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Abstract: Leave-One-Outscores provide estimates of feature importance in neural networks for adversarial attacks. In this work, we present
context-free word scores as a query-efficient alternative. Experiments show that these approximations are quite effective for black-box attacks
on neural networks trained for text classification, particularly for CNNs. The model query count for this method scales as O(vocab_size
*model_input_length). It is independent of the number of examples and features to be perturbed.
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1. Introduction

Identifying important features in the input is the first step in
attacking a neural network, resulting in an incorrect prediction. In
the black-box setting, without access to network parameters,
expensive queries are used to determine feature importance. We
show the effectiveness of an approximate feature importance
technique for word level CNNs and LSTMs, for the task of
sentiment analysis and topic classification.

Determining the relative importance of various parts of an input is
required in different scenarios, for example, interpretation and
adversarial attacks. For neural networks, Leave-One-Out (LOO)
(Li et al., 2019) is a popular technique for determining the importance
of different parts of input and layers. Importance scores help in
interpreting decisions (why did a neural network make a certain
prediction) as well as adversarial attacks (which input features, when
perturbed, would be most impactful in changing network decisions?)

For example, in black-box attacks on text classification,
important words are located through the LOO approach.
Afterwards, they are either deleted from the text, replaced by an
Out-Of-Vocabulary (OOV) token, or replaced by another word, to
create an adversarial input.

For word level classifiers, the LOO technique entails deleting a
word from a piece of text and comparing model prediction on this
modified input to original prediction. This change in model
prediction is the importance score for this word (feature for word
level networks). Without access to network parameters, determining
LOO importance can be expensive in terms of model queries, since
LOO scores for a word will be different for different input examples.

Quickly locating important words in a piece of text is of
particular importance in the scenario when querying the model

has a specific cost, and attacks are carried out on a large number
of input samples. For this problem, we propose an efficient
method for calculating word importance. We use these importance
scores for black-box attacks and demonstrate that their attack
success rate is comparable to the original methods, particularly for
CNNs. The motivation for our approximate scoring algorithm
comes from the fact that in a piece of text, most of the time,
words and phrases have a strong influence on their own. This
gives us a rationale for looking at single word predictions, in
direct contrast to the LOO technique. Experiments confirm that
this technique is quite effective at locating important words in text.

2. Literature Review

2.1. Adversarial attacks on NLP models

Adversarial attacks highlight the vulnerabilities present in a
model. They also give us some insight into how a trained model
operates, by locating the features a model considers to be
important.

We limit our analysis to word replacement attacks on
text classification models, using sentiment analysis and topic
classification as examples. We only consider the attack scenarios in
which specific words in the input are replaced by valid words from
the dictionary. This excludes attacks in which extra information is
appended to input data, or where word replacements purposefully
introduce spelling errors. The former take an entirely different
approach; the latter introduce errors and do not preserve semantics.
In addition, training a neural network to be robust to spelling errors
would stop these attacks. Our analysis is related to the black-box
setting, where the attacker has no information about model
architectures and parameters. A brief overview of adversarial attacks
on NLP models is presented below.
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2.2. Find and replace attacks on text classification

Most attacks on text classification solve the problem in two
parts: by locating important words in the input and by finding
suitable replacements for these words. We consider attacks where
substitutions are valid words picked from a dictionary, to avoid
introducing grammatical errors. Thus, we ignore the case, for
example, when spelling errors are introduced in important words.

In the white-box setting, where an attacker has full knowledge of
the model architecture, gradients serve as a good proxy for word
importance. Gong et al. (2018) use gradient-based methods to locate
important words. Samanta and Mehta (2017) use gradients to
calculate word importance, with linguistic constraints over substitution
words. Lei et al. (2019) carry joint word and sentence attacks, by
generating sentence paraphrases in the first stage. They resort to
greedy word substitutions if the first stage fails. Again, important
words are located by the magnitude of the gradient of word embedding.

In the black-box scenario, where gradients are not available,
saliency maps are calculated for words through different methods.
Yang et al. (2018) provide a simplified greedy algorithm, where
feature ranking is done once for an example, as opposed to the
full greedy approach.

Li et al. (2016) propose masking each feature with zero padding,
using the decrease in the predicted probability as the score of the
feature or word, and masking the top-k features as unknown. Alzantot
et al. (2018) and Kuleshov et al. (2018) propose variations of genetic
algorithms. Kuleshov et al. (2018) replace words one by one until the
classifier is misdirected while observing a bound on the number of
perturbed features. They run each new iteration on the modified input.
For substitution, they used post-processed GloVe to find pool of
suitable words. They also compute “thought vectors” for sentences
and ensure that these are preserved. Alzantot et al. (2018) select
words by random sampling, where probability of each word being
selected is proportional to the number of suitable neighbors for
replacement. They use Google 1 billion words language model to
ensure that replacements match the context provided by the rest of the
input. Ren et al. (2019) propose a saliency-based greedy algorithm,
calculated by deleting words during the search phase and select
substitutions from WordNet. Another similar attack model is Jin et al.
(2019a), which has extra semantic similarity checking when searching
adversarial examples and calculates word importance by deleting words.

Zang et al. (2019) propose a particle swarm optimization
algorithm for the search problem, which is query intensive. Gao
et al. (2018) define different scoring functions where they look at
prediction before and after removing a particular word from a subset
of input and perform character level modifications in the second
stage. Li et al. (2020) use the sentence probability directly but once
again, when ranking words, they try masking words in a sentence.

A common thread among all search methods for black-box
attacks is erasure or omission. This is the LOO technique, where
word importance is the difference between the classifier output for
original input, and output with this particular word removed or
replaced by zero in the input sample.

2.3. Origins of the LOO technique

Li et al. (2019) are a pioneering paper in the domain of
interpretability that highlights the importance of interpreting
networks by erasing parts of various layers. This LOO method is
followed by most interpretation algorithms. For a particular word,
they calculate importance score as the average of prediction
difference due to erasing this word from all test examples.
Other methods of interpretability are based on this LOO

technique. Feng et al. (2018) gradually remove unimportant input
words so that only the important ones are left at the end. Barham
and Feizi (2019) propose sparse projected gradient descent to
generate adversarial examples to improve interpretability.

Nguyen (2018) looks at differentmethods of local explanations for
labels, which include Local Interpretable Model-agnostic Explanations
(LIME), random feature deletion, and first derivative saliency.
Kádár et al. (2017) measure salience of a word by removing it and
noting the change in prediction. Jin et al. (2019b) mention deleting a
particular word to calculate its importance score. Ren et al. (2019)
use word saliency which is the change in the classifier output if a
word is set to unknown. Carter et al. (2018) find sufficient input
subsets while calculating the feature importance by masking words.

For calculating word score matrices, Xu and Du (2020) propose
a method which involves masking words.

We want to highlight the aspect that all the dominant techniques
for interpretation use LOOmethod for calculatingword importance. Pal
and Tople (2020) are the only work which evaluates the use of single
word scores in the transfer learning setting. Through experiments, we
demonstrate that our proposed scores provide a reliable way of
calculating feature importance. Although not grounded in statistical
theory, this technique works well for word level neural networks.

2.4. Adversarial attacks and defenses
in NLP: A broader picture

Initially inspired by the computer vision literature (Szegedy et al.,
2013), attacks on NLP models have been well studied. Recently,
transformer models have been quite successful at natural language
tasks, and they have found to be vulnerable to adversarial attacks. Jin
et al. (2019a) present TEXTFOOLER, a simple but strong baseline to
generate adversarial text. They calculate word importance score as the
change in prediction by deleting a specific word, and noting the
change in prediction. They find the use of word importance scores to
be quite important and experiment with Convolution Neural Network
(CNN), Long Short Term memory (LSTM), and Bidirectional
Encoder Representations from Transformers (BERT). Li et al. (2019)
used word importance scores obtained via LOO method from
Bidirectional Encoder Representations from Transformers (BERT)
and then mask those words to get replacements. Using Bidirectional
Encoder Representations from Transformers (BERT) for replacements
preserves the fluency as well as the semantics. They achieve state-
of-the-art success rate as well as accuracy under attack with
minimal% age of thewords perturbed on various text classification tasks.

Berger et al. (2021) show that randomly sampling the tokens to be
flipped gives a surprisingly high attack success rate, where no
complicated search method is used. Further, they argue that in the
constrained setting, even sophisticated algorithms fail to get a good
success rate, whereas in the unconstrained setting, just replacing
random words by nearest neighbors gives a very good success rate.

Guo et al. (2021) looks at white-box adversarial attacks on
transformers. They propose that tokens come from probability
vectors which are passed through a gumbel-softmax function.
They learn the vector by minimizing an adversarial loss of their
choice, guided by gradient descent. Moreover, they included two
other terms in their objective function which ensures that
perturbations are imperceptible as well as they have some
semantic meaning using log likelihood and Bidirectional Encoder
Representations from Transformers (BERT) score constraints,
respectively. This technique gives them a distribution matrix
which is then used to generate adversarial examples.

Mozes et al. (2021) compares the performance and examples of
four adversarial example techniques with human-generated
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adversarial examples. Moreover, they imposed two constraints for
the adversarial examples, semantic preservation as well as
naturalness which were evaluated by an independent set of crowd
workers. They concluded that often the sentiment does not match
the sentiment assigned to the perturbed example (15–20%). As far
as naturalness is concerned, they concluded that human-generated
examples are not any different than algorithm-generated examples.

Yoo and Qi (2021) suggest that we can use gradients of a
sentence to estimate the ranks of the words and then use those
ranks to decide which word to replace in order to create an
adversarial example. Moreover, they propose two approaches,
A2T and A2T-MLM, attack to train and attack to train masked
language model where they use counter fitted embeddings or a
masked language model to replace the word to create adversarial
example, respectively. They combine the adversarial examples
with the unperturbed examples and train the model on this new
dataset and achieve robustness. They report massive increase in
accuracy as well as generalization in most of the cases when
trained using A2T and A2T-MLM techniques, not only on the
adversarial examples but on the unperturbed examples as well.

Jin et al. (2019b) propose the technique textfooler, generating
adversarial examples by calculating rankings of words by deleting
them and taking the difference, and then replacing the words with
their synonyms while preserving the semantics as well as the
grammar of the sentence and use USE as a measure of similarity
between the sentence with the replaced word and the unperturbed
example. They achieve SOTA results with much lower word
replacement. A real-world example of adversarial attacks on NLP
models has been studied in Xie et al. (2022). This work explores
adversarial attacks on models which make finance related decisions
based on the stream of data from a social media platform. They
argue that generally, attacks manipulate the original data whereas
they have implemented concatenation attack, where they concatenate
adversarial examples to the stream, mimicking the reply to a tweet
feature. They assess their model against different word budgets and
sentence budgets and assess the performance via attack success rate,
loss in F1, and net profit or loss after the whole process. They
achieve around 32% additional loss and around 15–20% success rate
with 0.15–0.22 drop in F1. They have investigated and concluded
that even though manipulative attacks have a higher success rate,
they are not valid due to the nature of this problem.

2.4. Defending against adversarial attacks

Normally, attacks are generated, and model is re-trained only once
with these augmented data. Ivgi and Berant (2021) propose a new
discrete attack based on best-first search, as well as random sampling
attacks, and show that these improve robustness if used for
online data augmentation. Adversarial examples are generated during
training and model is trained on these. Even randomly generated
examples improve robustness. When multiple words are to be
substituted, the search space for greedy search can be O(n_rep*K),
where K is neighbors considered for each word. They replace this by
a best first search which is faster. They experiment with transformers.
Xu et al. (2022) propose a training technique for language models
against adversarial attacks. They do so by incorporating adversarial
examples created using several attack algorithms on the validation set,
associate a weight with each example, and minimize the weighted
training loss. The weight vector is the vector which minimizes the
validation loss. They avoid this twp level optimization by using
online meta learning algorithm to re-weight the examples. This allows
them to train a model which is robust against adversarial attacks with
a slight trade-off of accuracy (1–2%).

Rusert and Srinivasan (2022) suggested an ensemble technique
for robustness against adversarial attacks. They produce k samples,
each with p% of the data and then combine the decision of k models.
They propose three sampling techniques and two combining decision
techniques which result in slightly lesser accuracy on the clean
dataset but lower the attack success rate as well as the accuracy
on the adversarial examples. They also consider the case where
the attacker knows about sample shielding and queries samples
instead of whole example, and achieve similar results.

Zeng et al. (2021) first propose the idea of certified robustness, that
is, guaranteeing above 50% accuracy on adversarial examples given a
budget constraint. They propose a robustness technique RanMask, a
BERT trained on incomplete sentences (some tokens masked) which
turns an input into a large number of masked copies with percentage
of tokens masked, and then combine the decision by majority
voting. The RanMask achieves certified robustness on AG News but
close enough on SST2 datasets with budget of five words and two
words, respectively. They also proposed using Bidirectional Encoder
Representations from Transformers (BERT) to select the tokens to
be masked. This outperformed their previously discussed technique
only on the sentiment analysis task (SST2 dataset) but for AG news
dataset, the sampling technique did not matter. Moreover, they
achieved higher accuracy with their sampling technique on the clean
IMDB dataset inferring a concept related to dropout.

3. Context-Free Word Importance Scores:
Algorithm

For determining importance of a particular word in a piece of text,
we keep the word at its original location andmask the rest of the input, by
replacing it with OOV tokens. This input of all zeros except one is fed to
the classifier. The output of a particular class is the importance score of
this wordw.r.t. this class. This importance score is global in the sense that
it represents what importance the model assigns to a word, without
relating to any particular test example. Here, original location refers to
the word location in the input. For example, for evaluating importance
for the second word in a text piece that is 200 words long, its
approximate score will be the classifier output over an input that
consists of one masked token, the word, and 198 masked tokens, in
this particular order. Context-free word implies that all the surrounding
words are removed, although the word location does not change.

Algorithm 1: Step 1: Calculate word scores for a word
Input F, a trained CNN or LSTM
Input p, the number of classes in data
Input d, the size of classifier input
Input i, the location of word in original input
Output score(wi) ∈ Rp, word score for all output classes

1: define xi = 00, 01, 02, : : : 0i−1, w, 0i+1,., 0d− 1
2: score(wi) = F(xi)

4. Experiments

Model architecture: We experiment with a Convolution Neural
Network (CNN) and an Long Short Term memory (LSTM). For all
models, the input layer uses word2vec embeddings that are learned
during training. We use the Adam optimizer with default learning
rate of 0.001. Model details are as follows:

• CNN-2 and CNN-4: a CNN with 200 sized input, 32-dimensional
embedding layer, convolutional layer with 32 filters followed by
max pooling layer, a 64 unit ReLU layer, and a softmax layer
with 2/4 output classes.
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• LSTM: an LSTM with 200 sized input layer, 32-dimensional
embedding layer, a convolutional layer with 32 filters followed
by max pooling layer, a 64 units ReLU layer, and sigmoid layer
with 2 output classes.

Experiment design: Details of each experiment are shown in Table 2.
Perturbed feature count is increased successively and the classifier
accuracy is calculated against perturbed feature count for different
attack strategies. The attacks are carried out on a randomly chosen
subset of test examples (1000 for CNNs, 200 for LSTM) to make
the experiments computationally feasible to run.

Datasets: We experiment with four text classification datasets,
IMDB (Maas et al., 2011), Yelp (Zhang et al., 2015), Amazon
(Zhang et al., 2015), and AG’s News (Zhang et al., 2015). For Yelp,
we ignore the reviews with 3 ratings (neutral) and convert the labels
for the rest of the reviews as positive/negative. For large dataset
(Amazon, Yelp), a smaller subset of original dataset is selected so
that the same model can be used for all the experiments (details in
Table 2). These are multi-sentence and multi-paragraph datasets.
Thus, the LOO technique is particularly expensive, since it involves
model queries proportional to the number of words in the input. In
our experiments, the model has an input size of 200 words. Attack
strategies: We evaluate our technique against simplified greedy
selection baselines based on LOO and do not consider genetic
algorithms, since they are computationally expensive. We compare

the following strategies during our experiments: Delete_random:
Words are selected at random, and deleted. Delete_score: Words are
selected through the importance scoring algorithm proposed in this
paper (Algorithm 1 and 2), and deleted. Delete_LOO: Words are
selected through LOO method and deleted. Replace_score: Words
are selected through algorithm 1 and 2, and replaced. Replace_LOO:
Words are selected through LOO method, and replaced.

Replacement strategy: To replace a word, we look at its 10
nearest neighbors (a randomly chosen hyperparameter) using the
GloVe (Pennington et al., 2014) embeddings, and then select
the most distracting replacement through model queries, from the
tokenizer vocabulary. The greedy strategies here (Delete_LOO
and Replace_LOO) are simplified greedy versions, where the
LOO scores are calculated and top k words selected once, instead
of the full greedy version where selection and replacement are
done one by one for each perturbed feature. For an attack where k
features are allowed to be perturbed, the top k important words
are picked first, and then replaced one by one. The Replace_LOO
strategy mentioned here is somewhat similar to the greedy
algorithm mentioned in Yang et al. (2018). The difference is that
we pick the replacement from the 10 nearest neighbors, whereas
Hsieh et al. (2019) limit the search in the second step to a
pre-specified distance, to preserve semantics. The Delete_LOO
strategy is borrowed from Li et al. (2019).

Table 1
Classification accuracy on perturbed examples, against perturbed feature count. Replace_score and Delete_score closely track

Replace_LOO and Delete_LOO, respectively. Accuracy decreases for all attack strategies as more words are deleted or replaced

Perturbed Feature Count

IMDB-CNN 1 2 3 4 5 6 7 8
Delete_random 0.859 0.862 0.865 0.863 0.857 0.856 0.851 0.852
Delete_score 0.792 0.722 0.654 0.612 0.553 0.497 0.44 0.376
Delete_LOO 0.788 0.715 0.649 0.604 0.543 0.478 0.424 0.37
Replace_score 0.75 0.649 0.535 0.419 0.318 0.237 0.156 0.099
Replace_LOO 0.745 0.64 0.517 0.391 0.293 0.213 0.137 0.091
Yelp-CNN
Delete_random 0.934 0.931 0.928 0.928 0.925 0.929 0.926 0.922
Delete_score 0.872 0.794 0.706 0.640 0.572 0.498 0.440 0.391
Delete_LOO 0.859 0.762 0.682 0.599 0.543 0.470 0.410 0.359
Replace_score 0.799 0.637 0.491 0.357 0.265 0.188 0.133 0.103
Replace_LOO 0.784 0.584 0.430 0.319 0.222 0.161 0.114 0.0847
Amazon-CNN
Delete_random 0.88 0.875 0.873 0.871 0.866 0.867 0.857 0.855
Delete_score 0.772 0.656 0.558 0.49 0.418 0.368 0.314 0.273
Delete_LOO 0.755 0.638 0.537 0.472 0.398 0.334 0.276 0.242
Replace_score 0.69 0.475 0.319 0.21 0.134 0.083 0.05 0.031
Replace_LOO 0.66 0.446 0.305 0.194 0.122 0.07 0.048 0.031
AG’s News-CNN
Delete_random 0.879 0.875 0.868 0.860 0.858 0.857 0.850 0.846
Delete_score 0.790 0.695 0.624 0.525 0.437 0.366 0.288 0.233
Delete_LOO 0.786 0.686 0.605 0.505 0.429 0.352 0.285 0.227
Replace_score 0.777 0.656 0.542 0.433 0.338 0.257 0.183 0.144
Replace_LOO 0.777 0.646 0.529 0.417 0.326 0.243 0.182 0.135
IMDB-LSTM
Delete_random 0.84 0.84 0.85 0.845 0.845 0.845 0.845 0.85
Delete_score 0.8 0.76 0.725 0.695 0.65 0.58 0.555 0.53
Delete_LOO 0.77 0.705 0.65 0.59 0.53 0.505 0.445 0.39
Replace_score 0.76 0.65 0.52 0.355 0.27 0.18 0.115 0.09
Replace_LOO 0.735 0.61 0.485 0.33 0.255 0.19 0.14 0.075
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5. Conclusion

Results in Table 1 show the classification accuracy for a random
subset of test examples as more and more features are perturbed. In
most cases, the attack success rate of delete_score aligns
with delete_LOO, and replace_score with replace_LOO. The
classification accuracy for the score variants is often just slightly
above the accuracy for their LOO counterparts. Particularly for a
CNN, when n+ 1 features are perturbed using the score variant,
the accuracy falls below that of the LOO variant for n features.

Here, Delete_random shows that deleting random words has a
negligible effect on classifier accuracy, even when a large number of
words are removed. Selectively replacing words (Replace_LOO), on
the other hand, can quickly drive accuracy as low as 10%, just by
replacing eight words. However, the Replace_LOO strategy requires
model queries along the order of O(input_size), for each test example.

Whether the strategy is to replace words (Replace_LOO) or to
delete words (Delete_LOO), finding out important words takes a lot
of model queries. Our experiments show that approximating
importance is quite effective in black-box attacks.

Notice that Delete_score is almost as successful at confusing a
classifier as Delete_LOO, and Replace_score as successful as
Replace_LOO. Deleting words for an LSTM seems to be the only
case where the score variant lags behind the LOO variant. For all
datasets and models, replacement is more effective than deletion
at tricking the classifier.

In summary, single word confidence scores from neural
networks can be used to quickly calculate importance and reused
if attacks are carried out on a large number of samples. These
experiments highlight that neural network predictions on single
words are highly informative and are correlated with the
importance of the word in a piece of text.
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