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Abstract: In today’s world of healthcare, brain tumor (BT) detection has become increasingly prevalent. However, the manual BT classi-
fication of BTs is a time-consuming process. Consequently, deep convolutional neural network is used by many researchers in the medical
field for making accurate diagnoses and aiding in patient’s treatment. The traditional techniques have problems such as overfitting and the
inability to extract necessary features. To address these issues, we developed the topological data analysis based improved persistent homol-
ogy (TDA-IPH) and convolutional transfer learning and visual recurrent learning with elephant herding optimization hyperparameter tuning
(CTVR-EHO) models for BT segmentation and classification. Initially, the TDA-IPH is designed to segment the BT image. Then, from
the segmented image, features are extracted using transfer learning via the AlexNet model and bidirectional visual long short-term memory
(Bi-VLSTM). Next, elephant herding optimization is used to tune the hyperparameters of both networks to get an optimal result. Finally,
extracted features are concatenated and classified using the softmax activation layer. The simulation results of these proposed CTVR-EHO
and TDA-IPH methods are analyzed based on precision, accuracy, recall, loss, and F score metrics. Compared to other existing BT segmen-
tation and classification models, the proposed CTVR-EHO and TDA-IPH approaches show high accuracy (99.8%), high recall (99.23%),
high precision (99.67%), and high F' score (99.59%).

Keywords: AlexNet, brain tumor, deep convolutional neural network (DCNN), elephant herding optimization (EHO), topological data

analysis (TDA)

1. Introduction

Brain tumors (BTs) have been a major cause of mortality
worldwide in recent years. The occurrence of BTs has been rising,
with a growing number of diagnoses attributed to advances in med-
ical imaging and awareness. BTs are generally classified into two
main types: primary and secondary. Primary BTs originate within
the brain itself, are often benign, and make up around 70% of brain
malignancies, typically being localized within the brain. In con-
trast, secondary or metastatic tumors reach the brain through the
bloodstream from cancers in other organs, such as the breast, kid-
ney, or lungs [1]. Malignant BTs are highly aggressive, affecting
individuals of all ages and presenting a considerable risk of mor-
tality. They are estimated to cause 3.6 deaths per 100,000 females
and 5.4 deaths per 100,000 males annually from 2014 to 2018.
The World Health Organization classified BTss into four grades
(I to IV) in 2021. Each higher grade of BT has a worse progno-
sis and is more malignant. Glioblastoma is the most aggressive
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primary brain tumor, classified as a Grade IV tumor and has a
median survival period of only 12 to 15 months post-diagnosis
[2]. Additional kinds of primary BTs include gliomas (G), pituitary
tumors (P), and meningiomas (M). Gliomas, which arise from glial
cells, vary from low-grade tumors (such as oligodendrogliomas) to
high-grade tumors (like glioblastomas) and are known for their infil-
trative growth patterns. Pituitary tumors, often benign adenomas,
can impact hormone production, leading to significant endocrine
imbalances and various clinical symptoms, including headaches and
vision problems. Meningiomas, typically benign, develop from the
brain’s protective layers and the spinal cord; however, they can
cause complications based on their location and size, leading to
symptoms such as seizures or neurological deficits. The variations
in tumor types, sizes, and locations make accurate diagnosis chal-
lenging before treatment begins [3]. To aid in diagnosis, advanced
imaging techniques like magnetic resonance imaging (MRI) play a
critical role in identifying tumor characteristics. The specific tumor
type and its characteristics significantly influence treatment selec-
tion. Therefore, early diagnosis and classification of BT are essential
for developing effective treatment strategies.

BT diagnoses and treatment methods are constantly being
improved using imaging techniques to solve this problem. MRI is
the most common technique used by medical experts to diagnose
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BT [4], and medical imaging has emerged as a new technique for
BT treatment [5]. However, manual BT segmentation relies on the
expertise of medical professionals, and there is a growing need for
automated methods to assist with segmentation and classification [6].
In the presence of pathology, many methods have failed for image
segmentation. To overcome those issues, many researchers have
developed several automatic segmentation techniques to increase the
accuracy and applicability of tumor detection [7]. Over the past few
years, a diverse array of BT detection techniques has been devel-
oped, evolving fromtraditional image-processing approaches tomore
sophisticated neural networks [8]. In recent years, researchers have
used supervised and unsupervised, but they have typically resulted
in limited segmentation accuracy [9]. Early diagnosis, surgery, and
treatment depend on the accurate segmentation of BTs [10, 11]. How-
ever, many existing methods still struggle with low segmentation
accuracy and classification of tumor regions. Therefore, accurate BT
segmentation and the classification are vital for optimal treatment
planning.

Recently, deep learning (DL) models have gained significance,
becoming essential tools in medical image analysis due to their abil-
ity to learn complex patterns in data [12, 13]. The classification of
BT in this approach utilizes a deep three-D convolutional NN to
distinguish between low-grade and high-grade gliomas [14]. Seg-
mentation tasks are performed using a convolutional neural network
and a probabilistic neural network [15]. Moreover, feature extrac-
tion (FE) is a vital method for MRI image processing. It combines
the texture, intensities, and shape-based features and classifies the
image as gray, white matter, normal and abnormal areas. It effi-
ciently selects prominent features to increase the accuracy of the
diagnostic system. Furthermore, BT segmentation approaches can
be classified into three categories which are based on machine
learning, traditional image algorithms, and DL techniques. Due
to its high accuracy, DL has become the method of choice for
complex tasks. Over the past years, various convolutional neural
network techniques have been utilized for image segmentation [16].
The classification performance depends on image features and the
model [17].

In neural network-based classification, the network structure
of convolution methods is complex with over-fitting and vanish-
ing gradient problems, which minimize the automated system’s
performance. However, there is no powerful predictive potential
associated with the existing technologies for identifying BTs. Most
classification frameworks related to BT classification face issues
of ineffective classification performance, overfitting and the inabil-
ity to extract necessary features, leaving considerable room for
improvement. To address these challenges, hybrid models have been
suggested to enhance accuracy. To address these challenges, hybrid
models have been suggested to enhance accuracy. The DCNN is
designed with TL to leverage pretrained models like AlexNet for
improved feature extraction. To address the challenges of seg-
mentation and classification, we utilize the TDA-IPH model for
precise tumor segmentation, which captures the shape and structure
of tumors, enhancing boundary delineation. For classification, we
implement the convolutional transfer learning and visual recurrent
learning (CTVR-EHO) model, which effectively integrates spatial
and temporal dependencies in the data. Additionally, we employ
the EHO algorithm to optimize hyperparameters, ensuring that the
model achieves its best performance by systematically exploring
the hyperparameter space. This combined approach of TDA-IPH,
CTVR-EHO, and EHO allows for more accurate BT detection,
resulting in superior diagnostic outcomes compared to existing
methods.

The significant contributions of this proposed work are as
follows:

1) TDA- IPH is used for the segmentation of BTs to accurately
segment small tumors from the input image.

2) The AlexNet and BiVLSTM models extract low-level and high-
level features from the CTVR-EHO model simultaneously. This
gives importance to high-level and low-level features, so there
is no loss of features during FE.

3) The EHO algorithm is used to tune the hyperparameters
of the AlexNet and BiVLSTM networks to achieve optimal
performance.

The proposed TDA-IPH and CTVR-EHO models outperform
existing approaches in terms of precision, recall, F' score, accuracy,
and loss.

2. Literature Review

In neuroimaging, noise-reduction techniques are critical for
enhancing the quality of MRI data, particularly in the presence of
physiological artifacts such as brain, cardiac, and respiratory sig-
nals. Maltbie et al. [18] investigated the use of functional MRI
(fMRI) time-series entropy as a biomarker for assessing the excitato-
ry/inhibitory (E/I) balance in the brain, employing pharmacological
neuromodulation in a nonhuman primate model. Their research
highlights the potential of fMRI entropy as a sensitive measure
of neural dynamics, providing insights into brain function and the
effects of neuromodulatory interventions. This work contributes to
the understanding of time series affects the quality of detection in
MRI. Vidaurre et al. [19] analyzed the importance of spontaneous
and short-term interactions within brain networks using fMRI time-
series data. Their study emphasizes how the temporal dynamics of
brain activity can provide insights into neural processes affected
by tumors. Specifically, identifying transient interactions reveals
changes in functional connectivity that help understand a tumor’s
impact on surrounding structures. By analyzing time-series data,
researchers can enhance segmentation and classification techniques,
improving differentiation between healthy and tumor-affected brain
regions. This approach highlights the importance of incorporat-
ing time-series dynamics in neuroimaging for more accurate BT
detection and classification.

Alternatively, Ferdous et al. [20] introduced LCDEIT, a data-
efficient image transformer with linear complexity, designed for
MRI BT classification. Their study addresses the challenges of
high computational costs and data inefficiencies commonly seen
in traditional transformer models. By adopting a linear complex-
ity approach, LCDEIT significantly reduces computational demands
while achieving strong performance in image classification tasks.
This advancement enhances the model’s capacity to effectively learn
from MRI images, even with limited training data. The results
also pointed out the transformer architecture in the improvement
of diagnostic accuracy regarding BTs and its relevance to the chal-
lenges of clinical neuroimaging related to images. Likewise, Shah
et al. [21] introduced a novel method for classifying and local-
izing abnormalities in brain MRI using a channel attention-based
semi-Bayesian ensemble voting mechanism combined with a con-
volutional autoencoder. Their approach highlights how attention
mechanisms can enhance the model’s focus on relevant features
in MRI images, addressing common image quality issues such as
noise and artifacts. By utilizing ensemble voting, the study improves
decision-making through the aggregation of predictions from multi-
ple models, while the convolutional autoencoder effectively extracts
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complex features from the input images. In addition, Ghahfarrokhi
and Khodadadi [22] proposed a novel approach for diagnosing
human BTs by addressing key image-quality issues through the
integration of complexity measures and texture features extracted
from magnetic resonance images (MRI). Their study highlights the
significance of these feature sets in enhancing image analysis for
tumor detection. Complexity measures reveal underlying patterns
and irregularities in the tumor, providing critical information about
its structure. It helps to differentiate between healthy and abnormal
tissues. By combining these features, their methodology effectively
tackles challenges related to image quality and noise, resulting in
improved diagnostic accuracy and reliability. This work contributes
to the growing field of advanced image processing techniques aimed
at enhancing tumor detection and classification in clinical prac-
tice. Additionally, Ozbay and Ozbay [23] proposed a BTr detection
method that integrates interpretable feature fusion with deep hashing
for high-precision MRI images. This approach prioritizes inter-
pretability and efficiency in FE by compressing MRI data through
deep hashing, which retains essential tumor-related features. By fus-
ing interpretable features, the method improves the accuracy of BT
detection while ensuring computational efficiency, effectively tack-
ling the challenges posed by large MRI datasets. However, it is
crucial to address potential image issues, such as noise or artifacts
in MRI scans, which could affect the model’s performance. Xu et al.
[24] presented an advanced approach to medical image fusion. This
approach merges an advanced model inspired by visual processing
in the brain with artificial selection techniques and an impulse-
driven neural network to effectively integrate images from various
medical imaging methods. However, the study also addresses poten-
tial image issues, such as noise, artifacts, and discrepancies in
modality characteristics, which could impact fusion quality and
diagnostic accuracy. Therefore, ideal preprocessing steps are needed
before going for further analysis in MRI images. Deckers et al.
[25] introduced an adaptive filtering method specifically designed
to suppress these unwanted noise sources in MRI time-series data.
Their approach demonstrated significant improvements in image
quality by effectively isolating and removing noise while preserving
the underlying neural signals. This work underscores the impor-
tance of robust preprocessing techniques in neuroimaging and this
aims directly at developing methods accurately in detecting and
classifying the different types of BTs present in MRI scans.

For the segmentation of images, Thillaikkarasi and Sara-
vanan [26] used a multiclass-support vector Machine (M-SVM) and
Kernel-based convolution neural network (K-CNN) to segment the
kind of tumor as benign or malignant automatically. Thaha et al.
[27] applied an Enhanced Convolutional Neural Network to identify
the BT using segmentation. The segmentation results are improved
with a novel BAT optimization technique. Thaha et al. [27] used
M-SVM for classification and K-CNN for segmentation, a simi-
lar kind of research completed by Kaldera et al. [28]. Sajid et al.
[29] implemented a hybrid model combining two and three-path
CNN for BT segmentation with improved results. Jia and Chen [30]
presented DL-based architecture, Fully Automatic Heterogeneous
Segmentation using a Support vector machine (FAHS-SVM) to per-
form BT segmentation. Khan et al. [31] proposed a novel cascading
approach combined with handcrafted features, and CNN Model is
designed for fully automatic BTr segmentation. The said framework
is divided into two phases confidence surface modality genera-
tion and the proposed convolutional neural network approach. For
FE, Mittal et al. [32] developed a DL model for detecting BT
segmentation. The feature is extracted by the stationary wavelet
transform (SWT), which divides the image and extracts the feature;
a new growing convolutional neural network (GCNN) is used for
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classification. Ozyurt et al. [33] proposed a super resolution fuzzy
C-means CNN (SR-FCM-CNN) model to detect the BT MRI image.
They used Squeeze Net and extreme learning machine for FE and
classification. Bhargavi and Mani [34] presented the CNN model
designed to identify the BT MRI image. Gray-level co-occurrence
matrix (GLCM) and discrete wavelet transform (DWT) extract the
coefficients from BTr images to extract the features and Histo-based
image segmentation. Xing et al. [35] have established convolutional
neural network with element wise filter (CNN-EW) for brain net-
works. CNN-EW extracts hierarchical topological features. Rathore
et al. [36] have proposed a neural network based on topological FE,
which is used to classify autism-related brain structures. Kumar et al.
[37] proposed a DL model that includes global average pooling and
ResNet-50 to prevent overfitting and vanishing gradient problems.
Deepak and Ameer [38] introduced the CNN and SVM models for
FE and BT classification, respectively. Kesav and Jibukumar [39]
introduced the region-based convolutional neural network (RCNN)
and 2-channel CNN for BT analysis. Gupta et al. [40] introduced
a multitask attention-guided encoder-decoder network (MAG-Net)
to segment and classify BTs. Ahuja et al. [41] presented the Dark-
Net model for segmentation localization and classification of BTs.
Li et al. [42] introduced a U-Net model based on LKA for the auto-
matic segmentation of BT in MRI scans. Guan et al. [43] developed
a network architecture, the attention guide filter (AG) squeeze and
excite (SE)-based VNet (AGSE-VNet), for segmenting 3D MRI
BT images. Ghassemi et al. [44] proposed a method utilizing GAN
for multiclass classification of BTs. The summary of the existing
approaches is shown in Table 1.

3. Proposed TDA-IPH and CTVR-EHO
Methodology for BT Segmentation and
Classification

The framework of the proposed TDA-IPH and CTVR-EHO
model carries three phases: (i) De-noising, (ii) TDA-based seg-
mentation, and (iii) classification with hyperparameters tuning. The
workflow of the proposed model is shown in Figure 1.

3.1. Preprocessing

In this section, we outline the preprocessing techniques applied
to enhance the quality of MRI images prior to the implementation of
our proposed BT segmentation and classification methods. Initially,
MRI images often suffered from variations in size and orientation.
To ensure the quality of the features used in our model, several
rigorous pre-processing techniques were applied to the MRI images.

The preprocessing includes normalization, modified anisotropic
diffusion filter (MADF), morphological operations, and standardiza-
tion. This directly impacts the model’s ability to extract informative
features. The preprocessing steps are given below.

3.1.1. Normalization

It adjusts the intensity values of the MRI images to a common
scale, which helps in enhancing the contrast and ensuring that the
model can effectively learn from the data. Normalization typically
involves rescaling pixel values to a range 0 and 1 [45].

3.1.2. Research design modified anisotropic diffusion filter
(MADF) for de-noizing

This step is critical in our method as it prepares MRI images
for accurate BT segmentation and classification, which would oth-
erwise be hindered by the inherent noise present in MRI data. MRI
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Table 1
Summary of the existing approaches
Author/Year Technique Advantages Disadvantages Accuracy
Maltbie et al. fMRI time-series Provides insights into brain E/I  Limited to nonhuman Precision — 98,
[18] entropy balance. primate models. accuracy— 98.45
Vidaurre et al. Spontaneous brain Highlights the relevance of Complexity in inter- Accuracy— 98.78
[19] network interactions network interactions. preting transient Specificity— 96.7

Ferdous et al.
[20]

Shah et al. [21]

Ghahfar-
rokhi and
Khodadadi
[22]

Ozbay and
Ozbay [23]

Xu et al. [24]

Deckers et al.
[25]

Thillaikkarasi
and
Saravanan
[26]

Thaha et al. [27]

Kaldera et al.
[28]
Sajid et al. [29]

Jia and Chen
[30]

Khan et al. [31]

Mittal et al. [32]

Ozyurt et al.
[33]

LCDEiT

Semi-Bayesian
ensemble voting
mechanism

Complexity measures
and texture features

Interpretable features
fusion

Enhanced cross-visual
cortex model

Adaptive filter for MRI
noise duppression

Kernel-based CNN and
M-SVM

Enhanced CNN and
BAT optimization

CNN and faster R-CNN

Hybrid Convolutional
Neural Network

Automatic heteroge-
neous segmentation
using support vector
machine

Cascading approach
combined and CNN

SWT and GCNN

Fuzzy C Means with
super resolution,
CNN, extreme learn-
ing machine &
Squeez Net

Linear complexity and
data efficiency for MRI
classification.

Classifies and localizes
abnormalities effectively.

Combines multiple features for

improved diagnosis.

Enhances interpretability of
MRI data.

Improves medical image
fusion.

Suppresses noise effectively.

The tumor region is segmented

correctly.

Accurate region of brain
tumor.

Reduced number of com-
putation with good
accuracy

Deals with overfitting prob-
lems and handles data
imbalance problems

It eliminates the noise, which
improves the quality of the

tumor image.

10T enabled brain tumor
segmentation

A combination of SWT
and GCCN improves the
accuracy.

The high success rate of the
segmentation process.

interactions.
Limited scalability with
larger datasets.

Complexity of the ensem-
ble method can increase
training time.

Feature extraction may
be computationally
intensive.

May require extensive
preprocessing.
Complexity in
model design and
implementation.

May introduce artifacts if
not calibrated properly.

Worked on limited data
samples

Different selection
schemes can be
adopted to improve the
accuracy.

The author proceeds only
with axial plane slices.

High dropout values after
every convolution layer.

The technique is
relatively slow.

Accuracy needs to
improve.

More combinations of
classifiers are required
to improve accuracy,
but it may increase the
computational cost

Time consumption is
high.

F1 Score—97.8
Accuracy— 98.11
Precision— 97.02
Recall—96.5

Not specified

Accuracy— 98.9

Not specified

Not specified

Accuracy—95

Accuracy—84

Precision—_87
Recall—90
Accuracy—92

Accuracy—94

Dice Score 0.86
Sensitivity 0.86
Specificity 0.91

98.51

Dice similarity
scores

0.81

98.6

98.33

(Continued)
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Xing et al. [35]

Rathore et al.
[36]

Kumar et al.
[37]

Deepak and
Ameer [38]

Kesav and
Jibukumar
[39]

Gupta et al. [40]

Ahuja et al. [41]

Li et al. [42]

Guan et al. [43]

Ghassemi et al.
[44]

histo-based image
segmentation

Convolutional neural n
etwork with element
wise filters (CNN-
EW)

Neural Network based
Topological Data
Analysis

ResNet-50 and Global
Average Pooling

CNN and M-SVM

Region Based Con-
volutional Neural
Network (RCNN)
and Two Channel
CNN

MAG-Net

DarkNet & Super Pixel
Technique

LKAU-Net

AGSE-VNet

GAN-based method

Advantages of topological
structure information

Improvement in classifica-
tion accuracy using a hybrid
model that combines topo-
logical and correlation
features

Avoid overfitting and
vanishing gradient issues.

Less computations and
memory

Reduces execution time

Better feature extraction and
reduced computation

Recognize small tumors

Spatial flexibility, long-range
reliance, and local con-
textual information, while
avoiding high comput-
ing cost and disregard of
channel adaptation.

Improves accuracy and effi-
ciency through the clever
use of channel relationships,
attention mechanism, full
jump connections, categor-
ical Dice loss function, and
potential for clinical trials.

Tackles the problem of low
dataset size by using an
unsupervised learning
approach.

The accuracy of the
model is low

Noise in data and hetero-
geneity across multiple
sites is the reason for
low accuracy

The model is com-
putationally
expensive

The additional train-
ing time required by
CNN prior to feature
extraction

Limited to object
detection

Worked on limited data
samples

T1 modality is classified
with low accuracy.

Computational
complexity is high.

The model’s segmentation
prediction of the tumor
core is slightly biased,

GAN-generated synthetic
data may not always
accurately represent
the real data, which can
affect the classification
results.

Journal of Computational and Cognitive Engineering Vol. 4 Iss.4 2025
Table 1
(Continued)
Author/Year Technique Advantages Disadvantages Accuracy
Bhargavi and CNN model, gray Graphical user interface is Accuracy is low Sensitivity,
Mani [34] level Co-occurrence used specificity
matrix and discrete and accuracy
wavelet transform, 60%

Accuracy 66.88
Sensitivity 66.44
Specificity 70.4

Accuracy 69.2%

97.08% and
97.48% with
and without data
augmentation

95.82%

98.21

Precession, Recall
& F'1 Score is
0.98

99.43%

DC -

79.01%, 91.31%,
85.75%, and
95% HD -26.27,
4.56, and 5.87

Dice scores of
67%, 85%, and
69%.

Accuracy — 95.60%,
Sensitivity —
94%, Specificity
—98%, Preci-
sion — 95.29%,
F1-95.10
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Figure 1
Architecture of proposed TDA-IPH and CTVR-EHO model
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images often contain noise due to scanning artifacts, patient move-
ment, and equipment limitations. This noise introduces challenges
in FE by distorting important details such as tumor edges, texture,
and intensity gradients, which are essential for accurately identify-
ing tumor boundaries. Prior to preprocessing, these distortions result
in unclear boundaries, inconsistent intensity across the image, and
reduced contrast between tumor and non-tumor regions, impacting
the model’s ability to extract informative features.

To address these issues, we used a modified anisotropic
diffusion filter (MADF) as part of our preprocessing pipeline.
An isotropic diffusion filter is a commonly used noise reduction and
edge preservation method. However, the anisotropic diffusion fil-
ter still generates blurring at the edge. So, we used MADF, which
removes noise while preserving the edges from blurring. MADF
enhances the traditional anisotropic diffusion approach by refin-
ing the threshold parameter (TP) and diffusion coefficient (DC)
dynamically for each image, based on the specific content and fea-
tures of that image [46]. Unlike standard diffusion methods that
risk blurring edges, MADF selectively targets noise while preserv-
ing high-frequency information, particularly at the edges. It has

dynamic adaptation of TP and DC based on gradient information,
which helps retain significant edges and textures in the MRI image.
Also, iterative adjustment of diffusion parameters, allowing more
nuanced noise removal that adapts to different regions of the image.

MADF plays a key role in maintaining essential features dur-
ing denoizing. By preserving boundaries and enhancing contrast
in regions of interest, it prevents the loss of critical structural
information, such as:

1) Tumor Boundaries: These are preserved sharply, allowing for
clear delineation between tumor and surrounding tissue.

2) Texture and Intensity Variations: Preserving these details sup-
ports the model’s ability to identify subtle variations within
tumor regions that contribute to accurate classification.

In the MADF approach, TP is initially defined as the mean
absolute deviation of the gradient magnitudes of the input image.
However, unlike traditional methods where the threshold value
remains constant during iterations, TP in MADF is adapted
dynamically throughout the diffusion process. In the anisotropic
diffusion model, TP plays a crucial role in noise removal and edge
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preservation. Although the value of TP is initially fixed, it can
change in each iteration depending on the characteristics of the
image at that point in the diffusion process. This adaptation allows
for better preservation of edges while progressively reducing noise.

Initially, the gradient value for each pixel of a noisy input image
is calculated in four directions. Then TP is estimated, and the dif-
fusion process is applied until the required iteration. Finally, the
de-noised image is obtained. In this approach, TP and DC are essen-
tial parameters for noise removal while preserving the edge from
blurring. In the anisotropic diffusion model, the DC converges rel-
atively slowly, and also, in all iterations, the same threshold values
create edge blurring. Therefore, TP and DC are modified in MADF.
In MADF, modified DC has high convergence, and TP has different
values in each iteration. A DC function that converges faster than
the existing models is provided in Equation (1).

1 0.5
1+ e(2abs(s2/t)

d= > (M
1 + eQabs(s/)”)

where, s represents the gradient value calculated for each pixel of
the input image and ¢ is TP. In the MADF approach, TP is adapted
to be image-dependent. If only the left portion of Equation (1) is
utilized, it effectively removes noise; however, this method has a
slow convergence rate and may eliminate important image features.
Conversely, using the right portion allows for rapid convergence but
introduces a delay in smoothing. To balance these effects, a linear
combination that converges between these two terms is employed.

Additionally, the square of TP is not taken in both terms
because it negatively impacts the convergence rate. The adaptation
of TP enables it to adjust iteratively based on the current state of the
image. It allows us to effectively maintain the edges while remov-
ing the noise. Therefore, this adaptation means that, although the
starting value may be fixed, the method can modify TP based on
the characteristics of the current state of the image as the diffusion
process proceeds. Even though TP starts as a fixed value, it can
change depending on the image content, allowing for more nuanced
control over the noise removal process during iterations. This helps
effectively balance noise reduction and edge preservation, which
would not be possible if TP were truly static throughout the filtering
process.

The TP is the gradient of the input image’s weighted average
absolute mean deviation, which is given in Equation (2)

g1 =W % Meany, [VM, — MeanMn(HVM,,H)] (@)
where meanyy,,) represents average operation, denotes weight. By
minimizing noise and enhancing feature clarity, MADF prepares
the image for segmentation. It then segments the denoized image
with greater accuracy by leveraging the refined features, which were
challenging to achieve in noisy images. Therefore, it ensures that
the process did not eliminate essential information and improves the
clarity of tumor regions, aiding in more precise FE, leading to higher
accuracy in both segmentation and classification tasks.

3.1.3. Morphological operations

Following noise reduction, morphological operations (like ero-
sion, dilation, opening, or closing) can be applied to further refine
the image. These operations help in removing small artifacts,
enhancing structures of interest (like tumors), and connecting dis-
jointed parts of the tumor, making it easier to segment [47]. By
applying these operations, the image quality is improved, and the
accuracy of FE and segmentation is enhanced.
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3.1.4. Standardization

Standardizing intensity values involves adjusting them so that
they have a mean of zero and a variance of one. This process effec-
tively eliminates bias in the data and ensures a uniform distribution
of pixel values across all images [48]. By achieving a consistent
scale, standardization enhances the suitability of the images for
quantitative analysis. Moreover, it significantly boosts the effective-
ness of DL algorithms, as these models perform optimally when
input data are centered and normalized.

3.2. Image segmentation using TDA-IPH

TDA is a mathematical model which is utilized to extract,
shape, and segment complex images. In TDA, the features are
extracted by using persistent homology (PH). TDA is utilized in
segmentation because it presents a new method of looking at pat-
terns in data related to its structure, resulting in better segmentation
results than other machine learning approaches. Initially, the collec-
tion of edge points is detected from M using a wavelet-based edge
detector approach. Hence, a set of Y =y, y,....y,, points in M have
been found. Then thickening of points is performed by creating a
disc of radius § with centers at each point. Larger areas of the image
are covered as f3 increases, and hence the disc of radius begins to
overlap. Then, edges are formed by connecting the centers of the
overlapping S disc. If 8 -neighborhood of the point 7 and §' con-
tains no other points are then connected by an edge if they are within
two points. The skeleton connection created in this manner is called
B skeleton. As the  value increases, additional edges and skeleton
structures are formed. The subcomplex Rg, is defined by the col-
lection of vertices, edges, and skeletons for a given value of 8. The
topology created by the union of discs with radius centered at each
vertex is represented by this Rg complex. The first homology group
Betti number is defined as By = D—E+1 for a connected graph with
D and E being the number of edges and vertices, respectively. If we
have a skeleton sub-complex in the plane, then B} = O—E+D—A4,
where O is the number of linked components and 4 is the number
of skeleton or faces in the complex, £ is the number of edges in the
graph, D is the number of vertices. The Betti number B;(R [g) for
each sub-complex Rg in the filtration will vary as the § change. The
B/ (Rp) for each sub-complex Rg is given in Equation (3).

Bi(Rg)=O0—-E+D-4-S 3)
Equation (3) defines the Betti number, which represents the relation-
ship between key topological features of the segmentation process.
This value is crucial for understanding how the structure of the
graph evolves as the § parameter changes during the segmentation.
Specifically, B; influences the segmentation of porous materials
by identifying different regions in the input image. To overcome
challenges in segmenting porous materials from the input image,
we design the Improved PH (IPH). In TDA-IPH segmentation, we
use a split and merge segmentation technique to segment porous
materials from input image. The Betti number plays a significant
role in segmenting the image into three main regions: P,-persistent,
P-transient, and d -skeleton, topological splitting is used to create
segmentation initially.

Two parameters 3 and P, manage topological splitting, where
B specifies the radius of the discs and P denotes persistence.
Finally, it performs segmentation by merging the P,-Transient, and
d -skeleton regions with either the P -Persistent or each other.
P - Persistent represent the region that are holes in Rgyp. On the
other hand, P,-Transient are smaller areas that skeleton or new edge
is created in between Rg and Rg,p, whereas d -skeleton are the
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smallest regions that were already skeleton structures in Rg. The
P;-Persistent areas are important because they define main objects
during initial segmentation. These areas are essential to segmenta-
tion for two reasons: they are completely encircled by edges and
all have a 8 + P radius disc. After that, these initial regions are
enlarged to achieve a complete segmentation. Merging nearby areas
based on their feature properties is performed to complete segmen-
tation. In this method we utilized the average color value for each
region. Regions are merged only if Bj(Rg) remains stable, in order
to maintain the segmentation’s topology. This process will reduce
the parameters needed to build a PH and makes the method less
flexible and more robust to reduce the noise.

Algorithm 1: Image segmentation using TDA-IPH

Input: Denoized image M

Output: Segmented image

1. Find the edge points Y in the denoized image M .

2. Find beta skeleton of Y

3. Compute B (Rg) and find regions in R? — Ry as Pp -Persistent,
d-Skeleton, P,-Transient

4. Assume a set 4 of regions ordered based on increasing 8 values.
5. while (4 # empty) do

6. Let 8 denote the initial face in 4 .

7. Update as 4 = 4 — {f}

8. Merge a with the closest similar neighboring
area. // a- a- 1st skeleton face in 4

9. Set B‘lD (regionmerged) = Bf (Rﬁ)

10. end while

3.3. Proposed CTVR-EHO model for classification

An efficient structure to extract important information to clas-
sify the BT better is necessary since the BT is not visible against
the textured background, and many small tumors are difficult to
differentiate. Thus, we propose a CTVR-EHO model in which the
AlexNet and Bi-VLSTM modules are parallel. The functional struc-
ture of this model is illustrated in Figure 2. Here, AlexNeT extracts
more apparent features like edges, corners, color, and outlined
information from images. Bi-VLSTM is used to extract high-level
features from segmented BT images. Finally, extracted features
from both networks are concatenated and classified. A detailed
explanation of this proposed model is given in the below subsection.

3.3.1. AlexNet architecture

Alexnet is one of the most efficient deep CNN designs
commonly used to solve image classification issues. AlexNet
demonstrated strong classification abilities, although the training
took a long period. AlexNet comprises twenty-five layers, with five
containing learnable weights, and the final three layers are FC lay-
ers. After the convolutional layers in the AlexNet architecture, there
are ReLU, normalization, and MP layers. We had only a few hun-
dred samples in the BT dataset, which needs to be improved to train a
deep network of this size. Therefore, transfer learning (TL) is used to
solve this problem, which replaces the last three layers based on our
classification problem. The first five convolutional layers in this pre-
trained model are transferred to extract features like edges, corners,
color, and outlined information from images. The hyperparameters
in the AlexNet are tuned with the help of the EHO algorithm, which
is explained in Section 3.3.4.

3.3.2. Bi-VLSTM architecture

LSTM is the type of RNN that consists of a memory block. But
the RNN is used for sequential and temporal data processes. Unlike
LSTM, the Bi-LSTM can also store and examine the relationship
among the data in two directions. Researchers have generally used a
memory mechanism to solve time series issues and a visual mecha-
nism to solve image issues. But here, we apply visual memory (VM)
[39] to an image classification issue, and we fully use its informa-
tion and content properties rather than the time-related features used
in existing techniques to improve the classification performance of
BT. In the Bi-VLSTM model, initially, the input image’s features
are extracted using the convolutional layers. Max pooling (MP) lay-
ers follow each convolutional layer. The equations of the Bi-LSTM
model are given below:

Jjr=0Wyyr+ Wijir—y + Wadr—y +¢;) “4)
gr=0(Wyoyr + Wigit—1 + Wagdr_1 + ¢;) )
dr = grdr—y + jrtanh (Wyyr + Wigir—1 + cq) (6)
pr=0Wyyr+ Wipir—i + Wa,dr +¢,) @)
ir = pr. tanh(dr) (3)

where P, j, d, and g represent output gate, input gate, memory
cell state, and forget gate at time 7, respectively, yr represents
input vector, dy_; represents last memory cell state, W represents
weight, i7_; denotes last hidden state, o represents sigmoid func-
tion, iy denotes the hidden state, and crepresents bias vector. In
our proposed model, we use bi-LSTM model because it preserves
information in both forward and backward directions. The backward
hidden layer (h;) and forward hidden layer (h%) are two separate
hidden layers. The input vector is taken into account by the h]g in
ascending order, i.e., T = 1,2,...,t, and by the h; in descending
order, (i.e.,) T=t—1,t—2,...,1. The results ofh% and h% are then

combined to create the output J7. The implementation of this model
uses the following equations:

i = tanh (Wi.yT + Wf:.igT_l + clg) ©)
i€ = tanh (WS,pp + WSiS_ | +cf) (10)
Jr = Wi+ Woh + c. (11)

3.3.3. Concatenation of features for BT classification
When training process is completed, the AlexNet model
extracts features like edges, corners, and color from the segmented
image, while simultaneously Bi-VLSTM extract high-level features
to aid the network in better understanding and processing of the
image. After that features extracted from both AlexNet and Bi-
VLSTM are concatenated for classification of BT. Concatenation of
extracted features is given in Equation (12).
Fe=[Tp,Jr] (12)

where F- denotes concatenated features, 7y represents features
extracted using TLEA and J7 represents the features extracted using
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Figure 2
Architecture of CTVR-EHO for classification
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Bi-VLSTM. Then, these concatenated features are given to FC

layer. The output of the FC layer (F y) is given in Equation (13).
Fy = f(Fe W, * Bp) (13)

where W, represents weight and B, represents bias of FCL. Finally,

the SoftMax layer classifies the BT as glioma (G) or meningioma
(M) or pituitary (P).

3.3.4. EHO algorithm

DL models are time-consuming and require human expertise,
particularly when choosing the hyperparameter settings in the mod-
els. To save time-consuming activities and improve classification
accuracy, here we use the EHO algorithm to tune the hyperpa-
rameters of Bi-VLSTM and AlexNet. The following are the steps
involved in finding the optimal hyperparameters:

1) Step 1: Initialization

The first step is to initialize the elephant (hyperparameters)
population. Hyperparameter is initialized with a set of values which
are given in Tables 3 and 5.

2) Step 2: Fitness function

The model is trained with the hyperparameters initialized, and
then the fitness value is evaluated based on Equation (6). Then the
hyperparameters are sorted into clans according to their fitness func-
tion, and the head of the clan (matriarch) is selected based on the
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best fitness value. Here, accuracy is considered the criterion for
evaluating a network’s fitness. The fitness function is calculated
using Equation (14).

Ac < D —ky)) < ey)/K (14)

where K denotes number of inputs, x; denotes actual output for y;,

) denotes predicted output for y;, y; represents j input, and e
j p p Y, Vjrep J p m
denotes allowed error margin.

3) Step 3: Updating operation

The hyperparameter population is divided into K clans and
matriarch of clan Cj’s, directs the movement of each hyperparameter
i. Each hyperparameter movement is based on the Equation (15).

(15)

where, Ecj;p and E., cj,i,p are represented the current and new
position of i’ hyper parameter in clan. 8 represents the scaling factor
between 0 and 1. Ejq )i s the best clan position and 7 denotes the
random number between 0 and 1. Fittest hyperparameter (matriarch)
in each clan is updated using Equation (16).

Evew,cjis = Ecjip + BEpes,cji — Eci)y

(16)

where 2 is the scaling factor and £, c; represent the center of the
clan, which is calculated using Equation (17)

n
Ecen,Cj = zj:l ECj,i/nE

Enew,Cj,i =X Ecen,Cj

(17
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where np is the overall number of hyperparameters in every clan.
4) Step 4: Separate the worst elephant

A fixed number of hyperparameters with the worst fitness
function values are transferred to new position in each clan.
The positions of separated worst hyperparameters are given in
Equation (18).

Ewor.vr,Cj,i = EMin + (EMux - EMin + 1) 4 (18)

where E\ ., cji denotes the worst fitness hyperparameter and
Ey, and Eyy,,. denote the higher and lower position of each
hyperparameter.

5) Step 5: Convergence

After that, the same steps are repeated until reach the optimal
solution of hyperparameter for classification is obtained. If the cri-
terion status is “No,” then the step 2 to 4 will repeat until attain the
convergence criteria are met.

4. Experimental Result and Analysis

This section evaluates the proposed model through two main
subsections. The first subsection (Section 4.1) outlines the experi-
mental setup, dataset description, and details the evaluation metrics
used. The second subsection (Section 4.2) presents the sensitivity
analysis of EHO parameters, (Section 4.3) presents qualitative anal-
ysis and (Section 4.4) provides evaluation mmetrics, and (Section
4.5) given comparative analysis as comparisons with other existing
methods on MRI segmentation and classification.

4.1. Experimental setup

The experiments are conducted on PYTHON 2021.1.3 version,
i3 core, and 8GB RAM, equipped with an Intel i3 processor and
a storage capacity of 256 GB. The environment operates within a
Jupyter notebook, which provides an interactive platform for cod-
ing and visualization. The proposed approach is implemented using
Python 2021.1.3, leveraging essential libraries such as Scikit-learn,
Keras, TensorFlow, Seaborn, Matplotlib, NumPy, and Pandas.

4.1.1. Data spilt

The validation strategy outlined is essential for evaluating a
model’s performance in machine learning. It begins with a 70%—
30% train-test split, where 70% of the dataset is allocated for training
and 30% for testing, ensuring the model learns from a substantial
portion of the data while retaining enough unseen data for assessing
generalization. In our study, we chose a 70/30 split for the training
and testing data to balance model training and evaluation effectively.
This ratio is widely used in machine learning due to its simplicity
and effectiveness, serving as a common heuristic rather than being
based on a specific prior paper. With 70% of the data is allocated
for the training, we ensured that the model had enough examples
to learn the underlying patterns and features necessary for accurate
BT detection, particularly important given the variability in tumor
appearances across different cases. The remaining 30% serves as an
independent test set to evaluate the model’s performance, helping
to assess its generalization capability and ensuring that the results
are not biased toward the training data. This ratio helps to reduce
overfitting by splitting the data into training and testing sets, thereby
preventing the model from memorizing the training data. It also
evaluates generalization by testing model performance on unseen
data, which is crucial for real-world applications.

Additionally, the 70/30 split strikes a balance in the bias-
variance trade-off, minimizing the risk of underfitting and over-
fitting. Our confidence in this testing setup is further reinforced
by employing cross-validation techniques, ensuring the model’s
performance remains stable across various data subsets. We also
monitored performance metrics like accuracy, precision, and recall
to validate the reliability of our predictions. Although we used a sin-
gle split, shuffling the dataset and testing different splits could yield
similar outcomes; however, maintaining a representative sample in
both the training and testing sets is essential, as variability in the
data, such as differences in tumor types or imaging conditions, may
affect the results.

4.1.2. 5-fold cross validation

To further enhance model robustness, fivefold cross-validation
is employed, dividing the training dataset into five subsets. The
model is trained on four folds and validated on the remaining one,
repeating this process five times to gauge generalization and miti-
gate overfitting by testing the model across multiple data partitions.
Additionally, early stopping is implemented to monitor validation
loss during training, halting the process when no improvement is
observed for a specified number of epochs, which prevents over-
fitting by avoiding unnecessary training on noise. Finally, the
model’s performance is comprehensively evaluated using metrics
such as precision (accuracy of positive predictions), recall (abil-
ity to identify all relevant instances), F'1-score (harmonic mean of
precision and recall), and accuracy (overall correct predictions), pro-
viding a thorough assessment of its sensitivity and specificity in
segmentation and classification tasks.

The results in Table 2 indicate that the proposed model achieves
exceptional performance across all evaluated metrics. With a pre-
cision of 98.7% to 99.2%, the model demonstrates a high level of
accuracy in its positive predictions. The recall of 98.1% to 98.94%
indicates that the model successfully identifies a vast majority of
actual positive instances. The F'1-score of 99.3% to 99.4% reflects
a strong balance between precision and recall, suggesting that the
model is adept at minimizing false positives (FPs) and false nega-
tives (FNs). Furthermore, the accuracy of 98.9% to 99.6% highlights
the model’s overall effectiveness in correctly classifying instances.
The low validation loss of 0.011 reinforces the model’s capability
to generalize well, indicating minimal overfitting during training.
Overall, these results affirm the robustness and reliability of the
proposed TDA-IPH model in segmentation and classification tasks.

4.1.3. Parameters and hyperparameters description

The proposed model parameters and hyperparameters details
are given below:

Table 3 presents the hyperparameters and their corresponding
range of values for AlexNet, a convolutional NN consists of three
FCL and 5 convolutional layers, which is utilized for classification.
The table specifies the filter sizes in the convolutional layers, which
can vary between 3, 5, and 7 to capture different features in the input
images. For pooling, filter sizes of 2 or 3 are used, with the choice
between Max Pooling and Average Pooling (MP, AVG) for down-
sampling. The fully connected layers include neurons with sizes
from 128 to 512 to control feature depth, while the activation func-
tions introduce nonlinearity to enhance learning capacity. Dropout
rates of 0.3, 0.4, and 0.5 are applied for regularization, helping to
reduce overfitting by randomly deactivating a fraction of neurons
during training.

Table 4 describes the parameters of the elephant herding
optimization (EHO) algorithm, which is applied to tune the
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Table 2
5-fold cross-validation performance metrics
Iteration Testing set Accuracy Precision Recall F1-score
1 Fold 1 98.9 98.7 98.1 99.3
2 Fold 2 99.0 99.1 98.9 98.7
3 Fold 3 98.9 99.1 99.0 99.8
4 Fold 4 99.4 98.9 99.91 99.5
5 Fold 5 99.6 99.2 98.94 99.4
Table 3
Hyperparameters of AlexNet and their range of values
Layers Hyperparameters Values range
Convolutional Size of filter 3,57
Pooling Size of filter 2,3
Type of pooling MP, AVG pooling
FCL Neurons 128, 256, 512
Learning Activation function Leaky ReLU, Elu, ReLU
Regularization Dropout 0.3,0.4,0.5
hyperparameters of both AlexNet and BiVLSTM for optimal per- Table 5

formance in classifying MRI images of BTs. The parameters include
a population size of 10, divided into 12 clans to simulate a multi-
solution search environment. The beta and gamma values, set at 0.5
and 0.1, respectively, are crucial for updating the search strategy and
influencing the exploration-exploitation balance during optimiza-
tion. The generation index, which keeps track of the optimization
process’s progress, is crucial for monitoring convergence towards
optimal hyperparameters. This tuning with EHO aims to refine the
models’ accuracy and generalizability, enhancing their effectiveness
in BT classification based on MRI features.

Table 4

Parameters of EHO algorithm
Parameters Value
Population size 10
Number of clan 12
Beta 0.5
Gamma 0.1
Generation index 1

Table 5 describes the hyperparameters and value ranges for Bi-
VLSTM, a bidirectional long- and short-term memory model used
for sequence classification tasks. The BiVLSTM model includes
hyperparameters such as the number of hidden layers, which can
range from 0 to 2, and the number of neurons, which can vary from
20 to 200 to control the model’s complexity and depth. The learn-
ing rate for training ranges from 0.005 to 0.2, allowing adjustment
of model convergence speed, while dropout values range from 0
to 1 to introduce regularization by randomly deactivating neurons.
Batch sizes range from 1 to 512, giving control over the amount of
data processed in each training iteration, thereby affecting memory
usage and convergence stability.

4.1.4. Dataset description
This section provides the simulation result and comparative
analysis of MRI classification using the proposed and existing
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Hyper parameters of BiVLSTM and their range of values

Hyperparameters Values range
Hidden layers 0to2
Neurons 20 to 200
Learning rate 0.005 t0 0.2
Dropout 0to 1
Batch size 1 to 512

method. The Figshare brain dataset is used in this work. The dataset
contains 3064 T1 weighted contrast-enhanced MRI images, of
which 708 images are Meningioma (M), 1426 images are G3.lioma
(G), and 930 images are pituitary (P) tumors. The slices are collected
from 233 patients. It contains three kinds of BTs: meningioma, pitu-
itary, and glioma. From the dataset, 70% of images are used for
training, and the remaining 30% are used for testing. For more
details about the dataset, please refer to the data availability state-
ment’s links, and Cheng et al. [49, 50] also utilized the data in their
research.

Table 6 summarizes the distribution of MRI images within
the Figshare brain dataset, which comprises a total of T1-weighted
contrast-enhanced MRI images sourced from 233 patients. The
dataset is categorized into three types of BTs: meningioma, glioma,
and pituitary tumors. The total number of images for each tumor
type is listed below. The training and testing distribution for each
tumor type is also detailed, highlighting the number of images
used in each category. This structured approach enables a clear

understanding of the dataset’s composition, crucial for
Table 6
Training and testing details of Figshare dataset
Dataset Total Training Testing
Glioma 1426 1144 282
Figshare Meningioma 708 535 173
Pituitary 930 729 201
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evaluating the effectiveness of the proposed and existing
classification methods.

Algorithm 2: EHO algorithm for CTVR hyperparameter tuning

1. Initialization: Set the generation counter S to 1; initialize popu-
lation of elephant (hyperparameter); set maximum generation mxg
value.

2. Find fitness function

3. while (S < mxg) do

4. Sort the hyperparameters according to their fitness value.

5. for all Cj in hyperparameter population do

6. for all hyperparameters in Cj do

7. Update Ec;; p and generate E,,y, cji 8 by
Equation (15).

8. leleB = Ebestrcjyithen

9. Update E¢;; p and generate E,,,, c; ;by
Equation (16).

10. end if

11. end for

12. end for Cj

13. for all clans Cj in the population do

15. Separate the worst hyperparameter by

Equation (18).

16. end for

17. Population is evaluated by the positions updated.

18. S=S+1

19. end while
20. return the optimal solution.

4.2. Sensitivity analysis of EHO parameters

In optimization algorithms, the selection of parameters sig-
nificantly influences performance, affecting both the speed of
convergence and the quality of solutions. The EHO algorithm, an
optimization method serves as a critical tool for understanding how
variations in parameter settings impact the behavior and outcomes
of the algorithm. By systematically adjusting parameters, we can
identify the most effective configurations that yield optimal results.
In this analysis, examine several key parameters integral to the EHO
algorithm: population size, number of clans, beta (), gamma (y),
and convergence threshold were chosen based on extensive exper-
imental analysis. Each of these parameters plays a distinct role
in shaping the search dynamics, influencing how well the algo-
rithm performs. Understanding the sensitivity of these parameters
is essential for optimizing the EHO’s performance, ensuring that
it converges efficiently while maintaining high accuracy. Table 7
explores the effects of various parameter settings on the perfor-
mance of the EHO algorithm, particularly examining convergence
speed and accuracy. Each parameter as population size, number of
clans, beta (), gamma (y), and convergence threshold plays a dis-
tinct role in balancing exploration and exploitation in the search

population size of 10, 12 clans, 3 =0.5, y = 0.1, and a convergence
threshold of 0.01, produced the highest accuracy 99.2% and con-
verged efficiently, suggesting that these settings achieve an optimal
balance. In particular, adjusting the population size and clan count
revealed that larger values enhanced accuracy slightly, though with
diminishing returns, while moderate 3 and y values offered the best
blend of precision and diversity in solutions. Furthermore, a middle-
range convergence threshold ensured both stability and efficiency in
convergence, achieving satisfactory results without excessive com-
putational load. This analysis demonstrates that fine-tuning each
parameter can significantly improve the effectiveness of the EHO
algorithm, highlighting the value of balanced parameter settings to
optimize both accuracy and speed.

4.3. Qualitative analysis

Axial, sagittal, and coronal views of three different types of
tumors from the figshare dataset are shown in Figure 3. Input MRI
images from the dataset are 2-D images with a size of 512*512
pixels. This work initially sends images to the MADF for noise
reduction. Then the preprocessed BT image is segmented and clas-
sified using the TDA-IPH and CTVR-EHO models. The segmented
images and classifier outputs are shown in Figure 4.

4.4. Evaluation metrics

The proposed TDA-IPH and CTVR-EHO model performance
is measured by applying the BT dataset, and the analysis is compared
with existing methods in terms of precision, accuracy, recall, loss,
and F score. A confusion matrix is the measure for determining how
effectively the machine learning algorithm categorizes the given
information. There are four combinations of the predicted and actual
values, such as FP, true positive (TP), fFN, and true negative (TN).

Figure 3
Sample BT image from dataset
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space. Moderate values across these parameters, specifically a Glioma Meningioma Pituitary
Table 7
Impact of eho parameter settings on convergence speed and solution accuracy
Population size Number of clans Betaf Gammay  Convergence threshold Iterations of converge  Accuracy
5 8 0.2 0.01 0.01 120 99.06
10 12 0.5 0.1 0.001 150 99.2
15 16 0.8 0.03 0.0001 100 98.89
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Figure 4
Outcome from TDA-IPH and CTVR-EHO
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Our primary objective in this research is the segmentation and
classification of BT. In the segmentation phase, the model distin-
guished between tumor and non-tumor regions. For classification,
the model differentiated among glioma tumors, meningioma tumors,
and pituitary tumors. To assess model performance, we constructed
a confusion matrix to calculate TPs, FPs, TNs, and FNs, in which
the FP and FN are critical metrics for identification. These metrics
serve as foundational elements for assessing how well our model
differentiates between tumor and non-tumor cases. The implica-
tions of these classifications are significant, as they directly impact
patient care and treatment decisions. A false positive occurs when
the model incorrectly predicts the presence of a tumor in a patient
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who does not have one. This misclassification can lead to unneces-
sary anxiety and medical interventions, such as biopsies or surgeries,
which can cause distress and additional health risks to patients.
Therefore, minimizing the rate of FPs is vital to avoid overtreat-
ment and ensures that patients receive appropriate care tailored to
their actual health status. Conversely, an FN occurs when the model
fails to identify an existing tumor, resulting in a prediction that there
is no tumor present. This misclassification can have severe con-
sequences, potentially delaying critical treatment for patients with
actual tumors. The failure to detect a tumor can lead to disease pro-
gression, significantly affecting patient outcomes. Thus, accurately
calculating and understanding both FP and FN is essential in clinical
settings where patient health is at stake. To derive FP and FN from
the confusion matrix, we can define these metrics as follows: TPs
represent correctly identified tumor cases, while TNs denote cor-
rectly identified non-tumor cases. FPs are defined as the incorrectly
identified tumor cases (predicted tumor but actual non-tumor), and
FNs are the missed tumor cases (predicted non-tumor but actual
tumor).

These metrics have provided insights into accurately identify-
ing affected images and correctly detecting and classifying tumor
presence.

Formulas used to calculate performance metrics are given
below.

The Fp is calculated by identifying instances where the model
predicted a tumor, but the actual label is non-tumor.

FP = Total Predicted Tumor — True Positive (19)

The FN by counting the actual tumor pixels that were incorrectly
classified as non-tumor.

FN = Actual Tumor — True Positive (20)

These calculations provide a clear representation of the model’s per-
formance, allowing us to quantify how often our model correctly
identifies tumors versus how often it misclassifies healthy tissue as
tumors or fails to detect actual tumors.

Equation (21) is used to calculate precision (Pr).

p b 1)
r=—
fp+ip
Equation (22) is used to calculate recall (Re).
tn
Re= ——— 22
€ fn+tn @2)
Equation (23) is used to calculate accuracy (4c).
tm+1tp
Ac= ——————— 23
¢ fn+ fp+tm+tp @3)
Equation (22) is used to calculate F" score (F — 15).
Fols= 2 X Re X precision (24)

Re + precision

where fp denotes the true positive, tn denotes true negative, fp
denotes false positive, and fn denotes false negative.
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4.4.1. Confusion matrix

A confusion matrix, also known as an error matrix, is a struc-
tured table that presents information on actual labels (ground truth)
and the model’s predicted classifications. It provides a compre-
hensive summary of model performance, offering detailed insights
into how effectively the model generalizes across each class.
Typically, the matrix displays ground truth values along the y-axis,
while predicted class labels are arranged along the x-axis.

The confusion matrix serves as a crucial tool in the eval-
uation of BT segmentation and classification, particularly when
analyzing the performance of DL models applied to datasets. The
confusion matrix offers an in-depth analysis of the model’s classi-
fication results, enabling a thorough evaluation of its accuracy in
correctly identifying and categorizing tumor regions. By illustrat-
ing TP, TN, FP, and FN predictions for each tumor and non-tumor
region, including glioma, meningioma, and pituitary, the confu-
sion matrix enhances the interpretability of the model’s performance
metrics.

In BT segmentation, a high number of TPs coupled with min-
imal false positives and FNs signifies the model’s effectiveness in
accurately delineating tumor boundaries, which is critical for sub-
sequent treatment planning and intervention. Conversely, in tumor
classification, the confusion matrix enables the identification of spe-
cific classes where the model may struggle, such as the presence
of FNs in certain tumor types, which can have significant clinical
implications. Understanding these nuances allows researchers and
practitioners to refine their models, focusing on areas that require
improvement to enhance diagnostic reliability.

Figure 5 illustrates the segmentation confusion matrix which
is used to measure how well the model differentiates between
tumor and non-tumor regions in MRI images. The segmentation
of BTs using DL techniques is crucial for accurately identifying
and delineating tumor regions from surrounding healthy tissue in
medical imaging. In this context, the confusion matrix reveals a
highly effective performance of the model, showcasing 180 true-
positive cases, indicating that the model successfully identified all
actual tumor instances. True negatives (TN) indicate pixels accu-
rately identified as non-tumor, while false positives (FP) represent
non-tumor pixels incorrectly classified as tumor. The model’s low
FP rate suggests minimal misclassification of non-tumor regions
as tumor, a crucial factor in maintaining high segmentation preci-
sion. With only 2 false positives, it demonstrates a strong ability
to minimize incorrect tumor detection, thereby reducing the risk of
unnecessary interventions. Furthermore, the absence of FNs signi-
fies that the model did not overlook any tumors, which is critical
in ensuring timely diagnosis and treatment. The TNs of 90 further
highlight the model’s reliability in accurately classifying healthy
tissue. FNs, where actual tumor pixels were incorrectly classified
as non-tumor, also remained low, resulting in a high recall score
of 98.94%. This score highlights the model’s ability to detect
nearly all true tumor regions, ensuring minimal oversight of criti-
cal tumor boundaries. Overall, the segmentation confusion matrix
confirms that the model effectively outlines tumor regions with a
balanced precision (99.2%) and recall (98.94%), resulting in an
F1-score of 99.4%. These high values signify the model’s robust-
ness in tumor delineation, a critical aspect for accurate surgical
planning and treatment.

Figure 6 represents classification confusion matrix evaluates
the model’s performance in distinguishing among three types of
BTs: glioma, meningioma, and pituitary tumors. Each row in this
matrix represents actual tumor classes, while each column denotes
the predicted classes, with the diagonal values indicating cor-
rectly classified instances. The confusion matrix for classification

Figure 5
Confusion matrix for brain tumor segmentation
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Confusion matrix for brain tumor classification
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demonstrates solid performance across the different tumor types,
with true positive counts of 75 for glioma, 70 for meningioma,
and 55 for pituitary tumors. Notably, the absence of false positives
across all classes indicates a high level of accuracy in distin-
guishing between tumor types and healthy tissue. However, the
detection of two FNss in the meningioma category raises concerns, as
these missed cases could impact patient management and treatment
decisions. The model demonstrates its potential as a valuable tool in
clinical settings by accurately identifying most tumors and achiev-
ing zero false-positive rates. Nonetheless, addressing the instances
of misclassification, particularly in the Meningioma category, is
essential for enhancing the model’s overall reliability and ensuring
comprehensive patient care in the context of BT classification. For
example, the recall rates for each class are similarly high: glioma
at 99.6%, meningioma at 98%, and pituitary at 99.6%, highlighting
the model’s consistent detection capability across tumor types. This
precision across classes emphasizes the model’s accuracy in distin-
guishing tumor types, a critical factor in ensuring appropriate and
specific treatment plans for each tumor type.
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In medical imaging for BT analysis, FPs and FNs are criti-
cal for assessing a model’s reliability, both in segmentation and
classification tasks. In segmentation, FP errors occur when healthy
tissue is mistakenly identified as a tumor, which could lead to
unnecessary procedures, anxiety, and increased healthcare costs.
Our model’s low FP rate, with only two cases of misclassified non-
tumor regions, demonstrates its precision in avoiding such errors.
Conversely, FN errors in segmentation, where actual tumor regions
are missed, pose a significant risk by potentially delaying diagnosis
and treatment. Our model achieves a high recall of 98.94%, indicat-
ing that nearly all true tumor areas are correctly detected, thereby
enhancing the reliability of tumor boundary delineation essential
for treatment planning. In classification, FPs represent cases where
one tumor type is misclassified as another, but the model’s zero
FP rate here underscores its high specificity, which is crucial for
selecting appropriate, individualized treatment and avoiding misin-
formed interventions. FN errors in classification, though minimal,
include two instances where meningiomas were missed, highlight-
ing the importance of accuracy to prevent misdiagnosis. Together,
the model’s low FP and FN rates across both tasks demonstrate a
high level of reliability, making it a strong candidate for accurate and
effective medical diagnostics, ultimately supporting better patient
care.

4.5. Comparisons analysis

This section presents the detailed comparative analysis of per-
formance of the proposed models, TDA-IPH for segmentation, and
CTVR-EHO for classification, against several established method-
ologies in the field of BT detection and classification. This analysis
highlights the effectiveness of our models in accurately segmenting
and classifying tumor regions from MRI scans.

Table 8 presents a comparison analysis of segmentation results
across various models, focusing on their performance metrics,
including precision, recall, F' score, accuracy, and loss. The results
indicate that the proposed TDA-IPH model significantly outper-
forms established segmentation techniques such as wU-Net [51],
UNet [52], and Unet++ [53]. With a precision of 99.2%, a recall of
98.94%, an F score of 99.4%, and an accuracy of 99.6%, TDA-IPH
demonstrates superior capability in accurately identifying tumor
regions, even those that are small or difficult to detect. The reduc-
tion in loss to 0.011% further underscores the model’s effectiveness,
making it a robust option for medical image segmentation compared
to its counterparts.

Figure 7 provides a visual representation of the segmentation
results achieved by the various models, illustrating the effectiveness
of the proposed TDA-IPH method. The figure likely depicts side-
by-side comparisons of segmented images, showing how well each
model identifies tumor boundaries in MRI scans. The visual analysis
reinforces the quantitative findings from Table 9, highlighting TDA-
IPH’s ability to delineate tumors with higher accuracy and clarity
than traditional methods. This figure serves as a crucial complement

Figure 7
Segmentation result analysis
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to the table, enabling readers to visually assess the segmentation
quality and the model’s performance in identifying critical features
in medical images.

Table 9 details the classification performance of the proposed
CTVR-EHO model alongside several existing models, including
ResNet-50 [54], VGG16 [55], and VGG19 [56]. Each model’s per-
formance is evaluated based on precision, recall, F' score, accuracy,
and loss for different tumor classes (G, M, P). The proposed CTVR-
EHO model achieves outstanding results with a precision of 99%,
recall of 99.6%, F score of 99.4%, and accuracy of 99.2%, outper-
forming the existing networks in all categories. The relatively low
loss of 0.9% further indicates the model’s robustness and reliability
in classifying BTs, thereby confirming its efficacy as an advanced
solution for tumor classification tasks in medical imaging.

Figure 8 illustrates the results of the classification process, pro-
viding a graphical analysis of the performance metrics obtained
from various models. The figure likely includes charts or plots
that depict the precision, recall, F scores, accuracy, and loss of
each model, making it easy to compare the proposed CTVR-EHO
model with existing classification techniques. By visualizing these
results, Figure 8 effectively summarizes the findings from Table 10,
allowing for a straightforward assessment of how the CTVR-EHO
model excels in accurately classifying different types of BTs. This
visual representation enhances the reader’s understanding of the
model’s capabilities and performance, supporting the quantitative
data provided in the table.

Table 10 provides a comprehensive comparison of various
state-of-the-art (SOTA) methods for BT segmentation and classi-
fication in MRI, showcasing key performance metrics, including
precision, recall, F-score, and accuracy. The table includes a
wide array of approaches, ranging from traditional CNN [27] and
advanced frameworks like Faster R-CNN [28] to models incor-
porating specialized methods such as handcrafted features, fuzzy
clustering, element-wise filters, and GAN pretraining. Each tech-
nique is evaluated on datasets such as BRATS, Figshare, and
other custom or IoT-enabled datasets, highlighting the variety of
data sources used for model training and validation. The proposed

Table 8
Comparison of segmentation results
Segmentation models Precision Recall F score Accuracy Loss
wU-Net [51] 84% 96% 98% 94% 0.030%
UNet [52] 97% 95.4% 97.6% 95 % 0.024%
Unet++ [53] 95% 97.34% 98.9% 98% 0.021%
Proposed TDA-IPH 99.2% 98.94% 99.4% 99.6% 0.011%
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Table 9
Comparison of classification results
Classification models class Precision Recall F score Accuracy Loss
G 93% 99% 94%
0, 0, 0,
ResNet-50 [54] M 88% 87% 87% 98.14% 0.31%
P 95% 99% 97%
G 91% 85% 93%
0, 0, 0,
VGG16 [55] M 90% 80% 85% 96% 0.26%
P 98% 99% 99%
G 93% 96% 94%
0, 0, 0,
VGG19 [56] M 1% 80% 85% 98.9% 0.25%
P 96% 99% 98%
G 99% 99.6% 98.7%
0, 0, 0,
Proposed CTVR-EHO model M 99% 8% 8% 99.2% 0.9%
P 98% 99.6% 99.4%
Figure 8
Classification result analysis
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Table 10
Comparison of proposed TDA-IPH and CTVR-EHO with existing methods
Authors Method Dataset used Precision Recall F-score  Accuracy
Maltbie et al. [18] Restricted sample NHP dataset 98 % - - 98.45%
entropy (RSE)
Vidaurre et al. [19] CV kernel ridge Human Connectome 97.12 96.54 - 98.78%
regression Project
Ferdous et al. [20] FCM, GLCM, SVM, Figshare 97.02% 96.5 % 97.8 % 98.11%
KNN
Shah et al. [21] Linear-complexity Figshare and BraTS-21 - - - 96.11%
data-efficient image
transformer
Ghahfarrokhi and GLCM and DWT MRI dataset - 89.98% - 98.76%
Khodadadi [22]
(Continued)
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Table 10
(Continued)
Authors Method Dataset used Precision Recall F-score Accuracy
Ozbay and Ozbay Comparison-to-learn Figshare, SARTAJ, and - — - 98.01%
[23] method, DenseNet201 Br35H
with Hashing
Xu et al. [24] Cross-visual cortex Benchmark dataset - - - 98.99%
model and impulse-
coupled neural
network
Deckers et al. [25] Adaptive filter MRI dataset 96.22% 97.05% 95.8 % 95 %
Thillaikkarasi and CNN BRATS 2017 - - - 84.96%
Saravanan [26]
Thaha et al. [27] CNN BRATS 2019 87.78% 90.02% 92.92% 92 %
Kaldera et al. [28] Faster R-CNN BRATS 2020 - - - 94.67%
Sajid et al. [29] Hybrid convolutional BRATS 2019 86.84% 86.02% 91.92% 91 %
neural network
Jia and Chen [30] CNN BRATS 2019 - - - 98.51%
Khan et al. [31] Handcrafted features and  loT-enabled dataset 86.94% 81.92% 97.12% 94.66%
CNN
Mittal et al. [32] Fuzzy C-means + CNN BRATS 2018 - - - 98.68%
Ozyurt et al. [33] CNN BRATS 2020 96.94% 94.92% 93.42% 98.33%
Bhargavi and CNN with element-wise BRATS 2020 67.74% 66.82% 68.12% 69.56%
Mani [34] filters
Xing et al. [35] CNN with element-wise Brain Networks 68.4 % 66.92% 70.62% 66.88%
filters (custom)
Rathore et al. [36] Neural network based - - - - 69.98%
topological data
analysis
Kumar et al. [37] Residual network + BRATS 2019 97.4 % 97.82% 96.92% 97.48%
global average pooling
Deepak and Ameer CNN + SVM BRATS 2020 - — - 95.82%
[38]
Kesav and Jibukumar ~ RCNN with two- channel ~ BRATS 2021 97.46% 95.29% 98.20% 98.21%
[39] CNN
Gupta et al. [40] MAG-Net BRATS 2021 98 % 98 % 98 % 98.04%
Ahuja et al. [41] DarkNet Custom dataset 97.4 % 98.63% 97.94% 99.43%
Li et al. [42] LKAU-Net BRATS 2020 96.94% 96.2 % 96.62% 98.11%
Guan et al. [43] AGSE-VNet BRATS 2020 95.94% 97.62% 98.92% 97.90%
Ghassemi et al. [44] DNN with GAN BRATS 2020 95.94% 98 % 94.12% 95.10%
pretraining
Proposed method TDA-IPH and CTVR- Figshare 99.67% 99.23% 99.59% 99.8 %
EHO model

TDA-IPH and CTVR-EHO model demonstrate superior perfor-
mance over existing methods, achieving a precision of 99.67%,
recall of 99.23%, F-score of 99.59%, and accuracy of 99.8%. Com-
pared to other high-performing models, such as LKAU-Net [42],
AGSE-VNet [43], and CNN-SVM [38], the proposed model excels
in all metrics, showcasing its robustness and effectiveness in accu-
rately segmenting and classifying BTs. This superior performance
suggests the model’s potential for clinical applications, where pre-
cise segmentation and classification are crucial for patient care. The
table provides a detailed benchmarking of the proposed method
against numerous SOTA models, highlighting its improvements and
contributions to the analysis of medical image.
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Figure 9 visually compares the performance of the proposed
TDA-IPH and CTVR-EHO model with a selection of several exist-
ing SOTA BT methods for classification and segmentation. A subset
of techniques from Table 10.

is chosen to illustrate the performance contrast, with met-
rics such as precision, recall, and accuracy plotted for comparison.
This figure highlights the proposed model’s enhanced performance
across multiple metrics, showcasing its precision, recall, and accu-
racy as compared to randomly selected, prominent models in the
field. The graphical representation offers a clear understanding of
how the proposed model consistently outperforms others in accu-
racy and robustness, reinforcing its suitability for real-world clinical
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Figure 9
Performance of proposed comparison of proposed TDA-IPH and CTVR-EHO and existing method
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the figure allows for a focused comparison, whereas the complete
details are provided in Table 10 for thorough analysis.

4.5.1. Impact of training: validation accuracy and loss of
proposed TDA-IPH and CTVR-EHO

The impact analysis of the proposed TDA-IPH and CTVR-
EHO model on the Figshare dataset underscores its strong perfor-
mance in training and validation accuracy and loss, as illustrated
in Figure 10(a). In the early epochs, the model demonstrates
rapid learning and effective pattern recognition, quickly captur-
ing significant tumor features. By the 10th epoch, the model’s
accuracy reaches approximately 99.6%, indicating its adeptness at
recognizing inherent patterns within the MRI data. As training pro-
gresses, both training and validation accuracy curves converge,
the model rapidly learns to distinguish basic tumor characteristics,
such as edges and intensity patterns, leading to a sharp increase in
accuracy and a decrease in loss. Validation accuracy plateaus at
~94%, demonstrating strong generalization to unseen scans, with
a healthy gap between training and validation metrics indicating
robust performance without overfitting. In the loss curve shown in
Figure 10(b), the model’s training loss exhibits a rapid decline in
the initial epochs, starting above 1.2 and reducing sharply to below
0.2 by the 10th epoch. The validation loss follows a similar down-
ward trend, though it stabilizes around 0.2 slightly later. This steady
decrease in loss values, coupled with the eventual stabilization,
highlights effective learning and robust optimization by the model.
Minor fluctuations in the validation loss during later epochs indicate
slight variability, yet the overall low and steady values suggest that
the model effectively generalizes to new data, efficiently managing
the complexities of the Figshare dataset. Therefore, the TDA-IPH
and CTVR-EHO model’s strong training and validation perfor-
mance, marked by the convergence of accuracy and reduction in
loss, emphasizes its reliability for MRI-based BT segmentation and
classification. The stable accuracy and low validation loss ensure
the model’s suitability for clinical applications, where precision and
consistency are paramount for patient care.

Performance results of the TDA-IPH and CTVR-EHO model
in terms of training-validation loss and accuracy
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5. Conclusion

In this paper, we proposed a novel approach for BT diagnosis
using a TDA-IPH-based DCTN-BLE model, which can serve as a
useful tool for BT diagnosis. The proposed method consists of sev-
eral steps. First, the MADF algorithm is used to remove noise while
preserving the edge from blurring. Then, TDA-IPH is designed to
segment the BT image, which separates the porous objects from the
image. Next, the CTVR-EHO model is introduced, which extracts
the necessary features for BT classification by simultaneously using
the AlexNet and BIVLSTM models. The extracted features are con-
catenated, and BT is classified. Finally, the EHO algorithm is used
to tune the hyperparameters of both AlexNet and BiVLSTM to
obtain an optimal result. The performance of our proposed method
is evaluated and compared with some prior methods using various
metrics. The results show that the proposed TDA-IPH and CTVR-
EHO models achieved the best outcome than the existing methods.
Our proposed approach can be used to improve the accuracy of BT
diagnosis, leading to more effective and efficient treatments.

6. Limitations and Future Scope

The proposed method is evaluated using a limited dataset,
which may affect the generalizability of our results. Therefore,
to ensure the reproducibility of the proposed models for larger-
scale multi-sequence MRI data or a multicenter study, the data
should be collected from multiple centers using standardized imag-
ing protocols and preprocessed in a consistent manner to reduce
variability. The data should also be annotated by experienced radiol-
ogists to ensure accurate labeling of the tumor regions. We recognize
the importance of consulting medical professionals for validation,
and while this study did not involve direct consultation with clin-
icians, we plan to collaborate with radiologists and neurologists
in future research to validate our model’s findings within a clin-
ical context. This collaboration will enhance the applicability of
our approach in real-world diagnostics. Additionally, we aim to
explore publicly available datasets that are annotated by experts to
further refine our model’s accuracy and relevance. The TDA-IPH
and CTVR-EHO models should be adapted and optimized for the
multi-sequence MRI data and multicenter study. This may involve
adjusting the network architecture, hyperparameters, and training
algorithms. Second, the proposed method only considered a single
modality, i.e., MRI, for BT diagnosis. Combining multiple modal-
ities, such as MRI and PET, may enhance the accuracy of BT
diagnosis. Third, while our proposed method achieved promising
results, it may still produce false-positive or false-negative results
in some cases. Therefore, additional studies are needed to fur-
ther improve the performance of the proposed method. In future
research, we plan to address these limitations and further improve
our proposed method. We also aim to extend our approach to other
medical imaging applications and explore its potential for clinical
translation.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

510

Data Availability Statement

The brain tumor (BT) data that support the findings of this
study are openly available in figshare at https://doi.org/10.6084/m9.
figshare.1512427.v5.

Author Contribution Statement

Dhananjay Joshi: Conceptualization, Methodology, Soft-
ware, Validation, Writing — original draft. Bhupesh Kumar Singh:
Methodology, Validation, Writing — review & editing. Kapil
Kumar Nagwanshi: Methodology, Validation, Writing — review
& editing. Nitin Surajkishor Choubey: Methodology, Validation,
Writing — review & editing.

References

[1] Rasheed, S., Rehman, K., & Akash, M. S. H. (2021). An insight
into the risk factors of brain tumors and their therapeutic
interventions. Biomedicine & Pharmacotherapy, 143, 112119.
https://doi.org/10.1016/j.biopha.2021.112119

Davar, S., & Fevens, T. (2024). Brain MRI tumour localiza-
tion and segmentation through deep learning. In 2024 [EEE
67th International Midwest Symposium on Circuits and Sys-
tems, 782—786. https://doi.org/10.1109/MWSCAS60917.2024.
10658897

Perkins, A., & Liu, G. (2016). Primary brain tumors in adults:
Diagnosis and treatment. American Family Physician, 93(3),
211-217B.

Chang, J., Zhang, L., Gu, N., Zhang, X., Ye, M., Yin, R., &
Meng, Q. (2019). A mix-pooling CNN architecture with FCRF
for brain tumor segmentation. Journal of Visual Communica-
tion and Image Representation, 58, 316-322. https://doi.org/10.
1016/j.jvcir.2018.11.047

Ben naceur, M., Akil, M., Saouli, R., & Kachouri, R. (2020).
Fully automatic brain tumor segmentation with deep learning-
based selective attention using overlapping patches and multi-
class weighted cross-entropy. Medical Image Analysis, 63,
101692. https://doi.org/10.1016/j.media.2020.101692

Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., &
Baik, S. W. (2019). Multi-grade brain tumor classification using
deep CNN with extensive data augmentation. Journal of Com-
putational Science, 30, 174—182. https://doi.org/10.1016/j.jocs.
2018.12.003

Rai, H. M., Yoo, J., & Dashkevych, S. (2024). Two-headed
UNetEfficientNets for parallel execution of segmentation and
classification of brain tumors: Incorporating postprocessing
techniques with connected component labelling. Journal of
Cancer Research and Clinical Oncology, 150(4), 220. https://
doi.org/10.1007/300432-024-05718-1

Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., &
Mengko, T. R. (2019). Brain tumor classification using convo-
lutional neural network. In World Congress on Medical Physics
and Biomedical Engineering 2018, 183—189. https://doi.org/10.
1007/978-981-10-9035-6_33

Deng, W., Shi, Q., Luo, K., Yang, Y., & Ning, N. (2019). Brain
tumor segmentation based on improved convolutional neural
network in combination with non-quantifiable local texture fea-
ture. Journal of Medical Systems, 43, 152. https://doi.org/10.
1007/s10916-019-1289-2

Hu, K., Gan, Q., Zhang, Y., Deng, S., Xiao, F., Huang,
W., ..., & Gao, X. (2019). Brain tumor segmentation using
multi-cascaded convolutional neural networks and conditional

—
N
—_—

—
w
[

—
N
—_

—
W
—_

—
)
=

—
o]
—_

—
\O
[

[10]


https://doi.org/10.6084/m9.figshare.1512427.v5
https://doi.org/10.6084/m9.figshare.1512427.v5
https://doi.org/10.1016/j.biopha.2021.112119
https://doi.org/10.1109/MWSCAS60917.2024.10658897
https://doi.org/10.1109/MWSCAS60917.2024.10658897
https://doi.org/10.1016/j.jvcir.2018.11.047
https://doi.org/10.1016/j.jvcir.2018.11.047
https://doi.org/10.1016/j.media.2020.101692
https://doi.org/10.1016/j.jocs.2018.12.003
https://doi.org/10.1016/j.jocs.2018.12.003
https://doi.org/10.1007/s00432-024-05718-1
https://doi.org/10.1007/s00432-024-05718-1
https://doi.org/10.1007/978-981-10-9035-6_33
https://doi.org/10.1007/978-981-10-9035-6_33
https://doi.org/10.1007/s10916-019-1289-2
https://doi.org/10.1007/s10916-019-1289-2

Journal of Computational and Cognitive Engineering Vol. 4

Iss. 4 2025

[11]

[12]

[15]

(21]

(22]

(23]

random field. [EEE Access, 7,92615-92629. https://doi.org/10.
1109/ACCESS.2019.2927433

Yang, T., Song, J., & Li, L. (2019). A deep learning model
integrating SK-TPCNN and random forests for brain tumor seg-
mentation in MRI. Biocybernetics and Biomedical Engineering,
39(3), 613—623. https://doi.org/10.1016/j.bbe.2019.06.003
Amin, J., Sharif, M., Gul, N., Yasmin, M., & Shad, S. A.
(2020). Brain tumor classification based on DWT fusion of MRI
sequences using convolutional neural network. Pattern Recog-
nition Letters, 129, 115-122. https://doi.org/10.1016/j.patrec.
2019.11.016

Nguyen-Tat, T. B., Nguyen, T.-Q. T., Nguyen, H.-N., & Ngo,
V. M. (2024). Enhancing brain tumor segmentation in MRI
images: A hybrid approach using UNet, attention mechanisms,
and transformers. Egyptian Informatics Journal, 27, 100528.
https://doi.org/10.1016/j.€1j.2024.100528

Mzoughi, H., Njeh, 1., Wali, A., Slima, M. B., BenHamida, A.,
Mhiri, C., & Mahfoudhe, K. B. (2020). Deep multi-scale 3D
convolutional neural network (CNN) for MRI gliomas brain
tumor classification. Journal of Digital Imaging, 33, 903-915.
https://doi.org/10.1007/s10278-020-00347-9

Amin, J., Sharif, M., Raza, M., & Yasmin, M. (2024). Detection
of brain tumor based on features fusion and machine learning.
Journal of Ambient Intelligence and Humanized Computing, 15,
983-999. https://doi.org/10.1007/s12652-018-1092-9

Chen, S., Ding, C., & Liu, M. (2019). Dual-force convolutional
neural networks for accurate brain tumor segmentation. Pat-
tern Recognition, 88, 90—100. https://doi.org/10.1016/j.patcog.
2018.11.009

Deepak, S., & Ameer, P. M. (2019). Brain tumor classification
using deep CNN features via transfer learning. Computers in
Biology and Medicine, 111, 103345. https://doi.org/10.1016/j.
compbiomed.2019.103345

Maltbie, E. A., Howell, L. H., Sun, P. Z., Miller, R., & Gopinath,
K. S. (2020). Examining fMRI time-series entropy as a marker
for brain E/I balance with pharmacological neuromodulation in
anon-human primate translational model. Neuroscience Letters,
728, 134984. https://doi.org/10.1016/j.neulet.2020.134984
Vidaurre, D., Llera, A., Smith, S. M., & Woolrich, M. W. (2021).
Behavioural relevance of spontaneous, transient brain network
interactions in fMRI. Neurolmage, 229, 117713. https://doi.org/
10.1016/j.neuroimage.2020.117713

Ferdous, G. J., Sathi, K. A., Hossain, M. A., Hoque, M. M.,
& Dewan, M. A. A. (2023). LCDEIT: A linear complexity
data-efficient image transformer for MRI brain tumor classifi-
cation. I[EEE Access, 11,20337-20350. https://doi.org/10.1109/
ACCESS.2023.3244228

Shah, S. M. A. H., Ullah, A., Igbal, J., Bourouis, S., Ullah, S.
S., Hussain, S., ..., & Mustafa, G. (2023). Classifying and local-
izing abnormalities in brain MRI using channel attention based
semi-Bayesian ensemble voting mechanism and convolutional
auto-encoder. IEEE Access, 11, 75528-75545. https://doi.org/
10.1109/ACCESS.2023.3294562

Ghahfarrokhi, S. S., & Khodadadi, H. (2020). Human brain
tumor diagnosis using the combination of the complexity mea-
sures and texture features through magnetic resonance image.
Biomedical Signal Processing and Control, 61, 102025. https://
doi.org/10.1016/j.bspc.2020.102025

Ozbay, E., & Ozbay, F. A. (2023). Interpretable features fusion
with precision MRI images deep hashing for brain tumor detec-
tion. Computer Methods and Programs in Biomedicine, 231,
107387. https://doi.org/10.1016/j.cmpb.2023.107387

(24]

[25

—_

[26

—_

[27

—

[28

—_

[29

[

[30

—

[31]

[32]

[33]

[34]

[33]

[36]

Xu, W, Fu, Y.-L., Xu, H., & Wong, K. K. (2023). Medi-
cal image fusion using enhanced cross-visual cortex model
based on artificial selection and impulse-coupled neural net-
work. Computer Methods and Programs in Biomedicine, 229,
107304. https://doi.org/10.1016/j.cmpb.2022.107304

Deckers, R. H., van Gelderen, P., Ries, M., Barret, O., Duyn, J.
H., Ikonomidou, V. N., ..., & de Zwart, J. A. (2006). An adap-
tive filter for suppression of cardiac and respiratory noise in
MRI time series data. Neurolmage, 33(4), 1072—1081. https://
doi.org/10.1016/j.neuroimage.2006.08.006

Thillaikkarasi, R., & Saravanan, S. (2019). An enhancement
of deep learning algorithm for brain tumor segmentation using
kernel based CNN with M-SVM. Journal of Medical Systems,
43(4), 84. https://doi.org/10.1007/s10916-019-1223-7

Thaha, M. M., Kumar, K. P. M., Murugan, B. S., Dhanasekeran,
S., Vijayakarthick, P., & Selvi, A. S. (2019). Brain tumor seg-
mentation using convolutional neural networks in MRI images.
Journal of Medical Systems, 43, 294. https://doi.org/10.1007/
s10916-019-1416-0

Kaldera, H. N. T. K., Gunasekara, S. R., & Dissanayake, M.
B. (2019). Brain tumor classification and segmentation using
faster R-CNN. In 2019 Advances in Science and Engineering
Technology International Conferences, 1-6. https://doi.org/10.
1109/ICASET.2019.8714263

Sajid, S., Hussain, S., & Sarwar, A. (2019). Brain tumor detec-
tion and segmentation in MR images using deep learning.
Arabian Journal for Science and Engineering, 44, 9249-9261.
https://doi.org/10.1007/s13369-019-03967-8

Jia, Z., & Chen, D. (2025). Brain tumor identification and clas-
sification of MRI images using deep learning techniques. [EEE
Access, 13, 123783-123792. https://doi.org/10.1109/ACCESS.
2020.3016319

Khan, H., Shah, P. M., Shah, M. A, ul Islam, S., & Rodrigues,
J. J. (2020). Cascading handcrafted features and convolutional
neural network for [oT-enabled brain tumor segmentation. Com-
puter Communications, 153, 196-207. https://doi.org/10.1016/
j.comcom.2020.01.013

Mittal, M., Goyal, L. M., Kaur, S., Kaur, 1., Verma, A., &
Hemanth, D. J. (2019). Deep learning based enhanced tumor
segmentation approach for MR brain images. Applied Soft
Computing, 78, 346-354. https://doi.org/10.1016/j.as0c.2019.
02.036

Ozyurt, F., Sert, E., & Avci, D. (2020). An expert system
for brain tumor detection: Fuzzy C-means with super resolu-
tion and convolutional neural network with extreme learning
machine. Medical Hypotheses, 134, 109433, https://doi.org/10.
1016/j.mehy.2019.109433

Bhargavi, K., & Mani, J. J. (2019). Early detection of brain
tumor and classification of MRI images using convolution
neural networks. In Innovations in Computer Science and Engi-
neering: Proceedings of the Sixth ICICSE 2018, 427-436.
https://doi.org/10.1007/978-981-13-7082-3_49

Xing, X., Ji,J., & Yao, Y. (2018). Convolutional neural network
with element-wise filters to extract hierarchical topological
features for brain networks. In 2018 IEEE International Confer-
ence on Bioinformatics and Biomedicine, 780-783. https://doi.
org/10.1109/BIBM.2018.8621472

Rathore, A., Palande, S., Anderson, J. S., Zielinski, B. A.,
Fletcher, P. T., & Wang, B. (2019). Autism classification
using topological features and deep learning: A cautionary
tale. In Medical Image Computing and Computer Assisted

511


https://doi.org/10.1109/ACCESS.2019.2927433
https://doi.org/10.1109/ACCESS.2019.2927433
https://doi.org/10.1016/j.bbe.2019.06.003
https://doi.org/10.1016/j.patrec.2019.11.016
https://doi.org/10.1016/j.patrec.2019.11.016
https://doi.org/10.1016/j.eij.2024.100528
https://doi.org/10.1007/s10278-020-00347-9
https://doi.org/10.1007/s12652-018-1092-9
https://doi.org/10.1016/j.patcog.2018.11.009
https://doi.org/10.1016/j.patcog.2018.11.009
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.neulet.2020.134984
https://doi.org/10.1016/j.neuroimage.2020.117713
https://doi.org/10.1016/j.neuroimage.2020.117713
https://doi.org/10.1109/ACCESS.2023.3244228
https://doi.org/10.1109/ACCESS.2023.3244228
https://doi.org/10.1109/ACCESS.2023.3294562
https://doi.org/10.1109/ACCESS.2023.3294562
https://doi.org/10.1016/j.bspc.2020.102025
https://doi.org/10.1016/j.bspc.2020.102025
https://doi.org/10.1016/j.cmpb.2023.107387
https://doi.org/10.1016/j.cmpb.2022.107304
https://doi.org/10.1016/j.neuroimage.2006.08.006
https://doi.org/10.1016/j.neuroimage.2006.08.006
https://doi.org/10.1007/s10916-019-1223-7
https://doi.org/10.1007/s10916-019-1416-0
https://doi.org/10.1007/s10916-019-1416-0
https://doi.org/10.1109/ICASET.2019.8714263
https://doi.org/10.1109/ICASET.2019.8714263
https://doi.org/10.1007/s13369-019-03967-8
https://doi.org/10.1109/ACCESS.2020.3016319
https://doi.org/10.1109/ACCESS.2020.3016319
https://doi.org/10.1016/j.comcom.2020.01.013
https://doi.org/10.1016/j.comcom.2020.01.013
https://doi.org/10.1016/j.asoc.2019.02.036
https://doi.org/10.1016/j.asoc.2019.02.036
https://doi.org/10.1016/j.mehy.2019.109433
https://doi.org/10.1016/j.mehy.2019.109433
https://doi.org/10.1007/978-981-13-7082-3_49
https://doi.org/10.1109/BIBM.2018.8621472
https://doi.org/10.1109/BIBM.2018.8621472

Journal of Computational and Cognitive Engineering Vol. 4

Iss. 4 2025

[37]

—
N
(=3

—

[43]

[44]

[45]

[47]

512

Intervention—-MICCAI 2019: 22nd International Conference,
736-744. https://doi.org/10.1007/978-3-030-32248-9_82
Kumar, R. L., Kakarla, J., Isunuri, B. V., & Singh, M.
(2021). Multi-class brain tumor classification using resid-
ual network and global average pooling. Multimedia Tools
and Applications, 80(9), 13429—13438. https://doi.org/10.1007/
s11042-020-10335-4

Deepak, S., & Ameer, P. M. (2021). Automated categorization
of brain tumor from MRI using CNN features and SVM. Jour-
nal of Ambient Intelligence and Humanized Computing, 12(8),
8357-8369. https://doi.org/10.1007/s12652-020-02568-w
Kesav, N., & Jibukumar, M. G. (2022). Efficient and low
complex architecture for detection and classification of brain
tumor using RCNN with two Channel CNN. Journal of King
Saud University-Computer and Information Sciences, 34(8),
6229-6242. https://doi.org/10.1016/j.jksuci.2021.05.008
Gupta, S., Punn, N. S., Sonbhadra, S. K., & Agarwal, S.
(2021). MAG-Net: Multi-task attention guided network for
brain tumor segmentation and classification. In Big Data
Analytics: 9th International Conference, 3—15. https://doi.org/
10.1007/978-3-030-93620-4_1

Ahuja, S., Panigrahi, B. K., & Gandhi, T. K. (2022). Enhanced
performance of Dark-Nets for brain tumor classification and
segmentation using colormap-based superpixel techniques.
Machine Learning with Applications, 7,100212. https://doi.org/
10.1016/j.mlwa.2021.100212

Li, H., Nan, Y., & Yang, G. (2022). LKAU-Net: 3D large-
kernel attention-based U-Net for automatic MRI brain tumor
segmentation. In Medical Image Understanding and Analy-
sis: 26th Annual Conference, 313-327. https://doi.org/10.1007/
978-3-031-12053-4 24

Guan, X., Yang, G., Ye, J., Yang, W., Xu, X., Jiang, W., & Lai, X.
(2022). 3D AGSE-VNet: An automatic brain tumor MRI data
segmentation framework. BMC Medical Imaging, 22, 6. https://
doi.org/10.1186/s12880-021-00728-8

Ghassemi, N., Shoeibi, A., & Rouhani, M. (2020). Deep neu-
ral network with generative adversarial networks pre-training
for brain tumor classification based on MR images. Biomedical
Signal Processing and Control, 57, 101678. https://doi.org/10.
1016/j.bspc.2019.101678

Sazzad, T. S., Ahmmed, K. T., Hoque, M. U., & Rahman, M.
(2019). Development of automated brain tumor identification
using MRI images. In 2019 International Conference on Elec-
trical, Computer and Communication Engineering, 1-4. https://
doi.org/10.1109/ECACE.2019.8679240

Riya, Gupta, B., & Lamba, S. S. (2021). An efficient anisotropic
diffusion model for image denoising with edge preservation.
Computers & Mathematics with Applications, 93, 106—119.
https://doi.org/10.1016/j.camwa.2021.03.029

Rodellar, J., Alférez, S., Acevedo, A., Molina, A., & Merino,
A. (2018). Image processing and machine learning in the
morphological analysis of blood cells. International Journal
of Laboratory Hematology, 40, 46-53. https://doi.org/10.1111/
ijlh. 12818

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Mzoughi, H., Njeh, 1., Slima, M. B., & Hamida, A. B. (2018).
Histogram equalization-based techniques for contrast enhance-
ment of MRI brain Glioma tumor images: Comparative study.
In 2018 4th International Conference on Advanced Technolo-
gies for Signal and Image Processing, 1-6. https://doi.org/10.
1109/ATSIP.2018.8364471

Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z.,
..., & Feng, Q. (2015). Enhanced performance of brain tumor
classification via tumor region augmentation and partition. PloS
ONE, 10(10), e0140381. https://doi.org/10.1371/journal.pone.
0140381

Cheng, J., Yang, W., Huang, M., Huang, W., Jiang, J., Zhou,
Y., ..., & Chen, W. (2016). Retrieval of brain tumors by adap-
tive spatial pooling and fisher vector representation. PloS ONE,
11(6),e0157112. https://doi.org/10.1371/journal.pone.0157112
Yang, K. B., Lee, J., & Yang, J. (2023). Multi-class seman-
tic segmentation of breast tissues from MRI images using
U-Net based on Haar wavelet pooling. Scientific Reports, 13(1),
11704. https://doi.org/10.1038/s41598-023-38557-0

Wang, F., Jiang, R., Zheng, L., Meng, C., & Biswal, B. (2020).
3D U-Net based brain tumor segmentation and survival days
prediction. In Brainlesion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries: 5th International Workshop,
131-141. https://doi.org/10.1007/978-3-030-46640-4 13
Wang, J., Peng, Y., Jing, S., Han, L., Li, T., & Luo, J. (2023).
A deep-learning approach for segmentation of liver tumors
in magnetic resonance imaging using UNet++. BMC Cancer,
23(1), 1060. https://doi.org/10.1186/s12885-023-11432-x
Mohsen, S., Ali, A. M., El-Rabaie, E.-S. M., ElKaseer, A.,
Scholz, S. G., & Hassan, A. M. A. (2023). Brain tumor
classification using hybrid single image super-resolution tech-
nique with ResNext101 32X 8d and VGG19 pre-trained mod-
els. I[EEE Access, 11, 55582-55595. https://doi.org/10.1109/
ACCESS.2023.3281529

Singh, V., Sharma, S., Goel, S., Lamba, S., & Garg, N. (2021).
Brain tumor prediction by binary classification using VGG-16.
In N. Gupta, P. Chatterjee, & T. Choudhury (Eds.), Smart and
sustainable intelligent systems (pp. 127-138). Wiley. https://
doi.org/10.1002/9781119752134.ch9

Venmathi, A. R., David, S., Govinda, E., Ganapriya, K.,
Dhanapal, R., & Manikandan, A. (2023). An automatic brain
tumors detection and classification using deep convolutional
neural network with VGG-19. In 2023 2nd International
Conference on Advancements in Electrical, Electronics, Com-
munication, Computing and Automation, 1-5. https://doi.org/
10.1109/ICAECAS56562.2023.10200949

How to Cite: Joshi, D., Singh, B. K., Nagwanshi, K. K., & Choubey,
N. S. (2025). CTVR-EHO TDA-IPH Topological Optimized Convolutional
Visual Recurrent Network for Brain Tumor Segmentation and Classifica-
tion. Journal of Computational and Cognitive Engineering, 4(4), 492-512.
https://doi.org/10.47852/bonviewJCCE52023722



https://doi.org/10.1007/978-3-030-32248-9_82
https://doi.org/10.1007/s11042-020-10335-4
https://doi.org/10.1007/s11042-020-10335-4
https://doi.org/10.1007/s12652-020-02568-w
https://doi.org/10.1016/j.jksuci.2021.05.008%C2%A0
https://doi.org/10.1007/978-3-030-93620-4_1
https://doi.org/10.1007/978-3-030-93620-4_1
https://doi.org/10.1016/j.mlwa.2021.100212
https://doi.org/10.1016/j.mlwa.2021.100212
https://doi.org/10.1007/978-3-031-12053-4_24
https://doi.org/10.1007/978-3-031-12053-4_24
https://doi.org/10.1186/s12880-021-00728-8
https://doi.org/10.1186/s12880-021-00728-8
https://doi.org/10.1016/j.bspc.2019.101678
https://doi.org/10.1016/j.bspc.2019.101678
https://doi.org/10.1109/ECACE.2019.8679240
https://doi.org/10.1109/ECACE.2019.8679240
https://doi.org/10.1016/j.camwa.2021.03.029
https://doi.org/10.1111/ijlh.12818
https://doi.org/10.1111/ijlh.12818
https://doi.org/10.1109/ATSIP.2018.8364471
https://doi.org/10.1109/ATSIP.2018.8364471
https://doi.org/10.1371/journal.pone.0140381
https://doi.org/10.1371/journal.pone.0140381
https://doi.org/10.1371/journal.pone.0157112
https://doi.org/10.1038/s41598-023-38557-0
https://doi.org/10.1007/978-3-030-46640-4_13
https://doi.org/10.1186/s12885-023-11432-x
https://doi.org/10.1109/ACCESS.2023.3281529
https://doi.org/10.1109/ACCESS.2023.3281529
https://doi.org/10.1002/9781119752134.ch9
https://doi.org/10.1002/9781119752134.ch9
https://doi.org/10.1109/ICAECA56562.2023.10200949
https://doi.org/10.1109/ICAECA56562.2023.10200949
https://doi.org/10.47852/bonviewJCCE52023722

	Introduction
	Literature Review
	Proposed TDA-IPH and CTVR-EHO Methodology for BT Segmentation and Classification
	Preprocessing
	Normalization
	Research design modified anisotropic diffusion filter (MADF) for de-noizing
	Morphological operations
	Standardization

	Image segmentation using TDA-IPH
	Proposed CTVR-EHO model for classification
	AlexNet architecture
	Bi-VLSTM architecture
	Concatenation of features for BT classification
	EHO algorithm


	Experimental Result and Analysis
	Experimental setup
	Data spilt
	5-fold cross validation
	Parameters and hyperparameters description
	Dataset description

	Sensitivity analysis of EHO parameters
	Qualitative analysis
	Evaluation metrics
	Confusion matrix

	Comparisons analysis
	Impact of training: validation accuracy and loss of proposed TDA-IPH and CTVR-EHO


	Conclusion
	Limitations and Future Scope

