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To Use an Ant Colony Technique to
Solve a Crispy Type Bi- and
Tri-Objective Transportation Problem
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Abstract: Transportation problem (TP) aims to reduce the entire transportation cost of moving resources from various supply hubs to various
demand hubs. However, in real-life situations, all organizations want to achieve numerous objectives while making transportation of goods. The
degree of deterioration may vary depending on the mode, route, and time of transport. In some cases, the multiobjective could be used to reduce
the use of a scarce resource, such as energy. As a result, the proposed approach was discovered to be an algorithm that improves bi- and
triobjective TP techniques. This is an innovative way for solving the new bi- and triobjective transportation algorithm using a modified ant
colony optimization (ACO) algorithm. According to the literature, various strategies have been developed in the past to tackle the
multiobjective transportation problem (MOTP). The MOTP is solved using goal programming, fuzzy programming, interactive solution
algorithms, and other techniques. These strategies are occasionally good or bad in achieving better results in a reasonable amount of time.
The heuristic technique used in this work is the improved ACO algorithm, which is based on the ant colony algorithm and has been found
to provide solutions with a reasonable degree of satisfaction for two and three objective TPs. When the findings are compared, the solution
achieved using the proposed method has delivered the best performance and provides a case study to show the new strategy.
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1. Introduction

Traditional transportation problem (TP) is often caused by a
single purpose, which may be transportation time or cost
(Hitchcock, 1941). In any case, associations are increasingly
competing with one another. Therefore, while moving goods
between organizations, it is not enough to accomplish just one goal
at a time. An examination of different types of TPs and
mathematical models has been released, better examining TP
(Ekanayake et al., 2022). In light of this, multidestinations must be
maintained continuously in order for businesses to maximize profit.
Many analysts have developed effective ways to solve at least two
locations simultaneously, such as by optimizing TPs with multiple
goals. For each of the most popular solutions to linear
multiobjective transportation problems (MOTPs), various methods
based on linear multiobjective programming were created (Diaz,
1978, 1979; Isermann, 1979; Lee & Moore, 1973; Zeleny, 1974).
Ringuest and Rinks (1987) developed two interactive methods to
resolve the linear MOTP. The MOTP was approached by Kumar
and Pandey (2012) and Li and Lai (2000) using the fuzzy
programming technique, and they were successful in finding both
reasonable compromise solutions and product-effective solutions.
Gupta and Gupta (1983) created a simpler multicriteria simplex
method for a linear multiple-objective transportation problem and a

condensed interactive multiple-objective linear programming
(Reeves & Franz, 1985), an efficient algorithm for MOTP (Kasana
& Kumar, 2000), multichoice goal programming revised (Chang,
2008), a new approach to addressing the biobjective TP (Bander
et al., 2015), a straightforward algorithm for a multiobjective
transportation model (Bai & Yao, 2011), and more (Pandian &
Anuradha, 2011), solving MOTPs (Diaz, 1979), etc. Charnes and
Cooper (1977) introduced the standard version of the goal
programming (GP) model in the early 1960s. Significant extensions
and numerous applications have been proposed since then. An
excellent literature evaluation of the GP model was published, for
instance, by Tamiz et al. (1998). A target attainment approach that
is computationally quicker than conventional GP methods was
proposed by Hwang and Masud (2012). Fuzzy goal programming
has recently been employed by Zangiabadi and Maleki (2013) to
resolve MOTP using linear and nonlinear membership functions.
Quddoos et al. (2013a, 2013b) used lexicographic GP to solve a
biobjective TP. A multiobjective, chance-constrained, capacitated
TP was solved (Gupta et al., 2013). Maity and Roy (2014)
proposed updated utility functions and multichoice, multiobjective
transportation issue techniques for the MOTP. Afwat et al. (2018)
developed a new, effective method to resolve the MOTP in a fuzzy
setting. Numerous studies have been conducted on this topic, and it
is practical to take into account that different objectives in
multiobjective situations have varying degrees of importance and
priority. Numerous studies have been conducted on this topic, and
it is practical to take into account that different objectives in
multiobjective situations have varying degrees of importance and
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priority. Khan and Kabeer (2015) proposedMOTPwith fuzziness and
S-type membership function, and Nomani et al. (2017) developed a
novel method for resolving TPs with multiple purposes that give
each objective a different weight. An MOTP with a type 2
trapezoidal fuzzy number with parameter estimation and goodness
of fit was published by Kamal et al. (2021). Furthermore, Osuji
et al. (2014) developed a solution to a multiobjective transportation
problem via a fuzzy programming algorithm.

A population-based metaheuristic called ant colony optimization
(ACO) is useful for estimating solutions to challenging optimization
problems. A large number of programming operators known as
“artificial ants” search for good solutions to a specific optimization
problem in ACO. Optimization problems are significant in the fields
of both logical and mechanical optimization. Some genuine instances
of these optimization problems are time table booking, nursing time
conveyance planning, train planning, scope organization, mobile
sales rep issues, vehicle directing issues, group-shop booking issues,
portfolio advancement, and so forth. Numerous improvement
calculations have been developed for this reason. ACO is one of
them. D’Acierno et al. (2011), Monteiro et al. (2012), Maniezzo
et al. (1996), Dorigo and Gambardella (1997), and Dorigo et al.
(1999) all describe ACO as a probabilistic method for locating
optimum pathways. This algorithm relies on an ant’s foraging
strategy to find a route between their colony and a food source.

This paper presents an overview of the concept of ant colony
algorithm (ACA) and gives a survey of its applications for
explaining another methodology for solving MOTPs that are
exceptionally easy to apply and dependent on the solution of
general TPs, so that decision makers can without much of a
stretch apply it. Indeed, at each step, a new efficient solution is
obtained. Artificial ants can then be seen and categorized as
communicating agents that combine some qualities that are
particular to them while also sharing some traits with real ants,
according to Solimanpur et al. (2005). Their general traits make
them capable of solving issues, if not optimally, then at least by
coming up with excellent solutions. True foraging ants spend their
entire lives moving from their nest to a source of food. ACO, a
population-based metaheuristic, can be used to roughly resolve
difficult optimization problems. The ACO metaheuristic was
described as a collection of general recommendations that could
be easily applied to nearly any type of combinatorial optimization
problem, which increased the number of researchers and
publications in the field. Since then, many problems have been
solved utilizing ACO techniques, including network flow
concerns (Monteiro et al., 2012), network design issues and more
(Rappos & Hadjiconstantinou, 2004), assignment issues (Shyu
et al., 2006), and location issues (Ekanayake et al., 2020b; Musa
et al., 2010; Santos et al., 2010) that address TPs and covering
problems (Chen & Ting, 2008), citing a few publications in the
field of combinatorial optimization (Mehrabi et al., 2009).
Surprisingly, the traveling salesman problem (TSP) still inspires
researchers as shown by Tavares and Pereira (2011), who utilize
the TSP to test an evolutionary method to update pheromone
trails, or García-Martínez et al. (2007), who recently used ACO to
solve a bicriteria TSP. This is true despite the fact that the A S
and ACO metaheuristics were the first to successfully solve the
TSP. In addition to other issues, Ekanayake et al. (2020a) used a
modified ACA to solve the minimum spanning tree problem and
the TP.

This study provides an overview of the ACA idea and surveys
its applications to explain another way for resolving transportation
challenges with multiple objectives, which is exceptionally simple

to apply and is dependent on the resolution of general
transportation issues, so that any decision can easily apply it.
Indeed, at each step, a new efficient solution is obtained.

2. Definition

2.1. ACO algorithm

The colony symbolizes an independent individual behavior system
with extremely basic principles. Even though each individual ant
exhibits basic behavior, the colony as a whole exhibits highly clever
behavior (Dorigo & Gambardella, 1997). The behavior of the colony
is based on low-level interaction, which makes the entire colony an
intelligent multiagent system. The ACO imitates how actual ants
choose the quickest route from a food source to their colony.
Pheromone trails are used by the ants (there are two kinds of ants in
the colony such as artificial “ants,” which find optimal solutions.
Real ants lay down pheromones, guiding each other to resources) to
communicate with one another and share information on the best
course to take A given path (trail) gets more appealing as more ants
follow it by leaving behind their own pheromones, which increases
its appeal to other ants (unique chemical substance). The shortest
route is determined as a result of this collective and autocatalytic
behavior. With the aid of pheromone trails, ants determine the
quickest route from their nest to the food source. This ant trait is
used in ACO methods to solve real-world problems by utilizing both
existing ant traits and brand-new ones (Shyu et al., 2006).

But because the agents first select their travel path at random,
this method invariably results in a local optimal solution.
Pheromone evaporation, a negative feedback mechanism, solves
this issue. The density of pheromones and the amount of feedback
are limited by uniform evaporation throughout the entire area. The
path that took less time is consequently less likely to evaporate,
and as a result, the pheromone density is higher on the ideal path
(Dorigo & Gambardella, 1997; Maniezzo et al., 1996).

The algorithm’s two most important steps are the creation of the
visit/arrangement and the pheromone update. Before the ants may start
searching for a solution, other important decisions must be made, like
deciding on the solution’s structure (representation) or the starting
pheromone quantity to be given to each arc. Later, we will examine
more closely at these queries. The ant system, the first foraging ant
system, was developed using the notation in Maniezzo et al. (1996).

The ants in ACO adhere to two fundamental rules:
i. The information is provided by the algorithm and is represented

as τij, which is the pheromone strength along the route between
cities i and j at time t.

ii. Depending on the problem that needs to be solved, a heuristic
algorithm can determine ηij; the heuristic information directing
the route from city i to city j. Overall, it may be stated that,

ηij ¼
1
dij

; (1)

where dij is the distance between cities i and j.
The two rules are applied at time t, and the ant k at city i chooses

the subsequent city j, which it has not yet visited, with the following
probability:

pkij ¼
τα ijηij

βP
j2Nik

τα ijηij
β

if j 2 Ni
k

0 if j =2Nk
i

8<
: (2)
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where α � 0 and β � 0 are adjustable parameters describing the
weights of the pheromone trail and visibility when choosing the route.
When α ¼ 0, the nearest city is chosen,which corresponds to a greedy
algorithm in the classical optimization theory. When β ¼ 0, only the
pheromone trail is taken into account, which implies that all ants select
one suboptimal route. To provide good optimization dynamics, it is rec-
ommended in Maniezzo et al. (1996) to set β � α. Ni

k is the feasible
neighborhood of ant k when it is at city i, that is, the set of cities that
ant k has not visited yet. In addition, the ACO algorithm has been suc-
cessfully applied to solve a wide range of combinatorial optimization
problems, including the minimum spanning tree, the traveling salesman
problem, transportation problems, and the quadratic assignment prob-
lem with various modifications (Baykasoglu et al., 2006; Blum,
2005; Maniezzo et al., 1996; Dorigo & Gambardella, 1997).

The ant must visit all of the cities in a single cycle before the
pheromone concentration on each path may be updated. After the
ant paths have been built, the pheromones for all ants are updated
using the following equation:

τij t þ 1ð Þ ¼ ρτij tð Þ þ
Xm
k¼1

Δτkij; (3)

where ρ is the residual ratio of the pheromone. However, to avoid an
infinite accumulation of the pheromone, ρmust be less than 1.Δτkij is
the increase of the trail level on edge i; jð Þ caused by ant k. Depending
on the problem, there are three descriptions of Δτkij, as follows:

Δτkij ¼
Q
Tk ; if ant k travels on edge i; jð Þ
0; Otherwise

�
(4)

Δτkij ¼
Q
dij
; if ant k travels on edge i; jð Þ

0; Otherwise

�
(5)

Δτkij ¼ Q; if ant k travels on edge i; jð Þ
0; Otherwise

�
(6)

where Tk is the length of the tour that ant k has found and Q is the
amount of pheromone that an ant lays each tour (where Q> 0 is an
adjustable parameter). The first of the three descriptions abovemakes
use of global knowledge, while the other two make use of local
information. In most cases, the first description is employed.

3. Mathematical Formulation

In real-life scenarios, every coordinator typically needs to
accomplish numerous goals at once while organizing the delivery of
goods. As a result, analysts designed MOTP to accomplish a variety
of goals. Similar to the classic TP, quantity (xij) must be carried from
sources i i ¼ 1; 2; ; ;mð Þ to destinations j j ¼ 1; 2; ; ; nð Þ at cost
Cij

k, where Cij
k can be transportation cost, total delivery time, energy

consumption, or limiting transportation risk, among other things.

The truth is that there are many different transportation issues.
There were various objective functions that described the
transportation issue. The decision-maker wants to reduce a number
of p objectives at once. Quantity (xij) must be carried from sources
i i ¼ 1; 2; . . . ;mð Þ to destinations j j ¼ 1; 2 . . . nð Þ for a priceCij

k, where
Cij

kmay refer to the cost of transportation, the cost of damage, the cost of
total delivery time, the cost of energy consumption, or other factors. The
reduction of the overall cost of transportation is the goal of the p objec-
tives f 1 xð Þ; f 2 xð Þ; . . . ; f p�1 xð Þ and f p xð Þ: It is always taken for granted
that the balance condition is true (i.e., the total demand is equal to the
total supply). The MOTP can be written as follows under these pre-
sumptions:

f 1 xð Þ ¼
Xm
i¼1

Xn
j¼1

Cij
1xij

f 2 xð Þ ¼
Xm
i¼1

Xn
j¼1

Cij
2xij

..

.

f p xð Þ ¼
Xm
i¼1

Xn
j¼1

Cij
pxij

Subject to the constraints

Xn
j¼1

xij ¼ ai i ¼ 1; . . . ;m

Xm
i¼1

xij ¼ bj j ¼ 1; . . . ; n

xij0; i ¼ 1; 2; . . . :;m and j ¼ 1; 2; . . . ::n

where Cij
k coefficient of the kth objective; ai is the supply amount of

the product at source i (Si); bj is the demand of the product at desti-
nation j (Dj); and ai > 0 for all i, bj > 0 for all j and
Pm
i¼1

ai ¼
Pn
j¼1

bj (balanced condition). The balanced condition is both

necessary and sufficient for solving the transportation problem in
both the cases single and multiple objectives.

The multiobjective transportation model’s special structure can
also be expressed in Table 1.

4. Algorithm for the Proposed

Finding the right answer – which should typically be either an
incredibly near-optimal or an ideal solution – is crucial when trying
to solve transportation challenges with many objectives. Here is a

Table 1
Transportation cost table

Destination→ source↓ D1 D2 : : : Dn supply(ai)

S1 C11
1;C11

2; . . . ;C11
pð Þ C12

1;C12
2; . . . ;C12

pð Þ : : : C1n
1;C1n

2; . . . ;C1n
pð Þ a1

S2 C21
1;C21

2; . . . ;C21
pð Þ C22

1;C22
2; . . . ;C22

pð Þ ..
.

C2n
1;C2n

2; . . . ;C2n
pð Þ a2

..

. ..
. ..

. ..
. ..

. ..
.

Sm Cm1
1;Cm1

2; . . . ;Cm1
pð Þ Cm2

1;Cm2
2; . . . ;Cm2

pð Þ : : : Cmn
1;Cmn

2; . . . ;Cmn
pð Þ am

Demand (bj) b1 b2 : : : bn
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fundamental method for finding a compromise solution that is
incredibly effective. The steps of this new algorithm are provided
below to continue with the proposed new algorithm.

We are currently using the aforementioned new modified
probabilistic transition rule in our multiple TP:

pkij ¼
1�Pp

k¼1 ðcijkÞ2P
m
i¼1

P
n
j¼1

1�Pp
k¼1 ðcijkÞ2

(7)

5. The MOTP Has Been Solved Using a Novel
Method Called MACOA (MOTP)

Step 1: Develop a cost matrix of the given MOTP.
Step 2: The probability matrix is introduced using Equation (7).
Step 3: Assign the min ai; bj

� �
maximum probability cell to the i-jth

cell.
Step 4:Allocate this minimum value to the selected cell in Step 3 and
delete the column or /row for which ith supply and jth demand
necessities are met, then move to the next max ai; bj

� �
value.

Step 5:Continue until all supply and demand are met, at which point
move on to Step 6. If not, proceed to Step 4.
Step 6: Stop and find a feasible solution using the new method.

6. The Performance of PM Is in Comparison to the
Existing Methods

6.1. Results obtained from PM compared with
matrix maxima

Data for the biobjective transportation problem in Table 2 have
a thorough representation of the numerical data, and Table 3
represents the probability table, which was constructed using
Equation (7).

Table 4 portrays the solution of the above problem using the
proposed method.

Therefore, ½f 1 xð Þ; f 2 xð Þ� ¼ 4 6; 1½ � þ 10 4; 2½ � þ 15 2; 2½ � þ 7; 0½ �þ
2 4; 0½ � þ 3 2; 1 ¼� ½115; 57½ �

Table 5 represents a comparative study of the proposed method
over the existing method.

A comparative study of the proposed method over the new row
maxima method, product approach, and matrix maxima method is
illustrated in Table 5.

Figure 1 shows the significance of the proposed method.
According to Table 5 and Figure 1, the proposed method

provides the best solutions obtained by other existing methods,
new row maxima method, product approach, and matrix maxima
method.

Table 2
Data for biobjective transportation problem

D1 D2 D3 D4 Supplies

S1 [6,1] [4,2] [1,3] [5,4] 14
S2 [8,4] [9,3] [2,2] [7,0] 16
S3 [4,0] [3,2] [6,2] [2,1] 5
Demands 6 10 15 4

Table 3
Probability table using Equation (7)

D1 D2 D3 D4 Supplies

S1 0.036 0.068 0.136 0.033 14
S2 0.017 0.015 0.170 0.027 16
S3 0.085 0.104 0.034 0.272 5
Demands 6 10 15 4

Table 4
Supply and demand allocation

D1 D2 D3 D4 Supplies

S1 0.036*4 0.068*10 0.136 0.033 14*4*0
S2 0.017 0.015 0.170*15 0.027*1 16 � 1*0
S3 0.085*2 0.104 0.034 0.272*3 5 � 2 � 0
Demands 6*2*0 10*0 15*0 4*3*0

Table 5
A comparative study of the proposed method over the new row
maximamethod, product approach, andmatrix maximamethod

Comparison analysis
Minimum
time (MT)

Minimum
cost (MC)

Mean of
MT and MC

New row maxima
method (Goel, 2021)

162 83 122.5

Product approach
(Afwat et al., 2018)

114 62 88

Matrix maxima (Singh
& Rajan, 2019)

115 57 86

Proposed method 115 57 86

Figure 1
Results obtained by the proposed method over the new row

maximamethod, product approach, andmatrix maximamethod
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6.2. Results obtained from the proposed method
compared with the Kaur’s method

Table 6 represents the data of the multiobjective transportation
problem, and Table 7 portrays the allocation of the proposed method.

The proposed method is compared to the Kaur’s method (Kaur
et al., 2018) in Table 8.

As shown in Table 8, the proposed method achieves a more
promising solution than the Kaur’s method (Kaur et al., 2018)
considered in this study. Figure 2 provides line graphs to illustrate
the comparison.

Table 8 and Figure 2 depict that the proposed method in finding
a solution for the MOTP is more efficient than the formalized
inspection method.

6.3. Results obtained from the proposed method
compared with the Khan method

Table 9 is a representation of a biobjective transportation
problem, while Table 10 represents the allocation of the proposed
method.

Table 11 is a representation of comparison of the proposed
method with the Nomani method (Nomani et al., 2017).

In addition, Figure 3 is a representation of the proposed method
with the Nomani method (Nomani et al., 2017).

According to Table 11 and Figure 3, the proposed method is
better than the solution obtained by the Nomani method (Nomani
et al., 2017).

Table 6
Data for the multiobjective transportation problem

D1 D2 D3 Supplies

S1 [3,5] [4,2] [5,1] 8
S2 [4,3] [5,4] [2,3] 5
S3 [5,2] [1,3] [2,1] 2

7 4 4

Table 7
Probability table with allocation supply and demand

Cost, time D1 D2 D3 Supplies

S1 0.049 * 2 0.084 * 4 0.064 * 2 8
S2 0.067 * 5 0.041 0.129 5
S3 0.058 0.168 0.337 * 2 2

7 4 4

Table 8
Performance evaluation of the proposed method with the

Kaur’s method

Method
Minimum

cost
Minimum

time Mean

Kaur’s method (Kaur et al.,
2018)

55 40 47.5

Proposed method 56 37 46.5

Figure 2
Results obtained by the proposed method

over the Kaur’s method

Table 9
The data for the biobjective transportation problem

Cost, time D1 D2 D3 Supplies

S1 [16,9] [19,14] [12,12] 14
S2 [22,16] [13,10] [19,14] 16
S3 [14,8] [28,20] [8,6] 12
Demand 10 15 17

Table 10
Solution of the above problem (Table 9)

Cost, time D1 D2 D3 Supplies

S1 0.099 * 9 0.060 0.116 * 5 14
S2 0.045 * 1 0.125 * 15 0.060 16
S3 0.129 0.028 0.336 * 12 12
Demand 10 15 17

Table 11
A comparative study of the proposed method

over the Nomani method

Method
Minimum

cost
Minimum

time Mean

Nomani method (Nomani
et al., 2017)

627 491 559

Proposed method 517 384 450.5

Figure 3
Comparative study of the result obtained

by the Nomani method and the proposed method
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6.4. Results obtained from the proposed method
compared with the Maity George method

Table 12 shows the data for the biobjective transportation
problem from the Maity George method (Maity & Roy, 2014) and
shows a thorough depiction of the numerical data, and Table 13
represents the supply and demand allocation using the proposed
method.

Therefore, ½f 1 xð Þ; f 2 xð Þ� ¼ 13 24; 14½ � þ 8 18; 18½ � þ 22 20; 13½ �þ
18 12; 9½ � þ 30 20; 14½ � ¼ 1832; 1194½ �

In this study, in Table 14, the researchers compare the results to
determine the efficacy of the proposed method.

In addition in Figure 4, the researchers compare the results to
determine the efficacy of the proposed method.

According to Table 14 and Figure 4, the proposed methods
outperform the existing methods such as the Sanjay and George
methods.

6.5. Results obtained from the proposed method
compared with the Sheikhi method

Table 15 depicts the numerical data (Sheikhi, 2018) in detail,
and Table 16 represents the allocation supply and demand of the
proposed method.

½f 1 xð Þ; f 2 xð Þ� ¼ 3 14; 12½ � þ 12 8; 16½ � þ 14 8; 10½ � þ 11 12; 6½ �
þ 4 6; 15½ � þ 16 9; 10½ �

¼ 550; 654½ �

Table 17 shows that the proposed method has outperformed the
existing method.

Table 13
Probability table and solution for Table 12

Cost, Time D1 D2 D3 D4 Dummy Supplies

S1 0.059*13 0.035 0.070*8 0.065 0 21

S2 0.027 0.080*22 0.035 0.029 0*2 24

S3 0.078 0.017 0.0202*18 0.087 0 18

S4 0.057 0.032 0.063 0.059*30 0 30

Demand 13 22 26 30 2

Table 14
A comparative study of the proposed method over the Sanjay

method and Maity George method

Method Minimum cost Minimum time Mean

Sanjay method 1902 1198 1550
George method 1898 1286 1592
Proposed method 1832 1194 1513

Figure 4
A line graph of the results obtained by the proposedmethod over the

Sanjay method and the Maity George method

Table 12
The data for the biobjective transportation

problem from Maity George method

Cost, time D1 D2 D3 D4 Supplies

S1 [24,14] [29,21] [18,18] [23,13] 21
S2 [33,24] [20,13] [29,21] [32,23] 24
S3 [21,12] [42,30] [12,9] [20,11] 18
S4 [25,13] [30,22] [19,19] [24,14] 30
Demand 13 22 26 30

Table 15
The data for the problem from Sheikhi

Cost, Time D1 D2 D3 D4 Supplies

S1 [10,15] [14,12] [8,16] [12,8] 15
S2 [8,10] [12,6] [14,13] [8,12] 25
S3 [9,13] [6,15] [15,12] [9,10] 20
Demand 14 18 12 16

Table 16
Solution from Sheikhi problem

Cost, time D1 D2 D3 D4 Supplies

S1 0.062 0.060*3 0.063*12 0.098 15
S2 0.124*14 0.112*11 0.056 0.098 25
S3 0.081 0.078*4 0.055 0.112*16 20
Demand 14 18 12 16

Table 17
A comparative study of the proposed method

over the Sheikhi method

Method Minimum cost Minimum time Mean

Sheikhi method 674 644 659
Proposed method 550 654 602
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The comparison of results presented in Table 17 is also
illustrated using line graphs in Figure 5 to show the effectiveness
of the proposed method.

The proposed approach is superior to the answer obtained by the
Abouzar Sheikhi method (Sheikhi et al., 2018), as shown in Table 17
and Figure 5.

6.6. Results obtained from proposed method
compared with the Doke method

Table 18 shows a thorough depiction of the numerical data and
the comparative findings achieved by the Doke (Doke & Jadhav,
2015) and proposed method.

Solving the example using the proposed algorithm for Table 19.

½f 1 xð Þ; f 2 xð Þ; f 3 xð Þ� ¼ 10 5; 7; 3½ � þ 10 3; 5; 4½ �
þ 10 5; 6; 2½ � þ 15 2; 3; 7½ � þ 15 1; 2; 2½ � þ 10 3; 8; 8½ � ¼ 205; 335; 305½ �

Table 20 represents a comparative analysis of the proposed
algorithm with the Doke method (Doke & Jadhav, 2015).

The proposed method has a clear similarity to the Doke method
(Doke & Jadhav, 2015), as shown in Table 20.

6.7. Results obtained from the proposed method
compared with the Afwat method

Table 21 shows the comparative findings achieved by the
existing method and the proposed method, and Table 22
represents the allocation of the proposed method.

½f 1 xð Þ; f 2 xð Þ; f 3 xð Þ ¼ 4� ½6; 13; 6� þ 10 4; 11; 3½ � þ 1 8; 17; 5½ �
þ 15 2; 12; 2½ � þ 4; 18; 5½ � þ 4 2; 12; 6½ �
¼ 114; 425; 118½ �

Table 23 shows the comparative findings achieved by the new
row maxima method, product approach, geometric mean,
Ekanayake’s Method, and the proposed method.

Figures 6 provides line graphs to illustrate the comparison
shown in Table 23.

Based on the above results, Table 23 shows a comparison of the
objectives attained using various methods, and Figure 6 shows a
comparative study of the results obtained by the different existing
methods and the proposed method, and it is clear that the
proposed method performs similarly to the geometric mean
method and Ekanayake’s method.

Figure 5
Comparative study of the result obtained by the Sheikhi method

and the proposed method

Table 18
The comparative findings achieved by the Doke method and the

proposed method

D1 D2 D3 D4 Supplies

S1 [3,2,8] [2,5,4] [5,7,3] [7,9,2] 10
S2 [4,4,5] [3,4,3] [3,5,4] [5,6,2] 20
S3 [2,3,7] [1,2,2] [4,6,6] [3,8,8] 40
Demands 15 15 20 20

Table 19
Final allocation of multiobjective TP

D1 D2 D3 D4 Supplies

S1 0.040 0.079 0.042*10 0.0265 10*0
S2 0.062 0.104 0.071*10 0.054*10 20*10*0
S3 0.057*15 0.395*15 0.040 0.025*10 40*25*10*0
Demands 15*0 15*0 20*10*0 20*10*0

Table 20
Comparative assessments, for example, representation of Table 18

Method
Minimum

cost
Minimum

time
Minimum
distance

Doke method 205 335 305
PM 205 335 305

Table 21
The data for the triobjective transportation problem fromAfwat

D1 D2 D3 D4 Supplies

S1 [6,13,6] [4,11,3] [1,15,5] [5,20,4] 14
S2 [8,17,5] [9,14,9] [2,12,2] [7,13,7] 16
S3 [4,18,5] [3,18,7] [6,15,8] [2,12,6] 5
Demands 6 10 15 4

Table 22
Final allocation in the above problem (Table 20)

D1 D2 D3 D4 Supplies

S1 0.088*4 0.146*10 0.085 0.048 14
S2 0.056*1 0.059 0.140*15 0.080 16
S3 0.058*1 0.055 0.065 0.116*4 5
Demands 6 10 15 4
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6.8. Performance of the proposed method
compared with the fuzzy approach, interactive
approach, trust region approach, parallel method,
product approach

Results obtained by fuzzy approach, interactive approach, trust
region approach, proposed parallel method, and product approach
and proposed methods for the benchmark instance are shown in
Table 24. Detailed data representations of these problems are
provided in Appendix A:

Table 24 confirms the outcome, which is depicted graphically in
Figure 7 using line graph.

Based on the above results shown in Table 24 and Figure 7, it
can be observed that, in case, the performance of the proposed
method is marginally equivalent to the other considered
approaches.

7. Conclusion

This paper investigates another alternative technique for
applying MOTP (bi and triobjective), namely the modified ant
colony optimization algorithm, which provides the best solution of
the multiobjective transportation system as often as possible. By
varying the weights, this method can generate different MOTP
solution points. This investigation provides an overview of the
concept of ACA as well as a review of its applications in the
solution of MOTP. When compared to many existing heuristic
algorithms, the proposed algorithm is heuristic in nature and less
involved in its application. A few changes have been made to the
ACA, as well as an update to the pheromone rate, to produce a
worthy optimal solution for the MOTP. By combining the
transition rule with the pheromone update rule, the ACA is
changed to achieve this. The modified ant colony algorithm is a
great tool for determining the MOTP solution’s minimal cost.
With particular parameters, it can be used to resolve any type of
multiobjective optimization problem. The suggested approach
might offer both compromise solutions devoid of preferences and
solutions based on preferences. In general, the suggested method
works better for transportation problems with several objectives.
Intend to expand on this strategy in the future to account for
ambiguous needs and supplies.
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Table 24
Performance measure of proposed method over MOTP

approach

Method
Minimum

cost
Minimum

time
Minimum
distance Mean

The fuzzy
approach

112 106 80 99.33

Interactive
approach

127 104 76 102.33

Trust region
approach

144 104 73 107

Parallel method 157 72 86 105
Product
approach

157 72 86 105

Proposed
method

112 81 77 90

Ideal solution 102 72 64 79.33

Figure 6
A comparative study of the results obtained by the different

existing methods and the proposed method

Figure 7
Comparative study of the result obtained by above methods

112 127 144 157 157 112 102
106 104 104 72 72 81 72
80 76 73 86 86 77 64

99.33 102.33 107 105 105 90 79.33

Minimum TimeMinimum Cost

Minimum Distance Mean

Table 23
Comparison of the objectives attained using various methods

Methods
Minimum

cost
Minimum

time
Minimum
distance

New Row Maxima
Method

112 461 130

Product Approach 114 425 128
Geometric Mean
Method

114 425 118

Ekanayake’s Method 114 425 118
Proposed Method 114 425 118
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Appendix A

Problem Unit costs Supply Demand

(Aneja
&
Nair,
1979)

(9,2,2;12,9,4;9,8,
6;6,1,3;9,4,6)
(7,1,4;3,9,8;7,
9,4;7,5,9;5,2,2)
(6,8,5;5,1,3;9,8,
5;11,4,3;3,5,6)
(6,2,6;8,8,9;1,6,
6;2,9,3;2,8,1)

(5,5,5;4,4,
4;2,2,2;9,9,9)

(4,4,4;4,4,4;6,
6,6;2,2,2;4,4,4)
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