⨿; h0; 1i; h0; 1iÞ : ⨿ 2 Xg

is recognized the “null LDFS” in X.

Modeling or categorization certain structures can be
accomplished with the help of the RPs. We are able to describe a
wide variety of systems by altering the fundamental significance
of the RPs. Moreover, ℸRr (⨿) πRr (⨿)= 1− (ξℏRr (⨿) ζτRr (⨿)+ ℶγ

Rr

(⨿)ℸυ
Rr (⨿)) is called the “indeterminacy degree” and its

corresponding RP of ⨿ to Rr.
It is very evident that our suggested conception is more

appropriate and advanced than that of someone else, and it
includes a range of RPs. This procedure is applicable to a wide
range of projects, including those in the fields of industry,
medicine, cognitive computing, and MCDM.

Definition 2.2. Riaz and Hashmi (2019) A “linear Diophantine
fuzzy number” (LDFN) is the form of ςϑ= (〈ζτςϑ, ℸυ

ςϑ〉, 〈ξℏςϑ, ℶγ
ςϑ〉)

having the given characteristics:

(1) 0≤ ζτςϑ, ℸυ
ςϑ, ξℏςϑ, ℶγ

ςϑ ≤ 1;
(2) 0≤ ξℏςϑ + ℶγ

ςϑ ≤ 1;
(3) 0≤ ξℏςϑζτςϑ + ℶγ

ςϑℸυ
ςϑ ≤ 1.

Definition 2.3. Riaz and Hashmi (2019) Consider ςϑ= (〈ζτςϑ,ℸυ
ςϑ〉,

〈ξℏςϑ, ℶγ
ςϑ〉) is the LDFN, then the “score function” (SF) ✠(ςϑ) is

defined by ✠(ςϑ) : LDFN(X)→ [−1,1] and given by

✠ðςϑÞ ¼ 1
2
½ðζτςϑ � ℸυςϑÞ þ ðξħςϑ � ℶγ

ςϑÞ�

where LDFNðXÞ is the collection of LDFNs on X.

Definition 2.4. Riaz and Hashmi (2019) Consider ςϑ= (〈ζτςϑ,
ℸυ

ςϑ〉, 〈ξℏςϑ, ℶγ
ςϑ〉) is the LDFN, then the “accuracy function” is

defined by ψ : LDFN(X)→ [0,1] and given as

ψðςϑÞ ¼ 1
2

h� ζτςϑ þ ℸυςϑ

2

�
þ ðξħςϑ þ ℶγ

ςϑÞ
i

Definition 2.5. Riaz and Hashmi (2019) Consider ςϑ1= (〈ζτ1,ℸυ
1〉,

〈ξℏ1,ℶγ
1〉) is the LDFN and X > 0. Then,

• ςϑ1
c
= (〈ℸυ

1, ζτ1〉, 〈ℶγ
1, ξℏ1〉);

• Xςϑ1= (〈1−(1−ζτ1)X, ℸυ
1
X
〉, 〈1−(1−ξℏ1)X, ℶγ

1
X
〉);

• ςϑ1
X
= (〈ζτ1

X
, 1−(1−ℸυ

1)X〉, 〈ξℏ1
X
, 1−(1−ℶγ

1)X〉).

Definition 2.6. Riaz and Hashmi (2019) Consider ςϑi= (〈ζτi,ℸυ
i〉,

〈ξℏi,ℶγ
i〉) is the LDFNs with i= 1, 2. Then,

• ςϑ1⊆ ςϑ2⇔ ζτ1 ≤ ζτ2, ℸυ
2≤ ℸυ

1, ξℏ1≤ ξℏ2, ℶγ
2≤ ℶγ

1;
• ςϑ1= ςϑ2⇔ ζτ1 = ζτ2, ℸυ

1= ℸυ
2, ξℏ1= ξℏ2, ℶγ

1= ℶγ
2;

• ςϑ1⊕ ςϑ2 = (〈ζτ1+ζτ2−ζτ1ζτ2,ℸυ
1ℸυ

2〉,〈ξℏ1+ξℏ2−ξℏ1ξℏ2,ℶγ
1ℶγ

2〉);
• ςϑ1⊗ ςϑ2 = (〈ζτ1ζτ2,ℸυ

1+ℸυ
2−ℸυ

1ℸυ
2〉,〈ξℏ1ξℏ2,ℶγ

1+ℶγ
2−ℶγ

1ℶγ
2〉).

Definition 2.7. Riaz and Hashmi (2019) Consider ςϑi= (〈ζτi,ℸυ
i〉,

〈ξℏi,ℶγ
i〉) is the assemblage of LDFNs with i∈ Δ. Then,

•
S
i2Δ

ςϑi ¼ ðhsup
i2Δ

ζτ i; inf
i2Δ

ℸυii; hsup
i2Δ

ξħ i; inf
i2Δ

ℶγ
iiÞ;

•
T
i2Δ

ςϑi ¼ ðhinf
i2Δ

ζτ i; sup
i2Δ

ℸυii; hinf
i2Δ

ξħi; sup
i2Δ

ℶγ
iiÞ.

We offer a graphical depiction of LDFS with a number of various RP
configurations and explain how its assessment space is bigger than that
of IFS and PFS by showing how its assessment space is shown with a
variety of different RP combinations. Figures 1, 2 and 3 show the
comparison of IFS, PFS and LDFS, while Figures 4, 5 and 6 show
the graphical view of LDFS with different pairs of constant RPs.

Figure 1
Graphical depiction of IFSs
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3. Linear Diophantine Fuzzy Aggregation Operators

In this section, we discussed LDFWA operator and LDFWG
operator.

3.1. LDFWA operator

Definition 3.1. Consider ςϑℷ= (〈ζτℷ, ℸυ
ℷ〉, 〈ξℏℷ, ℶγ

ℷ〉) is the
collection of LDFNs, and LDFWA : kn → k, be the mapping.

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ ¼ Pγ
1ς

ϑ
1 �Pγ

2ς
ϑ
2 � . . . ;�Pγ

nς
ϑ
n

(1)

Figure 2
Graphical depiction of PFSs

Figure 3
Graphical depiction of LDFSs

Figure 4
LDFS with 〈ξℏ, ℶγ〉= 〈0.3, 0.4〉

Figure 5
LDFS with 〈ξℏ, ℶγ〉= 〈0.8, 0.1〉

Figure 6
LDFS with 〈ξℏ, ℶγ〉= 〈0.5, 0.5〉
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Then, LDFWA is known as LDFWA operator, where
(Pγ

1;P
γ
2; . . . ;P

γ
n) be the weight vector (WV) with the constraint

Pγ
h> 0 and

P
n
h¼1 P

γ
h ¼ 1.

We might also think about LDFWA operator by employing the
theorem following.

Theorem 3.1. Consider ςϑℷ= (〈ζτℷ, ℸυ
ℷ〉, 〈ξℏℷ, ℶγ

ℷ〉) is the collection
of LDFNs, we also evaluate LDFWA by

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ

¼
 �

1�
Yn

ℷ¼1
ð1� ζτ jÞPγ

ℷ ;
Yn

ℷ¼1
ℸυP

γ j
ℷ

	
;

�
1�

Yn

ℷ¼1
ð1� ξħℷÞPγ j;

Yn

ℷ¼1
ℶγP

γ j
ℷ

	!

(2)

Proof. It is quite simple for the first assertion to come before the
Definition 3.1 and the Theorem 3.1. The following instances
demonstrate this point further:

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ ¼


Pγ

1ς
ϑ
1 �Pγ

2ς
ϑ
2 � . . . ;Pγ

nς
ϑ
n

�

¼
 �

1�
Yn

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Yn

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�Yn

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Yn

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!

In order to demonstrate the validity of this theorem, we turned to
mathematics induction.
For n= 2

Pγ
1ς

ϑ
1 ¼

 �
1� ð1� ζτ1ÞPγ

1 ; ℸυP
γ
1

1

	
;

�
1� ð1� ξħ1ÞPγ

1 ;ℶγP
γ
1

1

	!

Pγ
2ς

ϑ
2 ¼

 �
1� ð1� ζτ2ÞPγ

1 ; ℸυP
γ
1

2

	
;

�
1� ð1� ξħ2ÞPγ

1 ;ℶγP
γ
1

2

	!

Then,

Pγ
1ς

ϑ
1 �Pγ

2ς
ϑ
2

¼
 �

1� ð1� ζτ1ÞPγ
1 ; ℸυP

γ
1

1

	
;

�
1� ð1� ξħ1ÞPγ

1 ;ℶγP
γ
1

1

	!
�

 �
1� ð1� ζτ2ÞPγ

1 ; ℸυP
γ
1

2

	
;

�
1� ð1� ξħ2ÞPγ

1 ;ℶγP
γ
1

2

	!

¼
 �

1� ð1� ζτ1ÞPγ
1 þ 1� ð1� ζτ2ÞPγ

1 �


ð1� ð1� ζτ1ÞPγ

1

�

ð1� ð1� ζτ2ÞPγ

1

�
;

ℸυP
γ
1

1 :ℸυP
γ
1

2

	
;

�
1� ð1� ξħ1ÞPγ

1 þ 1� ð1� ξħ2ÞPγ
1 �



ð1� ð1� ξħ1ÞPγ

1

�


1� ð1� ξħ2ÞPγ

1

�
; ℶγP

γ
1

1 :ℶγP
γ
1

2

	!

¼
 �

1� ð1� ζτ1ÞPγ
1ð1� ζτ2ÞPγ

1 ; ℸυP
γ
1

1 :ℸυP
γ
1

2

	
;

�
1� ð1� ξħ1ÞPγ

1ð1� ξħ2ÞPγ
1 ;ℶγP

γ
1

1 :ℶγP
γ
1

2

	!

¼
 �

1�
Y2

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Y2

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
1�

Y2

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Y2

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!

This demonstrates that the Equation 2 is correct for the value of n
equal to two; now assuming that the Equation 2 is accurate for the
value of n equal to k, that is,

LDFWAðςϑ1; ςϑ2; . . . ςϑkÞ
¼
 �

1�
Yk

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Yk

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
1�

Yk

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Yk

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!

Now that “n ¼ kþ 1”, according to the operational laws that govern
LDFNs, we obtain,

LDFWAðςϑ1; ςϑ2; . . . ςϑkþ1Þ ¼ LDFWAðςϑ1; ςϑ2; . . . ςϑkÞ �Pγ
ℷς

ϑ
kþ1

¼
 �

1�
Yk

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Yk

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
1�

Yk

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Yk

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!
�

 �
1� ð1� ζτkþ1ÞPγ

kþ1 ; ℸυP
γ
kþ1

kþ1

	
;

�
1� ð1� ξħkþ1ÞPγ

kþ1 ;ℶγP
γ
kþ1

kþ1

	!

¼
 �

1�
Yk

ℷ¼1
ð1� ζτkÞPγ

ℷ þ 1� ð1� ζτkþ1ÞPγ
kþ1 �



1�

Yk

ℷ¼1
ð1� ζτkÞPγ

ℷ

�

1� ð1� ζτkþ1ÞPγ

kþ1

�
;

Yk

ℷ¼1
ℸυP

γ
ℷ

k :ℸυP
γ
kþ1

kþ1

	
;

�
1�

Yk

ℷ¼1
ð1� ξħkÞPγ

ℷ þ 1� ð1� ξħkþ1ÞPγ
kþ1�



1�

Yk

ℷ¼1
ð1� ξħkÞPγ

ℷ

�

1� ð1� ξħkþ1ÞPγ

kþ1

�
;
Yk

ℷ¼1
ℶγP

γ
ℷ

k : ℶγP
γ
kþ1

kþ1

	!

¼
 �

1�
Yk

ℷ¼1
ð1� ζτkÞPγ

ℷð1� ζτkþ1Þkþ1;
Yk

ℷ¼1
ℸυP

γ
ℷ

k : ℸυP
γ
kþ1

kþ1

	
;

�
1�

Yk

ℷ¼1
ð1� ξħkÞPγ

ℷð1� ξħkþ1Þkþ1;
Yk

ℷ¼1
ℶγP

γ
ℷ

k : ℶγP
γ
kþ1

kþ1

	!

¼
 �

1�
Ykþ1

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Ykþ1

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
1�

Ykþ1

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Ykþ1

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!

This demonstrates that the Equation 2 is valid for the value of
n= k+ 1. Then,

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ

¼
 �

1�
Yn

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Yn

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
1�

Yn

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Yn

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!

◻

The next couple of paragraphs will discuss a few of the beneficial
qualities that LDFWA operator has.

Theorem 3.2. Consider ςϑℷ= (〈ζτℷ,ℸυ
ℷ〉,〈ξℏℷ,ℶγ

ℷ〉) is the collection
of LDFNs. If all ςϑℷ are equal, that is, ςϑℷ= ςϑ ∀j, then

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ ¼ ςϑ

Proof. From Definition 3.1, we have

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ ¼ Pγ
1ς

ϑ
1 �Pγ

2ς
ϑ
2 � . . . ;�Pγ

nς
ϑ
n

¼ Pγ
1ς

ϑ �Pγ
2ς

ϑ � . . . ;�Pγ
nς

ϑ

¼ ðPγ
1 þPγ

2 þ . . .þPγ
nÞςϑ

¼ ςϑ

◻

Corollary 3.1. If ςϑℷ= (〈ζτℷ, ℸυ
ℷ〉, 〈ξℏℷ, ℶγ

ℷ〉) is the collection of
absolute LDFNs, that is, ςϑℷ= 〈(1,0), (1,0)〉 for all j, then

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ ¼ hð1; 0Þ; ð1; 0Þi

Proof. It should not be difficult for us to find a corollary that
is analogous to the Theorem 3.2. □
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Theorem 3.3. (Monotonicity) Assume that ςϑℷ= (〈ζτℷ,ℸυ
ℷ〉, 〈ξℏℷ,

ℶγ
ℷ〉) and ςϑ*ℷ= (〈ζτ*ℷ, ℸυ*

ℷ〉, 〈ξℏ*ℷ, ℶγ*
ℷ〉) are the assemblages

of LDFNs, If ζτ*ℷ≥ ζτℷ, ℸυ*
ℷ≤ ℸυ

ℷ, ξℏ*ℷ≥ ξℏℷ and ℶγ*
ℷ≤ ℶγ

ℷ for
all j, then

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ � LDFWAðςϑ�1; ςϑ�2; . . . ςϑ�nÞ

Proof. Here, ζτ*ℷ≥ ζτℷ and ℸυ*
ℷ≤ ℸυ

ℷ for all j, If ζτ*ℷ≥ ζτℷ.
⇔ ζτ*ℷ≥ ζτℷ ⇔ 1− ζτ*ℷ≤ 1− ζτℷ

⇔ (1−ζτ*ℷ)P
γ
ℷ ≤ (1−ζτℷ)P

γ
ℷ

,Qn
ℷ¼1ð1� ζτ�ℷÞP

γ
ℷ � Qn

ℷ¼1ð1� ζτℷÞPγ
ℷ

, 1�Qn
ℷ¼1ð1� ζτℷÞPγ

ℷ � 1�Qn
ℷ¼1ð1� ζτ�ℷÞP

γ
ℷ

Again,
ξℏℷ*≥ ξℏℷ and ℶγ

ℷ*≤ ℶγ
ℷ for all j, If ξℏℷ*≥ ξℏℷ.

⇔ ξℏℷ*≥ ξℏℷ ⇔ 1− ξℏℷ*≤ 1− ξℏℷ

⇔ (1−ξℏℷ*)P
γ
ℷ ≤ (1−ξℏℷ)P

γ
ℷ

,Qn
ℷ¼1ð1� ξħ�ℷÞP

γ
ℷ � Qn

ℷ¼1ð1� ξħℷÞPγ
ℷ

, 1�Qn
ℷ¼1ð1� ξħℷÞPγ

ℷ � 1�Qn
ℷ¼1ð1� ξħ�ℷÞP

γ
ℷ

Now,
ℸυ

ℷ*≤ ℸυ
ℷ.

⇔ (ℸυ
ℷ*)P

γ
ℷ ≤ (ℸυ

ℷ)P
γ
ℷ

,Qn
ℷ¼1ðℸυ�ℷÞP

γ
ℷ � Qn

ℷ¼1ðℸυℷÞPγ
ℷ

And,
ℶγ

ℷ*≤ ℶγ
ℷ.

⇔ (ℶγ
ℷ*)P

γ
ℷ ≤ (ℶγ

ℷ)P
γ
ℷ

,Qn
ℷ¼1ðℶγ�

ℷÞP
γ
ℷ �Qn

ℷ¼1ðℶγ
ℷÞPγ

ℷ

Let

ςϑ ¼ LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ

and

ςϑ� ¼ LDFWAðςϑ�1; ςϑ�2; . . . ςϑ�nÞ

We get that ςϑ� � ςϑ. So,

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ � LDFWAðςϑ�1; ςϑ�2; . . . ςϑ�nÞ

Theorem 3.4. Assume that ςϑℷ= (〈ζτℷ,ℸυ
ℷ〉,〈ξℏℷ,ℶγ

ℷ〉) and ϝγℷ=
(〈ϕℷ,φℷ〉,〈K ℷ, M ℷ〉) are two families of LDFNs. If r> 0 and
ϝγ= (〈ζτϝγ,ℸυ

ϝ
γ〉,〈ξℏϝγ,ℶγ

ϝ
γ〉) is a LDFN, then

1. LDFWA(ςϑ1⊕ ϝγ, ςϑ2⊕ ϝγ, : : : ςϑn⊕ ϝγ)= LDFWA(ςϑ1, ςϑ2, : : : ςϑn)⊕ ϝγ

2. LDFWA(rςϑ1, rςϑ2, : : : rςϑn)= r LDFWA(ςϑ1, ςϑ2, : : : ςϑn)
3. LDFWA(ςϑ1 ⊕ ϝγ1, ςϑ2 ⊕ ϝγ2, : : : ςϑn ⊕ ϝγn)= LDFWA(ςϑ1, ςϑ2, : : :

ςϑn)⊕ LDFWA(ϝγ1, ϝγ2, : : : ϝγn)
4. LDFWA(rςϑ1⊕ ϝγ, rςϑ2⊕ ϝγ, : : :⊕ rςϑn⊕ ϝγ) = r LDFWA(ςϑ1, ςϑ2, : : :

ςϑn)⊕ ϝγ

Proof. Here, we just proof 1 and 3,
1.
Since

ςϑℷ � ϝγ ¼
 �

1� ð1� ζτℷÞð1� ζτϝγ Þ; ℸυℷℸυϝγ
�
;
�
1� ð1� ξħℷÞð1� ξħϝγ Þ;ℶγ

ℷℶγ
ϝγ

�!

By Theorem 3.1,

LDFWAðςϑ1 � ϝγ ; ςϑ2 � ϝγ ; . . . ςϑn � ϝγÞ

¼
 �

ð1�
Yn

ℷ¼1

�
ð1� ζτℷÞð1� ζτϝγ Þ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
ℸυϝγℸ

υ
ℷ

�
Pγ

ℷ

	
;

�
ð1�

Yn

ℷ¼1

�
ð1� ξħℷÞð1� ξħϝγ Þ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
ℶγ

ϝγℶγ
ℷ

�
Pγ

ℷ

	!

¼
 �

ð1�
�
1� ζτϝγ

�
Pγ

ℷ
Yn

ℷ¼1

�
1� ζτℷ

�
Pγ

ℷ
;
�
ℸυϝγ

�
Pγ

ℷ
Yn

ℷ¼1

�
ℸυℷ
�
Pγ

ℷ

	
;

�
ð1�

�
1� ξħϝγ

�
Pγ

ℷ
Yn

ℷ¼1

�
1� ξħℷ

�
Pγ

ℷ
;
�
ℶγ

ϝγ

�
Pγ

ℷ
Yn

ℷ¼1

�
ℶγ

ℷ

�
Pγ

ℷ

	!

¼
 �

ð1�
�
1� ζτϝγ

�Yn

ℷ¼1

�
1� ζτℷ

�
Pγ

ℷ
;
�
ℸυϝγ

�Yn

ℷ¼1

�
ℸυℷ
�
Pγ

ℷ

	
;

�
ð1�

�
1� ξħϝγ

�Yn

ℷ¼1

�
1� ξħℷ

�
Pγ

ℷ
;
�
ℶγ

ϝγ

�Yn

ℷ¼1

�
ℶγ

ℷ

�
Pγ

ℷ

	!

Now, by operational laws of LDFNs,

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ � ϝγ

¼
 �

ð1�
Yn

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Yn

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
ð1�

Yn

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Yn

ℷ¼1
ℶγP

γ
ℷ

ℷ

	
�

ðhζτϝγ ; ℸυϝγ i; hξħϝγ ;ℶγ
ϝγ iÞ
�

¼
 �

ð1�
�
1� ζτϝγ

�Yn

ℷ¼1

�
1� ζτℷ

�
Pγ

ℷ
;
�
ℸυϝγ

�Yn

ℷ¼1

�
ℸυℷ
�
Pγ

ℷ

	
;

�
ð1�

�
1� ξħϝγ

�Qn
ℷ¼1

�
1� ξħℷ

�
Pγ

ℷ
;
�
ℶγ

ϝγ

�Qn
ℷ¼1

�
ℶγ

ℷ

�
Pγ

ℷ

	!

Thus,

LDFWAðςϑ1 � ϝγ ; ςϑ2 � ϝγ ; . . . ςϑn � ϝγÞ ¼ LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ � ϝγ

3.
According to Theorem 3.1,

q-ROFWAðςϑ1 � ϝγ2; ς
ϑ
2 � ϝγ2; . . . ς

ϑ
n � ϝγnÞ

¼
 �

1�
Yn

ℷ¼1

�
ð1� ζτℷÞð1� φℷÞ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
ϕℷℸ

υ
ℷ

�
Pγ

ℷ

	
;

�
1�

Yn

ℷ¼1

�
ð1� ξħℷÞð1�K ℷÞ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
M ℷℶγ

ℷ

�
Pγ

ℷ

	!

¼
 �

1�
Yn

ℷ¼1

�
1� φℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
1� ζτℷ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
ϕℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
ℸυℷ
�
Pγ

ℷ

	
;

�
1�

Yn

ℷ¼1

�
1�K ℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
1� ξħℷ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
M ℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
ℶγ

ℷ

�
Pγ

ℷ

	!
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Now,

LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ � LDFWAðϝγ1; ϝγ2; . . . ϝγnÞ

¼
 �

1�
Yn

ℷ¼1
ð1� ζτℷÞPγ

ℷ ;
Yn

ℷ¼1
ℸυP

γ
ℷ

ℷ

	
;

�
1�

Yn

ℷ¼1
ð1� ξħℷÞPγ

ℷ ;
Yn

ℷ¼1
ℶγP

γ
ℷ

ℷ

	!
�

 �
1�

Yn

ℷ¼1
ð1� φℷÞPγ

ℷ ;
Yn

ℷ¼1
ϕ
Pγ

ℷ
ℷ

	
;

�
1�

Yn

ℷ¼1
ð1�K ℷÞPγ

ℷ ;
Yn

ℷ¼1
MPγ

ℷ
ℷ

	!

¼
 �

1�
Yn

ℷ¼1

�
1� φℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
1� ζτℷ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
ϕℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
ℸυℷ
�
Pγ

ℷ

	
;

�
1�

Yn

ℷ¼1

�
1�K ℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
1� ξħℷ

�
Pγ

ℷ
;
Yn

ℷ¼1

�
M ℷ

�
Pγ

ℷ
Yn

ℷ¼1

�
ℶγ

ℷ

�
Pγ

ℷ

	!

Thus,

LDFWAðςϑ1 � ϝγ2; ς
ϑ
2 � ϝγ2; . . . ςϑn � ϝγnÞ ¼ LDFWAðςϑ1; ςϑ2; . . . ςϑnÞ � LDFWAðϝγ1; ϝγ2; . . . ϝγnÞ

□

3.2. LDFWG operator

Definition 3.2. Consider ςϑℷ= (〈ζτℷ, ℸυ
ℷ〉, 〈ξℏℷ, ℶγ

ℷ〉) is the
collection of LDFNs and LDFWG : kn → k be the mapping.

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ ¼ ςϑ
Pγ

1
1 � ςϑ

Pγ
2

2 � . . . ;�ςϑ
Pγ

n
n (3)

then the mapping LDFWG is called LDFWG operator, where (Pγ
1;

Pγ
2; . . . ;P

γ
n) be the WV with the constraint Pγ

i > 0 andP
n
i¼1 P

γ
i ¼ 1.

We might also think about LDFWG operator by employing the
theorem following.

Theorem 3.5. Assume that ςϑℷ= (〈ζτℷ,ℸυ
ℷ〉,〈ξℏℷ,ℶγ

ℷ〉) is the
collection of LDFNs, we also evaluate LDFWG by

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ
¼
 �Yn

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Yn

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Yn

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Yn

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!

(4)

Proof. It is quite simple for the first assertion to come before the
Definition 3.2 and the Theorem 3.5. The following instances
demonstrate this point further:

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ ¼ ςϑ
Pγ

1
1 � ςϑ

Pγ
2

2 � . . . ;�ςϑ
Pγ

n
n

¼
 �Yn

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Yn

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Yn

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Yn

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!

In order to demonstrate the validity of this theorem, we turned to
mathematics induction.
For n= 2

ςϑ
Pγ

1
1 ¼

��
ζτ

Pγ
1

1 ; 1� ð1� ℸυ1ÞPγ
1


;
�
ξħ

Pγ
1

1 ; 1� ð1� ℶγ
1ÞPγ

1

�

ςϑ
Pγ

2
2 ¼

��
ζτ

Pγ
1

2 ; 1� ð1� ℸυℷÞPγ
1


;
�
ξħ

Pγ
1

2 ; 1� ð1� ℶγ
ℷÞPγ

1

�

Then,

ςϑ
Pγ

1
1 � ςϑ

Pγ
2

2

¼
 �

ζτ
Pγ

1
1 ; 1� ð1� ℸυ1ÞPγ

1

	
;

�
ξħ

Pγ
1

1 ; 1� ð1� ℶγ
1ÞPγ

1

	!
�
 �

ζτ
Pγ

1
2 ; 1� ð1� ℸυℷÞPγ

1

	
;

�
ξħ

Pγ
1

2 ; 1� ð1� ℶγ
ℷÞPγ

1

	!

¼
 �

ζτ
Pγ

1
1 :ζτP

γ
1

2 ; 1� ð1� ℸυ1ÞPγ
1 þ 1� ð1� ℸυℷÞPγ

1 �


1� ð1� ℸυ1ÞPγ

1

�

1� ð1� ℸυℷÞPγ

1

�	
;

�
ξħ

Pγ
1

1 :ξħP
γ
1

2 ; 1� ð1� ℶγ
1ÞPγ

1 þ 1� ð1� ℶγ
ℷÞPγ

1�


1� ð1� ℶγ

1ÞPγ
1

�

1� ð1� ℶγ

ℷÞPγ
1

�	!

¼
 �

ζτ
Pγ

1
1 :ζτP

γ
1

2 ; 1� ð1� ℸυ1ÞPγ
1ð1� ℸυℷÞPγ

1

	
;

�
ξħ

Pγ
1

1 :ξħP
γ
1

2 ; 1� ð1� ℶγ
1ÞPγ

1ð1� ℶγ
ℷÞPγ

1

	!

¼
 �Y2

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Y2

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Y2

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Y2

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!
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This shows that Equation 4 is true for n= 2, and now assume that Equation 4 holds for n= k, that is,

LDFWGðςϑ1; ςϑ2; . . . ςϑkÞ ¼
 �Yk

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Yk

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Yk

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Yk

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!

Now n= k+ 1, by operational laws of LDFNs we have

LDFWGðςϑ1; ςϑ2; . . . ςϑkþ1Þ ¼ LDFWGðςϑ1; ςϑ2; . . . ςϑkÞ � ςϑ
Pγ

ℷ
kþ1

¼
 �Yk

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Yk

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Yk

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Yk

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!
�

 �
ζτ

Pγ
kþ1

kþ1 ; 1� ð1� ℸυkþ1ÞPγ
kþ1

	
;

�
ξħ

Pγ
kþ1

kþ1 ; 1� ð1� ℶγ
kþ1ÞPγ

kþ1

	!

¼
 �Yk

ℷ¼1
ζτ

Pγ
ℷ

k :ζτ
Pγ

kþ1

kþ1 ; 1�
Yk

ℷ¼1
ð1� ℸυkÞPγ

ℷð1� ℸυkþ1Þkþ1

	
;

�Yk

ℷ¼1
ξħ

Pγ
ℷ

k :ξħ
Pγ

kþ1
kþ1 ; 1�

Yk

ℷ¼1
ð1� ℶγ

kÞPγ
ℷð1� ℶγ

kþ1Þkþ1

	!

¼
 �Ykþ1

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Ykþ1

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Ykþ1

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Ykþ1

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!

This shows that for n= k+ 1, Equation 2 holds. Then,

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ ¼
 �Yn

ℷ¼1
ζτ

Pγ
ℷ

ℷ ; 1�
Yn

ℷ¼1
ð1� ℸυℷÞPγ

ℷ

	
;

�Yn

ℷ¼1
ξħ

Pγ
ℷ

ℷ ; 1�
Yn

ℷ¼1
ð1� ℶγ

ℷÞPγ
ℷ

	!

□

Theorem 3.6. Assume that ςϑℷ= (〈ζτℷ,ℸυ
ℷ〉,〈ξℏℷ,ℶγ

ℷ〉) is the
collection of LDFNs. If all ςϑℷ are equal, that is, ςϑℷ= ςϑ ∀j, then

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ ¼ ςϑ

Proof. From Definition 3.1, we have

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ ¼ ςϑ
Pγ

1
1 � ςϑ

Pγ
2

2 � . . . ;�ςϑ
Pγ

n
n

¼ ςϑP
γ
1 � ςϑP

γ
2 � . . . ;�ςϑP

γ
n

¼ ςϑ

□

Corollary 3.2. If ςϑℷ= (〈ζτℷ, ℸυ
ℷ〉, 〈ξℏℷ, ℶγ

ℷ〉) is the collection of
absolute LDFNs, that is, ςϑℷ= (〈1,0〉, 〈1,0〉) for all j, then

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ ¼ ðh1; 0i; h1; 0iÞ

Proof. Wecan easily obtainCorollary similar to the Theorem3.2.□

Theorem 3.7. Assume that ςϑℷ= (〈ζτℷ, ℸυ
ℷ〉, 〈ξℏℷ, ℶγ

ℷ〉) and ςϑℷ* =
(〈ζτ*ℷ, ℸυ*

ℷ〉, 〈ξℏ*ℷ, ℶγ*
ℷ〉) are the assemblages of LDFNs. If ζτ*ℷ≥

ζτℷ, ℸυ*
ℷ ≤ ℸυ

ℷ, ξℏ*ℷ ≥ ξℏℷ and ℶγ*
ℷ ≤ ℶγ

ℷ for all j, then

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ � LDFWGðςϑ�1; ςϑ�2; . . . ςϑ�nÞ

Proof. Here, ℸυ*
ℷ≥ ℸυ

ℷ and ζτ*ℷ≤ ζτℷ for all j, If ℸυ*
ℷ≥ ℸυ

ℷ.

⇔ℸυ*
ℷ≥ ℸυ

ℷ ⇔ 1− ℸυ*
ℷ≤ 1− ℸυ

ℷ

⇔ (1−ℸυ*
ℷ)P

γ
ℷ ≤ (1−ℸυ

ℷ)P
γ
ℷ

,Qn
ℷ¼1ð1� ℸυ�ℷÞP

γ
ℷ � Qn

ℷ¼1ð1� ℸυℷÞPγ
ℷ

, 1�Qn
ℷ¼1ð1� ℸυℷÞPγ

ℷ � 1�Qn
ℷ¼1ð1� ℸυ�ℷÞP

γ
ℷ

And,
ℶγ*

ℷ≥ ℶγ
ℷ and ξℏ*ℷ≤ ξℏℷ for all j, If ℶγ*

ℷ≥ ℶγ
ℷ.

⇔ℶγ*
ℷ≥ ℶγ

ℷ ⇔ 1− ℶγ*
ℷ≤ 1− ℶγ

ℷ

⇔ (1−ℶγ*
ℷ)P

γ
ℷ ≤ (1−ℶγ

ℷ)P
γ
ℷ

,Qn
ℷ¼1ð1� ℶγ�

ℷÞP
γ
ℷ � Qn

ℷ¼1ð1� ℶγ
ℷÞPγ

ℷ

, 1�Qn
ℷ¼1ð1� ℶγ

ℷÞPγ
ℷ � 1�Qn

ℷ¼1ð1� ℶγ�
ℷÞP

γ
ℷ

Now,

ζτ*ℷ≤ ζτℷ.

⇔ (ζτ*ℷ)P
γ
ℷ ≤ (ζτℷ)P

γ
ℷ ,Qn

ℷ¼1ðζτ�ℷÞP
γ
ℷ �Qn

ℷ¼1ðζτℷÞPγ
ℷ
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And,
ξℏ*ℷ≤ ξℏℷ.

⇔ (ξℏ*ℷ)P
γ
ℷ ≤ (ξℏℷ)P

γ
ℷ

,Qn
ℷ¼1ðξħ�ℷÞP

γ
ℷ � Qn

ℷ¼1ðξħℷÞPγ
ℷ

Let

ςϑ ¼ LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ

and

ςϑ� ¼ LDFWGðςϑ�1; ςϑ�2; . . . ςϑ�nÞ

We get that ςϑ� � ςϑ. So,

LDFWGðςϑ1; ςϑ2; . . . ςϑnÞ � LDFWGðςϑ�1; ςϑ�2; . . . ςϑ�nÞ

□

Theorem 3.8. Assume that ςϑℷ= (〈ζτℷ,ℸυ
ℷ〉,〈ξℏℷ,ℶγ

ℷ〉) and ϝγℷ=
(〈φℷ,ϕℷ〉, 〈K ℷ, M ℷ〉) are two families of LDFNs. If r> 0 and
ϝγ= (〈ζτϝγ, ℸυ

ϝ
γ〉, 〈ξℏϝγ, ℶγ

ϝ
γ〉) is a LDFN, then

1. LDFWG(ςϑ1 ⊕ ϝγ,ςϑ2 ⊕ ϝγ, : : : ςϑn ⊕ ϝγ)= LDFWG(ςϑ1,ςϑ2, : : : ςϑn)⊕ ϝγ

2. LDFWG(rςϑ1,rςϑ2, : : : rςϑn)= r LDFWG(ςϑ1,ςϑ2, : : : ςϑn)
3. LDFWG(ςϑ1 ⊕ ϝγ1,ςϑ2 ⊕ ϝγ2, : : : ςϑn ⊕ ϝγn)= LDFWG(ςϑ1,ςϑ2, : : :

ςϑn)⊕ LDFWG(ϝγ1,ϝγ2, : : : ϝγn)
4. LDFWG(rςϑ1 ⊕ ϝγ, rςϑ2 ⊕ ϝγ, : : :⊕ rςϑn ⊕ ϝγ)= r LDFWG(ςϑ1,ςϑ2, : : :

ςϑn)⊕ ϝγ

Proof. The proof of this theorem is same as Theorem 3.4. □

4. Proposed Methodology Based on Developed AOs

Let T ℷ ¼ fT ℷ
1 ;T

ℷ
2 ; . . . ;T

ℷ
mg and G˘ζ ¼ fG˘ζ1;G˘ζ2; . . . ;

G˘ζngare the alternatives and criterion, respectively. DM offered his
judgment matrix D= (ℵij

k)m× n, in which ℵij
k stands for the alternate

T ℷ
i ∈T ℷ as per the parameter G˘ζℷ 2 G˘ζ by DM. The matrix

D has converted into “normalized matrix” by the given formula
“Y ¼ ðςϑ}ij Þm	n”,

ðςϑ}ij Þm	n ¼
ð@ijÞc; j 2 τc
@ij; j 2 τb

:

�
(5)

where (ℵij
k)c denotes the compliment of ℵij

k.

The MCDM will be updated to include the suggested operators,
which will make the previously described processes necessary.

Algorithm

Step 1: Acquire the judgment matrix D= (ℵij
k)m × n based on LDFNs

from DMs.

G˘1

G˘2

G˘n

G˘1 G˘2 G˘n

ðhζτ11; ℸυ11i; hξħ11;ℶγ
11iÞ ðhζτ12; ℸυ12i; hξħ12;ℶγ

12iÞ 
 
 
 
 
 
 ðhζτ1n; ℸυ1ni; hξħ1n;ℶγ
1niÞ

ðhζτ21; ℸυ21i; hξħ21;ℶγ
21iÞ ðhζτ22; ℸυ22i; hξħ22;ℶγ

22iÞ 
 
 
 
 
 
 ðhζτ2n; ℸυ2ni; hξħ2n;ℶγ
2niÞ

..

. ..
. ..

. ..
. ..

.

ðhζτm1; ℸ
υ
m1i; hξħm1;ℶγ

m1iÞ ðhζτm2; ℸ
υ
m2i; hξħm2;ℶγ

m2iÞ 
 
 
 
 
 
 ðhζτmn; ℸ
υ
mni; hξħmn;ℶγ

mniÞ

2
66666664

3
77777775

Step 2: There is no need for normalization if all indicators are of the
same kind. The matrix D has amended to “transforming response
matrix, Y= (ςϑij℘)m × n” by Equation 5.

Step 3:Aggregateℛij
S for all alternatesT ℷ

i by utilizing the LDFWA
(LDFWG) operator.

ℛS
ij ¼ LDFWAðςϑ}i1; ςϑ}i2; . . . ςϑ}inÞ

or

ℛS
ij ¼ LDFWGðςϑ}i1; ςϑ}i2; . . . ςϑ}inÞ

Step 4: Compute the score against all the alternatives.

Step 5: The SF was used to classify the alternatives, and the most
appropriate option was chosen.

5. MCDM Example

MCDM is a method used to evaluate and select among multiple
options, taking into account multiple criteria or factors that are
important to the DM. In the field of agriculture, MCDM can be
used to help farmers, researchers, and policymakers make more
informed decisions about crop selection, land use, and other
important agricultural activities. One important application of
MCDM in agriculture is in crop selection. When choosing which
crops to plant, farmers need to consider factors such as the
climate, soil type, water availability, market demand, and potential
yields. By using MCDM, farmers can evaluate multiple options
and select the one that best meets their needs and goals. For
example, a farmer might use MCDM to compare the yield
potential and water requirements of different varieties of wheat
and select the one that offers the best balance between these two
factors.

Another important application of MCDM in agriculture is in
land use planning. When deciding how to use land, policymakers
and researchers need to consider factors such as the potential for
crop production, the impact of different land uses on the
environment, and the social and economic benefits of different
land uses. MCDM can help DMs evaluate different options and
identify the one that offers the best overall balance of these
factors. MCDM can also be used to support sustainable
agricultural practices by assessing and prioritizing the different
ecological and socioeconomic aspects of a system. It could also
assist to evaluate the tradeoffs and benefits of different
management practices and support technology/innovation adoption.

In Pakistan, agriculture is a major contributor to the economy
and a source of livelihood for many people. However, the country
faces several challenges in this sector, including water scarcity,
land degradation, and the impact of climate change. By using
MCDM, DMs in Pakistan can work to address these challenges
and promote sustainable agricultural practices that benefit both
farmers and the environment. MCDM methods allow DMs to take
into account multiple criteria and provide a transparent, systematic
way to evaluate different options. Overall, MCDM can be a
valuable tool for farmers, researchers, and policymakers in the
field of agriculture, particularly in Pakistan, as it allows for
comprehensive and systematic evaluations of different options and
their tradeoffs, based on the criteria that are important to the DMs.

Agriculture is a significant contributor to Pakistan’s economy,
accounting for 18.9 percent of the country’s gross domestic product
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and employing 42.3 percent of the labor force. In addition to this, it is
a significant source of revenues from international commerce and it
encourages growth in a variety of other areas. To boost development
in this field, the public authority is focusing on aiding small and
marginalized ranchers and pushing limited scope creative
solutions. The sixth population and housing census that was
conducted in Pakistan in 2017 revealed that the country’s overall
population is expanding at a pace of 2.4 percent on an annual
basis. Demand for goods produced by agriculture is expected to
rise as a result of the fast population expansion. The current
administration is centered on advancing this area and has begun
various measures, for example, crop expansion, decreasing
increase rates, proficient utilization of water, and advancement of
high worth yields including biotechnology, agribusiness credit
advancement, subsidized manure costs, and modest power for
negritude wells. As a result, this current area’s exhibition
expanded complicated after undergoing moderate and slowed
expansion over the previous 13 years.

Considering the decision-making challenge of determining the
best agricultural land. Assume the collection of choices, T ℷ

1 , T
ℷ
2 ,

T ℷ
3 and T ℷ

4 , also considering four criterions, ℘ℜ
1 = irrigation,

℘ℜ
2 = cost,℘ℜ

3 = soil and℘ℜ
4 = processing industry and market.

Assuming that the criteria were weighted as (0.25,0.40,0.20,0.15).

Algorithm

5.1. With LDFWA operator

Step 1: Obtain matrix D= (ℵij
k)m × n by DM, which is shown in

Table 1.

Step 2: In this case, G˘ζ2 criteria is cost type criteria, and all are the
benefits types, so there is need of normalization. Normalized LDF
decision matrix is given in Table 2.

Step 3: Aggregate the LDF values ℛS
ij for all T ℷ

i using LDFWA
operator, given in Table 3.

Step 4: Compute the score for all LDF-aggregated values ℛS
i.

ℶ̆ℷðℛS
1Þ ¼ 0:497566

ℶ̆ℷðℛS
2Þ ¼ 0:539431

ℶ̆ℷðℛS
3Þ ¼ 0:493341

ℶ̆ℶℷðℛS
4Þ ¼ 0:508249

Step 5: Ranks according to SFs.

ℛS
2 � ℛS

4 � ℛS
1 � ℛS

3

So,

T ℷ
2 � T ℷ

1 � T ℷ
4 � T ℷ

3

T ℷ
2 is best alternative among all other alternatives.

Table 1
Rating given by DM

G˘ζ1 G˘ζ 2 G˘ζ 3 G˘ζ 4

T ℷ
1 (〈0.50,0.85〉,〈0.30,0.10〉) (〈0.45,0.70〉,〈0.25,0.20〉) (〈0.65,0.75〉,〈0.45,0.25〉) (〈0.85,0.80〉,〈0.40,0.20〉)

T ℷ
2 (〈0.80,0.90〉,〈0.45,0.15〉) (〈0.45,0.65〉,〈0.55,0.35〉) (〈0.75,0.45〉,〈0.40,0.30〉) (〈0.65,0.85〉,〈0.45,0.35〉)

T ℷ
3 (〈0.35,0.65〉,〈0.50,0.20〉) (〈0.65,0.95〉,〈0.25,0.65〉) (〈0.45,0.90〉,〈0.30,0.45〉) (〈0.55,0.95〉,〈0.50,0.30〉)

T ℷ
4 (〈0.50,0.50〉,〈0.50,0.25〉) (〈0.90,0.55〉,〈0.50,0.40〉) (〈0.45,0.65〉,〈0.35,0.50〉) (〈0.35,0.65〉,〈0.30,0.20〉)

Table 2
Normalized LDF decision matrix

G˘ζ1 G˘ζ 2 G˘ζ 3 G˘ζ 4

T ℷ
1 (〈0.50,0.85〉,〈0.30,0.10〉) (〈0.70,0.45〉,〈0.20,0.25〉) (〈0.65,0.75〉,〈0.45,0.25〉) (〈0.85,0.80〉,〈0.40,0.20〉)

T ℷ
2 (〈0.80,0.90〉,〈0.45,0.15〉) (〈0.65,0.45〉,〈0.35,0.55〉) (〈0.75,0.45〉,〈0.40,0.30〉) (〈0.65,0.85〉,〈0.45,0.35〉)

T ℷ
3 (〈0.35,0.65〉,〈0.50,0.20〉) (〈0.95,0.65〉,〈0.65,0.25〉) (〈0.45,0.90〉,〈0.30,0.45〉) (〈0.55,0.95〉,〈0.50,0.30〉)

T ℷ
4 (〈0.50,0.50〉,〈0.50,0.25〉) (〈0.55,0.90〉,〈0.40,0.50〉) (〈0.45,0.65〉,〈0.35,0.50〉) (〈0.35,0.65〉,〈0.30,0.20〉)

Table 3
LDF-aggregated values ℛS

i

ℛS
1 (〈0.596248,0.760098〉,〈0.32997,0.175855〉)

ℛS
2 (〈0.769462,0.522578〉,〈0.523542,0.612701〉)

ℛS
3 (〈0.503278,0.624946〉,〈0.708147,0.613116〉)

ℛS
4 (〈0.482460,0.581847〉,〈0.532108,0.399725〉)
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5.2. With LDFWG operator

Step 1: Obtain matrix D= (ℵij
k)m × n by DM, which is shown in

Table 4.

Step 2: In this case,G˘ζ2 criteria is cost type criteria all are the benefits
types, so there is need of normalization. Normalized LDF decision
matrix given in Table 5.

Step 3: Aggregate the LDF values ℛS
ij for all T ℷ

i using LDFWG
operator, given in Table 6.

Step 4: Compute the score for all LDF-aggregated values ℛS
i.

ℶ̆ℷðℛS
1Þ ¼ 0:476266

ℶ̆ℷðℛS
2Þ ¼ 0:480777

ℶ̆ℷðℛS
3Þ ¼ 0:345333

ℶ̆ℷðℛS
4Þ ¼ 0:456474

Step 5: Ranks according to SFs.

ℛS
2 � ℛS

1 � ℛS
4 � ℛS

3

So,

T ℷ
2 � T ℷ

1 � T ℷ
4 � T ℷ

3

T ℷ
2 is best alternative among all other alternatives.

6. Conclusion

MCDM is a significant real-world decision issue, and its most
fundamental and essential research is the expression of imprecise

information. IFSs, PFSs, and q-ROFSs are all effective methods for
handling fuzzy information. LDFSs are more generic than IFS, PFS,
and q-ROFS due to their ability to loosen the severe limitations of
IFS, PFS, and q-ROFS by considering RPs. MCDM is a crucial
subfield in operation research. This assignment’s techniques mostly
rely on the nature of the issue being evaluated. Our everyday
occurrences include unpredictability, imprecision, and obscurity.
Existing structures were constructed on the basis of the concept that
DMs consider specific limitations while assessing various choices
and qualities. However, this kind of situation makes it difficult for
DMs to allocate MSDs and NMSDs; therefore, they do so with
different constraints. LDFS is a novel method to uncertainty and
decision-making issues that incorporates pairs of RPs versus MSDs
and NMSDs in order to loosen these limits. We have used LDFSs to
assess the validity of DMs’ knowledge in the basic framework and
to remove any distortion in the decision analysis. The significant
advantage of including RPs into the examination is to reduce the
likelihood of theoretical knowledge-based MSD and NMSD-related
mistakes. In addition, we have developed a number of AOs,
including the LDFWA operator and the LDFWG operator.
Numerous intriguing aspects of the suggested operators are
investigated, and their illustration is convincingly shown.
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Table 4
Rating given by DM

G˘ζ1 G˘ζ 2 G˘ζ 3 G˘ζ 4

T ℷ
1 (〈0.50,0.85〉,〈0.30,0.10〉) (〈0.45,0.70〉,〈0.25,0.20〉) (〈0.65,0.75〉,〈0.45,0.25〉) (〈0.85,0.80〉,〈0.40,0.20〉)

T ℷ
2 (〈0.80,0.90〉,〈0.45,0.15〉) (〈0.45,0.65〉,〈0.55,0.35〉) (〈0.75,0.45〉,〈0.40,0.30〉) (〈0.65,0.85〉,〈0.45,0.35〉)

T ℷ
3 (〈0.35,0.65〉,〈0.50,0.20〉) (〈0.65,0.95〉,〈0.25,0.65〉) (〈0.45,0.90〉,〈0.30,0.45〉) (〈0.55,0.95〉,〈0.50,0.30〉)

T ℷ
4 (〈0.50,0.50〉,〈0.50,0.25〉) (〈0.90,0.55〉,〈0.50,0.40〉) (〈0.45,0.65〉,〈0.35,0.50〉) (〈0.35,0.65〉,〈0.30,0.20〉)

Table 5
Normalized LDF decision matrix

G˘ζ1 G˘ζ 2 G˘ζ 3 G˘ζ 4

T ℷ
1 (〈0.50,0.85〉,〈0.30,0.10〉) (〈0.70,0.45〉,〈0.20,0.25〉) (〈0.65,0.75〉,〈0.45,0.25〉) (〈0.85,0.80〉,〈0.40,0.20〉)

T ℷ
2 (〈0.80,0.90〉,〈0.45,0.15〉) (〈0.65,0.45〉,〈0.35,0.55〉) (〈0.75,0.45〉,〈0.40,0.30〉) (〈0.65,0.85〉,〈0.45,0.35〉)

T ℷ
3 (〈0.35,0.65〉,〈0.50,0.20〉) (〈0.95,0.65〉,〈0.65,0.25〉) (〈0.45,0.90〉,〈0.30,0.45〉) (〈0.55,0.95〉,〈0.50,0.30〉)

T ℷ
4 (〈0.50,0.50〉,〈0.50,0.25〉) (〈0.55,0.90〉,〈0.40,0.50〉) (〈0.45,0.65〉,〈0.35,0.50〉) (〈0.35,0.65〉,〈0.30,0.20〉)

Table 6
LDF-aggregated values ℛS

i

ℛS
1 (〈0.547045,0.771117〉,〈0.315797,0.18666〉)

ℛS
2 (〈0.581468,0.547835〉,〈0.469927,0.700454〉)

ℛS
3 (〈0.442722,0.812834〉,〈0.547528,0.796085〉)

ℛS
4 (〈0.461491,0.670541〉,〈0.503649,0.468701〉)
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