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Numerical Analysis of Differential
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Abstract: The primary intention of this article is to study numerical solutions of differential equation with interval type-2 fuzzy number as the
initial condition. The differential equation is first redrafted in the parametric form; then, it is restructured into three systems of linear differential
equations. Each system includes two concurrent linear differential equations with respective initial conditions. The classical fourth-order
Runge–Kutta method is developed for the above-derived systems. The ability of the method is corroborated by illustrating the problems.
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1. Introduction

Many of the real-world problems are imprecise in nature. Fuzzy
set theory (Zadeh, 1965) was introduced to overcome the
impreciseness of the problems/data. This theory assigned a value
between “0” and “1” including them to each and every element of
the universal set with respect to the subset taken for the study.
These values indicate the degrees of the memberships of the
elements to the subset. However, these degrees of memberships
are again crisp numbers. Hence, in many cases, they do not serve
to remove/consider the impreciseness of the problems/data.
Consequently, a new fuzzy set was introduced in Zadeh (1975),
known as type-2 fuzzy set (T2FS), in which the membership
function (MF) is another fuzzy set.

A distinct case of T2FS is an interval-valued T2FS (IVT2FS).
IVT2FSs have been applied in several fields like E-commerce (Wu
& Liu, 2020), big-data analysis (Shukla et al., 2020), military
information (Hanratty et al., 2019), evaluation of Internet of
Things-centered healthcare device (Cagri Tolga, 2020), to
diagnose fault in gas turbines (Morteza et al., 2020), and
multiple criteria decision-making problems (Mohamadghasemi
et al., 2020; Chen et al., 2013; Deveci et al., 2020). Some more
applications can be found in Jagiello et al. (2022), Andul-Sadah
et al. (2022), Starczewski et al. (2022), Lv et al. (2021), Qin
et al. (2022), and Zakaria et al. (2021). A complete literature
review on T2FS and its real-time applications can be found in
De et al. (2022).

Pioneering application of the theory of fuzzy sets can be found
in the field of differential equations. The advancement of
differential equation with type-1 fuzzy environment and a variety
of methods, particularly numerical methods to simulate the
solution of fuzzy differential equation (FDE), can be studied in
the literature. The progression of finding solutions of FDE is still
an ongoing progress in the field of research. However, a very
few have attempted to study differential equation in type-2 fuzzy
background.

The method to differentiate type-2 fuzzy logic systems was
introduced and premeditated in Mendel (2004). The derivatives of
type-2 fuzzy number (T2FN)-valued functions have been studied
in Mazandarani and Najariyan (2014) and used it to analyzes the
problems, raised in the field of Electrical Engineering,
Environment Engineering, and Economics.

The study of first-order FDE on the space of quasi-T2FSs
(QT2FS) can be found in (Kardan et al., 2016). Pulp and paper
industry problem and electrical engineering problem under type-2
fuzzy environment have been taken for study in Najariyan
et al. (2017).

Bandyopadhyay and Kar (2018) have modeled natural
problems such as prey–predator model encompassing different
circumstances and Lorenz model with type-2 fuzzy initial
conditions. The authors converted the type-2 FDE (T2FDE) of
these models into system of linear differential equations and
simulated the solutions. In Debnath et al. (2018), FDE
methodology has been implemented to study inventory problem in
which the demand has been taken as a T2FN. In this article, a
T2FDE in parametric form is taken. It is altered into three systems
of ordinary differential equations: (1) related to lower MF (LMF),
(2) related to upper MF (UMF), and (3) related to principal set

*Corresponding author: V. Nirmala, University College of Engineering
Tindivanam, India. Email: nirmalaucet@gmail.com.

Journal of Computational and Cognitive Engineering
2022, Vol. 00(00) 1–10

DOI: 10.47852/bonviewJCCE2202377

© The Author(s) 2022. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0001-9496-1985
https://orcid.org/0000-0001-5309-9225
mailto:nirmalaucet@gmail.com
https://doi.org/10.47852/bonviewJCCE2202377
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(PS). Each system consists of two simultaneous ordinary differential
equations. Numerical solutions of these equations are obtained by
classical Runge–Kutta method of order 4.

Section 2 provides necessary basic concepts on T2FSs and
T2FNs and its metric. T2FDEs are considered in Section 3.
Section 4 develops the classical fourth-order Runge–Kutta
method to obtain numerical solution of T2FDE. Numerical problems
have been analyzed in Section 5, and the deduction is given in
Section 6.

2. Basic Concepts

Definition 2.1. (Liang & Mendel, 2000). A T2FS is defined
as eW ¼ a; uð Þ;µWe a; uð Þ� �

= a 2 X; 8u 2 Ja � 0; 1½ �� �
, where

0 � µWe a; uð Þ � 1. The variable "a 2 X" is called primary
variable of eW and "u 2 Ja" is called the secondary variable of eW.
At each fixed point a 2 X, Ja is termed as primary membership of
"a" and "µWe a; uð Þ ¼ µWe að Þ" called its secondary MF.

Definition 2.2. (Mendel et al., 2006). The footprint of uncertainty
(FOU) of a T2FS " eW" is a bounded region which encloses the vague-
ness in the primary membership of " eW".

Definition 2.3. (Mendel et al., 2006). The bounds of the FOU of a
T2FS " eW" are two type-1 MFs and are called a UMF and a LMF,
respectively. TheUMF is related to the upper boundofFOU eW� �

, and
it is symbolized by "µ̄We að Þ". The LMF is connected with the lower

bound of FOU eW� �
, and it is symbolized by "µWe að Þ".

(i.e.) µ̄We að Þ ¼ FOU eW� �
; 8a 2 X and µWe að Þ ¼ FOU eW� �

; 8a 2 X.

Using the concept of UMF and LMF, Ja can be expressed as:
Ja ¼ fða; uÞ : 8u 2 ½LMF

FOUðeW ÞðaÞ;UMF
FOUðeW ÞðaÞ� � ½0; 1�g.

Definition 2.4. (Mendel, 2001). An IVT2FS is defined aseW ¼ a; uð Þ;µWe a; uð Þ� �
= a 2 X; 8u 2 Ja � 0; 1½ �� �

,
where µWe a; uð Þ ¼ 1.

Definition 2.5. (Zhai & Mendel, 2011). Let " eW" be a T2FS. For a
fixed point "a0 2 X", µWe a0ð Þ ¼ µWe a0; uð Þ is termed as the secon-

dary MF or vertical slice of eW at "a0" and is expressed as:
µWe a0ð Þ ¼ R

u2Ja0 fa0 uð Þ=u, where "fa0 uð Þ" is called secondary mem-

bership grade and "µWe a0ð Þ" is a type-1 fuzzy set.

Definition 2.6. (Hamrawi, 2016). An α-plane for a T2FS, eW, is
defined as:eWα ¼ f a; uð Þ;µWe a; uð Þα = a 2 X; 8u 2 Ja � 0; 1½ �:
If "SWe a j αð Þ" denotes an α-cut of the secondary MFµWe að Þ,
then SWe aj αð Þ ¼ sL a jαð Þ; sR a jαð Þ½ �.

Definition 2.7. (Hamrawi, 2016). Let " eW" be a T2FS. LeteWβ ¼ eWβ; eWβ

� �
be the β-plane of eW. Then, α� cut representation

of " eWβ" is given by eWβ
α ¼ eWβ

α; eWβ
α

� �
, where eWβ

α ¼
LMF

FOU eW� � a;α;βð Þ and

eWβ
α ¼ UMF

FOU eW� � a;α; βð Þ; 8a 2 X.

Note 2.1 FOU eW� � ¼ [a2XJa ¼ eW0.

Definition 2.8. (Hamrawi, 2016). The set of primary grades whose
secondary grades equal to “1” is called as the PS of " eW" and is given
by: PS eW� � ¼ a; uð Þ= a 2 X; u 2 Ja; fa uð Þ ¼ 1f g ¼ eW1.

Definition 2.9. (Hamrawi, 2016). A T2FS " eW" defined on "R", the
set of real numbers, is called as a perfect T2FN (PT2FN) if both UMF
and LMF of FOU eW� �

are type-1 fuzzy numbers (T1FNs).

Definition 2.10. (Hamrawi, 2016). A QT2FS is a T2FS which is
entirely determined by its FOU and PS.

Definition 2.11. (Hamrawi, 2016). A perfect quasi-T2FN
(PQT2FN) is a PT2FNwhich is totally determined by its FOUandPS.

Definition 2.12. (Hamrawi, 2016). Let Ã and B̃ be two T2FS. Then,
Ã ¼ B̃ iff SÃ a j αð Þ ¼ SB̃ a j αð Þ, 8a 2 X, α 2 0; 1½ �.

Definition 2.13. (Hung & Yang, 2004). Let Ã and B̃ be two T2FS.
Let x0 2 a; b½ � � X and let SÃ x0 jαð Þ and SB̃ x0 j αð Þ represent the
α-cuts of the secondary MFs µÃ x0ð Þ and µB̃ x0ð Þ, respectively. Then,
the distance between Ã and B̃ is defined as follows:
d2 Ã; B̃
� � ¼ R

b
a Hf µÃ xð Þ;µB̃ xð Þð Þdx, where

Hf µÃ xð Þ;µB̃ xð Þð Þ ¼
R

1

0
α dH SÃ x j αð Þ;SB̃ x j αð Þð ÞdαR

1

0
α dα

¼ 2
R
1
0 α dH SÃ x j αð Þ; SB̃ x j αð Þð Þdα

Preposition 2.1. (Hung & Yang, 2004). The distance measure d2
defined in Definition 2.13 is a metric on the space of T2FSs.

Proof: Refer Hung and Yang (2004).

Preposition 2.2. (Figueroa et al., 2015). Let Ã; B̃ be two interval-

valued T2FNs. Let Ãβ ¼ Ãβ ; Ãβ

� �
be the β-plane of Ã and let

B̃β ¼ B̃β; B̃β

� �
be the β-plane of B̃. Then, at α� level, "Ãβ" is

represented by

Ãβ
α ¼ ðLMFFOU Ãð Þ x;α; βð Þ;UMFFOU Ãð Þ x;α; βð ÞÞ, 8x 2 R. (i.e.)

Ãβ
α ¼ Ãα

L �ð Þ; Ãα
R �ð Þ

� 	
; Ãα

L þð Þ; Ãα
R þð Þ

� 	� �
.

Similarly, at α� level, "B̃β" is represented by B̃β
α ¼

B̃α
L �ð Þ; B̃α

R �ð Þ
� 	

; B̃α
L þð Þ; B̃α

R þð Þ
� 	� �

.

The distance (metric) dα between Ã and B̃ is given on a set of "n"
α-cuts, α1;α2; . . . . . . :;αnf g and
Λ ¼ P

n
i¼1 αi, is dα Ã; B̃

� � ¼Δ 1
Λ

P
n
i¼1 αi Ãαi

L þð Þ � B̃αi
L þð Þ



 

 þ�
Ãαi

L �ð Þ � B̃αi
L �ð Þ



 

þ Ãαi
R þð Þ � B̃αi

R þð Þ


 

þ Ãαi

R �ð Þ � B̃αi
R �ð Þ



 

g:
If α is continuous, then Λ ¼ R

1
0 αdα, so dα is defined as

dα Ã; B̃
� � ¼Δ 2

R
1
0 α

Ãα
L þð Þ � B̃α

L þð Þ


 

þ Ãα

L �ð Þ � B̃α
L �ð Þ



 


þ Ãα

R þð Þ � B̃α
R þð Þ



 

þ Ãα
R �ð Þ � B̃α

R �ð Þ


 

� �

dα.

Proof: (Figueroa et al., 2015).

Let E2 be the collection of all triangular PQT2FNs. Suppose that
ŷ 2 E2 is a triangular PQT2FN with core "y".

(i.e.) ey ¼ ylU ; yl; ylL; y; yrL; yr; yrU½ � 2 E2 is a triangular PQT2FN,
where, ylL ; yrL are the two end points of the support of
LMFFOU eyð Þ; ylU ; yrU are the left and right end points of the support

of UMFFOU eyð Þ; and yl ; yr are the left and right end points of the sup-
port of PS eyð Þ.
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(i.e.) LMFFOU eyð Þ ¼ ylL; y; yrL½ �; UMFFOU eyð Þ ¼ ylU ; y; yrU½ �; and
PS eyð Þ ¼ yl; y; yr½ � and all these are T1FNs.

The α� cut of LMFFOU ey tð Þð Þ, UMFFOU ey tð Þð Þ, and PS ey tð Þð Þ is
respectively given as follows:

ylL; y; yrL½ �α ¼ y � 1� αð Þ y � ylLð Þ;
y þ 1� αð Þ yrL � yð Þ

 �
; ylU ; y; yrU½ �α ¼ y � 1� αð Þ y � ylUð Þ;

y þ 1� αð Þ yrU � yð Þ
 �

; and

yl; y; yr½ �α ¼ y � 1� αð Þ y � ylð Þ; y þ 1� αð Þ yr � yð Þ½ �:

The β-plane of "ey " at α� level is given by eyβα ¼ eyβα;eyβα� �
, where

eyβα ¼ ylL; y; yrL½ �α

¼ y � 1� αð Þ y � ylð Þ � 1� βð Þ 1� αð Þ yl � ylLð Þ;
y þ 1� αð Þ yr � yð Þ þ 1� βð Þ 1� αð Þ yr � yrLð Þ

 �
; and

eyβα ¼ ylU ; y; yrU½ �αβ
¼ y � 1� αð Þ y � ylð Þ � 1� βð Þ 1� αð Þ yl � ylUð Þ;

y þ 1� αð Þ yr � yð Þ þ 1� βð Þ 1� αð Þ yrU � yrð Þ
 �

:

3. Differential of Type-2 Fuzzy Functions

Following the description of generalized differentiability of
fuzzy-valued functions, Bede & Gal (2005 and Mazandarani &
Najariyan (2014) have defined the derivative of T2FN-valued
functions.

Definition 3.1. (Mazandarani & Najariyan, 2014). Let ẽ1; ẽ2 2 E2.
If there exist ẽ3 2 E2 such that ẽ1 ¼ ẽ2 þ ẽ3, then ẽ3 is named as type-
2 H-difference of ẽ1 and ẽ2, represented by ẽ1 H2 ẽ2.

Theorem 3.1. (Mazandarani & Najariyan, 2014). If ẽ1; ẽ2 2 E2,
then β� plane of the H2-difference of ẽ1 and ẽ2 is the H-difference
of LMF and UMF of ẽ1 and ẽ2.

Proof: Refer Mazandarani and Najariyan (2014).

Definition 3.2. (Mazandarani & Najariyan, 2014). Let
T ¼ a; b½ � � R. Then F̃ : T ! E2 is called a triangular PQT2FN-
valued function.

Definition 3.3. (Mazandarani & Najariyan, 2014). Let
F̃ : T � R ! E2 and let x0 2 T: Then, F̃ is said to be differentiable
at x0 if there exists an F̃0 x0ð Þ 2 E2 such that, for all δ > 0 sufficiently
near to 0, then

(1) There are F̃ x0 þ δð Þ H2 F̃ x0ð Þ, F̃ x0ð Þ H2F̃ x0 � δð Þ, as well as the limits:

limδ!0
F̃ x0þδð Þ H2F̃ x0ð Þ

δ
¼ limδ!0

F̃ x0ð Þ H2 F̃ x0�δð Þ
δ

¼ F̃0 x0ð Þ (or)

(2) There are F̃ x0ð Þ H2 F̃ x0 þ δð Þ, F̃ x0 � δð Þ H2 F̃ x0ð Þ, as well as the limits:

limδ!0
F̃ x0ð Þ H2F̃ x0þδð Þ

�δ
¼ limδ!0

F̃ x0�δð Þ H2 F̃ x0ð Þ
�δ

¼ F̃0 x0ð Þ (or)

(3) There are F̃ x0 þ δð Þ H2F̃ x0ð Þ, F̃ x0 � δð Þ H2F̃ x0ð Þ, as well as the limits:

limδ!0
F̃ x0þδð Þ H2 F̃ x0ð Þ

δ
¼ limδ!0

F̃ x0�δð Þ H2 F̃ x0ð Þ
�δ

¼ F̃0 x0ð Þ (or)

(4) There are F̃ x0ð Þ H2 F̃ x0 þ δð Þ, F̃ x0ð Þ H2 F̃ x0 � δð Þ, as well as the
limits:

limδ!0
F̃ x0ð Þ H2 F̃ x0 þ δð Þ

�δ
¼ limδ!0

F̃ x0ð Þ H2 F̃ x0 � δð Þ
δ

¼ F̃0 x0ð Þ:

Note 3.1. In Definition 3.3, the limits have been taken in the metric
space E2; d2ð Þ.

Note 3.2. F̃ tð Þ is differentiable in the first form,” if it is differentiable
as in Definition 3.3(1), and differentiable in the second form,” if it is
differentiable as in Definition 3.3(2).

Theorem 3.2. (Mazandarani & Najariyan, 2014). Suppose thateG : a; bð Þ ! E2 and let eG tð Þ
h i

β
¼ eGβ tð Þ; eGβ tð Þ

h i
, for each 0 � β

� 1, where eGβ tð Þ, are LMF and UMF of β� plane of eG tð Þ, respec-
tively, then

1. If eG is H2� differentiable in the first form and eGβ tð Þ; eGβ tð Þ are
differential functions in the first form Bede & Gal (2005),

then eG0 tð Þ
h i

β
¼ eG0

β tð Þ; eG0
β tð Þ

h i
.

2. If eG is H2� differentiable in the second form and Gβ tð Þ; eGβ tð Þ are
differential functions in the second form Bede & Gal (2005),

then eG0 tð Þ
h i

β
¼ eG0

β tð Þ; eG0
β tð Þ

h i
.

Proof: Refer Mazandarani and Najariyan (2014).

4. Fourth-Order Runge–Kutta Method for Type-2
Fuzzy Initial Value Problems

Consider a type-2 fuzzy initial value problem (T2FIVP)

ey0 tð Þ ¼ g̃ t;ey tð Þð Þ; t 2 c;d½ �;ey cð Þ ¼ ey0: (1)

The problem is to find the numerical answers to Equation (1) by
Runge–Kutta method of order 4.

4.1. Differentiable in the first form

Assume that the T2FIVP given in Equation (1) is H2�
differentiable in the first form.

Let the analytical solution of Equation (1) in the parametric
form be

ey tð Þ½ �αβ¼ YlU tð Þ;Yl tð Þ;YlL tð Þ;Y tð Þ;YrL tð Þ;Yr tð Þ;½ YrU tð Þ�αβ and the
approximate solution to Equation (1) by Runge–Kutta method of
order 4 be ey tð Þ½ �αβ¼ ylU tð Þ; yl tð Þ; ylL tð Þ;½ y tð Þ; yrL tð Þ; yr tð Þ; yrU tð Þ�αβ.

Here, YlU tð Þ;YrU tð Þ½ �αβ; Yl tð Þ;Yr tð Þ½ �αβ; YlL tð Þ;YrL tð Þ½ �αβ; ylU tð Þ;½
yrU tð Þ�αβ; yl tð Þ; yr tð Þ½ �αβ and ylL tð Þ; yrL tð Þ½ �αβ are valid T1FNs.

To approximate ylU tð Þ; yrU tð Þ½ �αβ:
Let a ¼ t0 � t1 � t2 � . . . . . . . . . . . . . . . . . . � tN ¼ b and

h ¼ b�að Þ
N ¼ tnþ1 � tn.

The analytical and estimated solutions at tn; 0 � n � N are denoted
by YlU tnð Þ;YrU tnð Þ½ �αβ and ylU tnð Þ; yrU tnð Þ½ �αβ, respectively. By
Runge–Kutta method of order 4,
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ylU tnþ1; α;βð Þ ¼ ylU tn; α;βð Þ

þ 1
6

k1 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ 2k2 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ2k3 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ k4 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

8>><>>:
9>>=>>;
(2)

yrU tnþ1;α; βð Þ ¼ yrU tn; α; βð Þ

þ 1
6

k1 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ 2k2 tn; ylU tnð Þ; yr tnð Þ½ �αβ
� �

þ2k3 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ k4 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

8>><>>:
9>>=>>;
(3)

where

ki tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ ¼ ki tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ;
h

ki tn; ylU tn;α; βð Þ; yrU tn;α;βð Þ½ �ð Þ�; i ¼ 1; 2; 3; 4: (4)

k1 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ min h:f̃ tn; uð Þ nu 2 ylU tn;α; βð Þ; yrU tn; α;βð Þ½ �� � (5)

k1 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ max h:f̃ tn; uð Þ nu 2 ylU tn;α; βð Þ; yrU tn;α;βð Þ½ �� �
(6)

k2 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ min
h:f̃ tn þ h

2 ; uþ v
2

� �nv 2 k1 tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ
( )

(7)

k2 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ max h:f̃ tn þ
h
2
; uþ v

2

� �
n v 2 k1 tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ

� �
(8)

k3 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ min h:f̃ tn þ
h
2
; uþ v

2

� �
n v 2 k2 tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ

� �
(9)

k3 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ max h:f̃ tn þ
h
2
; uþ v

2

� �
n v 2 k2 tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ

� �
(10)

k4 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ min
h:f̃ tn þ h; uþ vð Þn v 2 k3 tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ

( )
(11)

k4 tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

¼ max
h:f̃ tn þ h; uþ vð Þn v 2 3 tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ

8<:
9=;
(12)

Define,

F tn; ylU tnð Þ; yrU tnð Þ½ �αβ
h i

¼ 1
6

k1 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ 2k2 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ2k3 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ k4 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

8>><>>:
9>>=>>;
(13)

G tn; ylU tnð Þ; yrU tnð Þ½ �αβ
h i
¼ 1

6

k1 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ 2k2 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ2k3 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ k4 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

8><>:
9>=>;
(14)

Let

YlU tnþ1;α;βð Þ ¼ YlU tn; α;βð Þ þ F tn; YlU tn;α; βð Þ;YrU tn;α; βð Þ½ �½ �
(15)

YrU tnþ1;α; βð Þ ¼ YrU tn;α; βð Þ þ G tn; YlU tn;α; βð Þ;YrU tn;α; βð Þ½ �½ �
(16)

And,

ylU tnþ1;α;βð Þ ¼ ylU tn; α;βð Þ þ F tn; ylU tn; α;βð Þ; yrU tn;α; βð Þ½ �½ �
(17)

yrU tnþ1; α;βð Þ ¼ yrU tn;α; βð Þ þ G tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �½ �
(18)

The lemmas and theorems inMa et al. (1999) can be used to show the
convergences of theses approximates.

(i.e.) YlU t;α; βð Þ ¼ lim
h!0

ylU t;α; βð Þ and YrU t;α;βð Þ ¼
limh!0 yrU t;α; βð Þ.
Similarly, we can find approximate solutions to
Yl tð Þ;Yr tð Þ½ �αβ; YlL tð Þ;YrL tð Þ½ �αβ.

4.2. Differentiable in the second form

Assume thatey0 t;α;βð Þ isH2� differentiable in the second form.
Let the analytical solution of Equation (1) beey tð Þ½ �αβ¼ YlU tð Þ;Yl tð Þ;YlL tð Þ;Y tð Þ;YrL tð Þ;Yr tð Þ;YrU tð Þ½ �αβ and the
approximate solution to Equation (1) by Runge–Kutta method of
order 4 be

ey tð Þ½ �αβ¼ ylU tð Þ; yl tð Þ; ylL tð Þ; y tð Þ; yrL tð Þ; yr tð Þ; yrU tð Þ½ �αβ. Here,
YlU tð Þ;YrU tð Þ½ �αβ; Yl tð Þ;Yr tð Þ½ �αβ; YlL tð Þ;YrL tð Þ½ �αβ

ylU tð Þ; yrU tð Þ½ �αβ; yl tð Þ; yr tð Þ½ �αβ and ylL tð Þ; yrL tð Þ½ �αβ are valid T1FNs.
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To approximate ylU tð Þ; yrU tð Þ½ �αβ:

Let a ¼ t0 � t1 � t2 � . . . . . . . . . . . . . . . . . . � tN ¼ b and h ¼ b�að Þ
N ¼ tnþ1 � tn.

The analytical and estimated solutions at tn; 0 � n � N are denoted
by YlU tnð Þ;YrU tnð Þ½ �αβ and ylU tnð Þ; yrU tnð Þ½ �αβ, respectively. By
Runge–Kutta method of order 4,

ylU tnþ1;α; βð Þ ¼ ylU tn;α;βð Þ

þ 1
6

k1 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ 2k2 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ2k3 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ k4 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

8><>:
9>=>;

(19)

yrU tnþ1;α;βð Þ ¼ yrU tn;α; βð Þ

þ 1
6

k1 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ 2k2 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ2k3 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

þ k4 tn; ylU tnð Þ; yrU tnð Þ½ �αβ
� �

8><>:
9>=>;

(20)

where

ki tn; ylU tnð Þ; yrU tnð Þ½ �ð Þ½ �αβ¼
ki tn; ylU tn;α; βð Þ; yrU tn;α; βð Þ½ �ð Þ;
ki tn; ylU tn;α;βð Þ; yrU tn;α;βð Þ½ �ð Þ

" #
,

i ¼ 1; 2; 3; 4, are given from Equation (5) to Equation (12). Using
Equations (19) and (20) together with Equations (13) and (14), the
analytical solution of the T2FIVP given in Equation (1) is

YlU tnþ1;α;βð Þ ¼ YlU tn;α; βð Þ þ G tn; YlU tn;α; βð Þ;YrU tn;α; βð Þ½ �½ �
(21)

YrU tnþ1;α; βð Þ ¼ YrU tn;α; βð Þ þ F tn; YlU tn;α;βð Þ;YrU tn; α;βð Þ½ �½ �
(22)

And the approximate solution is given by

ylU tnþ1;α; βð Þ ¼ ylU tn;α; βð Þ þ G tn; ylU tn;α;βð Þ; yrU tn;α; βð Þ½ �½ �
(23)

yrU tnþ1;α;βð Þ ¼ yrU tn;α; βð Þ þ F tn; ylU tn;α; βð Þ; yrU tn;α;βð Þ½ �½ �
(24)

The lemmas and theorems inMa et al. (1999) can be used to prove the
convergences of theses approximates.

(i.e.) YlU t; α;βð Þ ¼ lim
h!0

ylU t; α;βð Þ and YrU t;α;βð Þ ¼
limh!0yrU t;α; βð Þ.

Similarly, we can find approximate solutions to Yl tð Þ;Yr tð Þ½ �αβ;
YlL tð Þ;YrL tð Þ½ �αβ.

5. Numerical Example

Example 5.1. Consider a T2FIV problem ey0 tð Þ ¼ �ey tð Þ;
t 2 0; 1½ �, with the initial condition

ey t0ð Þ ¼ ey0 ¼ y0lU ; y0l; y0lL; y0; y0rL; y0r; y0rU½ � ¼ 0:85; 0:9; 0:96; 1; 1:04; 1:1; 1:15½ �
(25)

(i.e.) y0lU ¼ 0:85; y0l ¼ 0:9; y0lL ¼ 0:96; y0 ¼ 1; y0rL ¼ 1:04;
y0r ¼ 1:1; y0rU ¼ 1:15.

The parametric forms of the initial conditions are given by:

y0lU ¼ 0:85þ 0:15αþ 0:05β� 0:05αβ;

y0l ¼ 0:9þ 0:1α;

y0lL ¼ 0:94þ 0:06α� 0:04βþ 0:04αβ;

y0rL ¼ 1:04� 0:04αþ 0:06β� 0:06αβ;

y0r ¼ 1:1� 0:1α; y0rU ¼ 1:15� 0:15α� 0:05βþ 0:05αβ:

Now, let ey tð Þ ¼ ylU ; yl; ylL; y; yrL; yr; yrU½ � and henceey0 tð Þ ¼ y0lU ; y
0
l ; y

0
lL; y

0; y0rL; y
0
r; y0rU

� 	
∴Equation (25) ⇒

y0lU ; y
0
l ; y

0
lL; y

0; y0rL; y
0
r; y

0
rU

� 	 ¼ � ylU ; yl; ylL; y; yrL; yr; yrU½ � (26)

Case (1): Presume that ey tð Þ is H2� differentiable in the first form.

∴Equation (26) ⇒ y0lU ; y
0
l ; y

0
lL; y

0; y0rL; y
0
r;

�
y0rU � ¼ �yrU ;�yr;½

�yrL;�y;�ylL;�yl;�ylU �;

) y0lU ¼ �yrU (27)

y0l ¼ �yr (28)

y0lL ¼ �yrL (29)

y0 ¼ �y (30)

y0rL ¼ �ylL (31)

y0r ¼ �yl (32)

y0rU ¼ �ylU (33)

Pairing up Equations (27) and (33), we get a system of equations

y0lU ¼ �yrU
y0rU ¼ �ylU

�
(34)

with initial conditions: y0lU ¼ 0:85þ 0:15αþ 0:05β
�0:05αβ; y0rU ¼ 1:15� 0:15α� 0:05βþ 0:05αβ.

Pairing up Equations (28) and (32), we get a system of equations

y0l ¼ �yr
y0r ¼ �yl

�
(35)

with initial conditions: y0l ¼ 0:9þ 0:1α; y0r ¼ 1:1� 0:1α.

Pairing up Equations (29) and (31), we get a system of equations

y0lL ¼ �yrL
y0rL ¼ �ylL

�
(36)

with initial conditions: y0 ¼ 0:94þ 0:06α� 0:04βþ 0:04αβ;
y0rL ¼ 1:04� 0:04αþ 0:06β� 0:06αβ.

The analytical solution of UMF (i.e.), the system of equations given
in Equation (34), is
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YlU ¼ �0:15þ 0:15αþ 0:05β� 0:05αβð Þet þ e�t ;

YrU ¼ 0:15� 0:15α� 0:05βþ 0:05αβð Þet þ e�t :

The analytical solution of the principal MF given by Equation (35) is

Yl ¼ �0:10þ 0:10αð Þet þ e�t ;

Yr ¼ 0:10� 0:10αð Þet þ e�t :

The analytical solution of LMF given by Equation (36) is

YlL ¼ �0:05þ 0:05α� 0:05βþ 0:05αβð Þet
þ 1þ 0:01αþ 0:01β� 0:01αβð Þe�t ;

YrL ¼ 0:05� 0:05αþ 0:05β� 0:05αβð Þet
þ 1þ 0:01αþ 0:01β� 0:01αβð Þe�t :

It can be seen that for β ¼ 1, the UMF, the principal membership,
and LMF are same.

By fixing 00β ¼ 000 and letting 00α00 to vary in [0, 1], the approxi-
mate solutions of UMF (AUMD11) and LMF (ALMD11) are
obtained by the method that has been proposed in Section 4
(Runge–Kutta method of order 4) for 00t ¼ 100 with h ¼ 0:1.

Similarly, the approximate solutions of UMF (AUMD12,
AUMD13) and LMF (ALMD12, ALMD13) are simulated for
β ¼ 0:5 and β ¼ 1. All these approximations are plotted in Figure 1.

The errors (ED11, ED12, and ED13) between the approximate
solutions and analytical solutions are plotted in Figure 2.

Clearly, as 00α00 increases the error is reduced for β ¼ 0:5. Also,
errors coincide for β ¼ 0 and β ¼ 1:As in the classical methods, the
error can be further minimized by reducing the width size.

Case (2):. Presume that ey tð Þ is H2� differentiable in the sec-
ond form.

∴Equation (26) ⇒

y0lU ; y
0
l ; y

0
lL; y

0; y0rL; y
0
r; y

0
rU

� 	 ¼ �ylU ;�yl;�ylL;�y;�yrL;�yr;�yrU½ �
(37)

Equation (37) gives three systems of ordinary differential equations
given by:

y0lU ¼ �ylU
y0rU ¼ �yrU

�
(38)

with initial conditions: y0lU ¼ 0:85þ 0:15αþ 0:05β� 0:05αβ;
y0rU ¼ 1:15� 0:15α� 0:05βþ 0:05αβ.

y0l ¼ �yl
y0r ¼ �yr

�
(39)

with initial conditions: y0l ¼ 0:9þ 0:1α; y0r ¼ 1:1� 0:1α. And

y0lL ¼ �ylL
y0rL ¼ �yrL

�
(40)

with the initial conditions: y0lL ¼ 0:94þ 0:06α� 0:04β
þ0:04αβ; y0rL ¼ 1:04� 0:04αþ 0:06β� 0:06αβ.

The analytical solution of UMF given in Equation (38) is

ylU ¼ 0:85þ 0:15αþ 0:05β� 0:05αβð Þe�t ;

yrU ¼ 1:15� 0:15α� 0:05βþ 0:05αβð Þe�t :

The analytical solution of the principal MF given by Equation (39) is

yl ¼ 0:90þ 0:10αð Þe�t ; yr ¼ 1:10� 0:10αð Þe�t :

The analytical solution of LMF given by Equation (39) is

ylL ¼ 0:94þ 0:06α� 0:04βþ 0:04αβð Þe�t ;

yrL ¼ 1:04� 0:04αþ 0:06β� 0:06αβð Þe�t :

By fixing β ¼ 0, permitting 00α00 to vary in [0, 1], the approximate
solutions of UMF (AUMD21) and LMF (ALMD21) are obtained
by the method proposed in Section 4 (Runge–Kutta method of order
4) for 00t ¼ 100 with h ¼ 0:1.

Similarly, the approximate solutions of UMF (AUMD22,
AUMD23) and LMF (ALMD22, ALMD23) are simulated for
β ¼ 0:5 and β ¼ 1. All these approximations are plotted in
Figure 3.

The errors (ED21, ED22, and ED23) between the approximate
solutions and exact solutions are plotted in Figure 4.

Figure 1
Approximations - H_2- differentiable in the first form

Figure 2
Errors at t = 1 - H_2- differentiable in the first form
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Clearly, as 00α00 increases the error is reduced. Also, errors
coincide for β ¼ 0 and β ¼ 1:

As in the classical methods, the error can be further minimized
by reducing the step size.

Example 5.2. Consider a T2FIV problem ey0 tð Þ ¼ 5� ey tð Þ;
t 2 0; 1½ �, with the initial condition

ey t0ð Þ ¼ ey0 ¼ y0lU ; y0l; y0lL; y0; y0rL; y0r; y0rU½ �
¼ 7; 8; 9; 10; 11; 12; 13½ � (41)

(i.e.) y0lU ¼ 7; y0l ¼ 8; y0lL ¼ 9; y0 ¼ 10; y0rL ¼ 11;
y0r ¼ 12; y0rU ¼ 13.

The parametric forms of the initial conditions are given by:

y0lU ¼ 7þ 3αþ β� αβ;

y0l ¼ 8þ 2α;

y0lL ¼ 9þ α� βþ αβ;

y0rL ¼ 11� αþ β� αβ;

y0r ¼ 12� 2α;

y0rU ¼ 13� 3α� βþ αβ::

Now, let ey tð Þ ¼ ylU ; yl; ylL; y; yrL; yr; yrU½ � and
hence ey0 tð Þ ¼ y0lU ; y

0
l ; y

0
lL; y

0; y0rL; y
0
r; y0rU

� 	
∴ Equation (25) ⇒

y0lU ; y
0
l ; y

0
lL; y

0; y0rL; y
0
r; y

0
rU

� 	 ¼ 5� ylU ; yl; ylL; y; yrL; yr; yrU½ � (42)

Case (1): Presume that ey tð Þ is H2� differentiable in the first form.

The analytical solution of UMF of the T2FIV given in
Equation (42) is

ylU ¼ � 3� 3α� βþ αβð Þet þ 5e�t þ 5;

yrU ¼ 3� 3α� βþ αβð Þet þ 5e�t þ 5:

The analytical solution of the principal MF is

yl ¼ � 2� 2αð Þe þ 5e�t þ 5;

yr ¼ 2� 2αð Þet þ 5e�t þ 5::

The analytical solution of LMF is

ylL ¼ � 1� αþ β� αβð Þet þ 5e�t þ 5;

yrL ¼ 1� αþ β� αβð Þet þ 5e�t þ 5::

The analytical and approximate solutions are obtained for t ¼ 1with
step size h ¼ 0:1.

Errors between analytical and approximate solutions of UMFs for
00β ¼ 000; β ¼ 0:5, and β ¼ 1 are listed in Table 1.

Errors between analytical and approximate solutions of LMFs
for 00β ¼ 000; β ¼ 0:5, and β ¼ 1 are listed in Table 2.

The errors in both UMFs and LMFs can be reduced by
increasing the step size.

Case (2): Presume that ey tð Þ is H2� differentiable in the sec-
ond form.

Figure 4
Errors at t = 1 - H_2- differentiable in the second form

Figure 3
Approximations - H_2- differentiable in the second form

Table 1
UMFs -Errors at t = 1 - H_2- differentiable in the first form

α Error β ¼ 0ð Þ Error β ¼ 0:5ð Þ Error β ¼ 1ð Þ
0.0 14.33475708 11.9456309 9.556504716
0.1 12.90128137 10.75106781 8.600854244
0.2 11.46780566 9.556504716 7.645203773
0.3 10.03432995 8.361941627 6.689553302
0.4 8.600854244 7.167378538 5.73390283
0.5 7.167378538 5.972815447 4.778252359
0.6 5.73390283 4.778252359 3.822601887
0.7 4.300427122 3.583689268 2.866951414
0.8 2.866951414 2.389126178 1.911300943
0.9 1.433475707 1.19456309 0.955650472
1.0 3.332E-06 3.332E-06 3.332E-06
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The analytical solution of UMF of the T2FIV given in Equation
(42) is

ylU ¼ 2þ 3αþ β� αβð Þe�t þ 5; yrU

¼ 8� 3α� βþ αβð Þe�t þ 5:

The analytical solution of the principal MF is:
yl ¼ 3þ 2αð Þe�t þ 5; yr ¼ 7� 2αð Þe�t þ 5.
The analytical solution of LMF is

ylL ¼ 4þ α� βþ αβð Þe�t þ 5; yrL ¼ 6� αþ β� αβð Þe�t þ 5:

The analytical and approximate solutions are obtained for t ¼ 1with
step size h ¼ 0:1.

Errors between analytical and approximate solutions of UMFs
for 00β ¼ 000; β ¼ 0:5; and β ¼ 1 are listed in Table 3.

Errors between analytical and approximate solutions of LMFs
for 00β ¼ 000; β ¼ 0:5; and β ¼ 1 are listed in Table 4.

From Tables 3 and 4, it is found that there are no significant
differences among the analytical and approximate solutions of
UMF and LMF.

It is evident that the proposed method works well for the second
kind of differentiability for the problems that we have considered for
our study.

In this section, two T2FIV problems are considered and both the
differentiability concepts have been applied to them.

In both the problems, the exact solution obtained by the first
differentiability concept contains the term 00et 00 which tends to
00100 as 00t ! 100. So, the two problems have unbounded solutions
as 00t00 increases.

On the other hand, both the problems under second
differentiability have bounded solutions as 00t ! 100.

Hence, depending upon the nature of the problem, we can
forecast by our insight what will happen in the long run, and
appropriate differentiability concept can be selected.

6. Conclusion

There are lots of circumstances in which the membership value
of an element is not crisp. In these cases, T2FS plays a very important
role. In this study, two differential equations with interval-valued
T2FNs as its initial conditions are considered, and T2FIV
problems are written in parametric forms. In each case of the
differentiability, three sets of ordinary differential equations are
obtained and these are assigned to UMF, primary MF, and LMF,
respectively. The classical Runge–Kutta method of order 4 is
applied to simulate the estimated solutions of the UMFs, the
primary MFs, and the LMFs. These estimated solutions are
compared with the respective analytical solutions for different
values of 00α00 and 00β00. The proposed method works better for the
ordinary differential equations that are derived from the second form
of differentiability concept than for those equations derived from the
first form of the differentiability concept. It is obvious that the pro-
posed method (a single step method) is competent than the classical
Euler’s and modified Euler’s methods, and small step size can min-
imize the inaccuracy between the estimated solutions and analytical
solutions. In future, multi-step methods will be used to explore the
numerical results of T2FDEs. Further, the appropriate method of dif-
ferentiability can be selected by analyzing the nature of the problems
that have been considered for the study.
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Table 2
LMFs- Errors at t = 1 - H_2- differentiable in the first form

α Error β ¼ 0ð Þ Error β ¼ 0:5ð Þ Error β ¼ 1ð Þ
0.0 4.778252359 7.167378538 9.556504716
0.1 4.300427122 6.450640683 8.600854244
0.2 3.822601887 5.73390283 7.645203773
0.3 3.34477665 5.017164976 6.689553302
0.4 2.866951414 4.300427122 5.73390283
0.5 2.389126178 3.583689268 4.778252359
0.6 1.911300943 2.866951414 3.822601887
0.7 1.433475707 2.150213562 2.866951414
0.8 0.955650472 1.433475707 1.911300943
0.9 0.477825236 0.716737854 0.955650472
1.0 3.332E-06 3.332E-06 3.332E-06

Table 3
UMFs -Errors at t = 1 - H_2- differentiable in the second form

Error β ¼ 0ð Þ Error β ¼ 0:5ð Þ Error β ¼ 1ð Þ
0.0 3.332E-06 3.332E-06 3.332E-06
0.1 3.332E-06 3.332E-06 3.332E-06
0.2 3.332E-06 3.332E-06 3.332E-06
0.3 3.333E-06 3.333E-06 3.333E-06
0.4 3.333E-06 3.333E-06 3.333E-06
0.5 3.332E-06 3.332E-06 3.332E-06
0.6 3.333E-06 3.333E-06 3.333E-06
0.7 3.332E-06 3.332E-06 3.332E-06
0.8 3.333E-06 3.333E-06 3.333E-06
0.9 3.332E-06 3.332E-06 3.332E-06
1.0 3.332E-06 3.332E-06 3.332E-06

Table 4
LMFs -Errors at t = 1 - H_2- differentiable in the second form

α Error β ¼ 0ð Þ Error β ¼ 0:5ð Þ Error β ¼ 1ð Þ
0.0 3.332E-06 3.332E-06 3.332E-06
0.1 3.332E-06 3.334E-06 3.332E-06
0.2 3.333E-06 3.333E-06 3.332E-06
0.3 3.332E-06 3.332E-06 3.333E-06
0.4 3.332E-06 3.332E-06 3.333E-06
0.5 3.333E-06 3.332E-06 3.332E-06
0.6 3.333E-06 3.332E-06 3.333E-06
0.7 3.332E-06 3.334E-06 3.332E-06
0.8 3.332E-06 3.332E-06 3.333E-06
0.9 3.333E-06 3.332E-06 3.332E-06
1.0 3.332E-06 3.332E-06 3.332E-06
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