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Abstract: Smoke detection in tunnels presents unique challenges, including low light conditions, visual obstructions like smoke and head-
lights, and the need to analyze ultrahigh-resolution images. To address these challenges, this study introduces an innovative model named
Fire-ViT, leveraging the vision transformer (ViT) architecture. Unlike traditional convolutional neural networks that often struggle with false
positives under these complex conditions, Fire-ViT incorporates an attention mechanism and multiperceptron layer, significantly enhanc-
ing its capability to discern details in high-resolution images specific to tunnel environments. The model’s performance is outstanding,
achieving an accuracy rate of 99.87% on a high-resolution tunnel image dataset, markedly surpassing that of conventional models. Notably,
Fire-ViT not only elevates detection accuracy and robustness but also cuts training time in half. This efficiency, coupled with its adaptabil-
ity to the intricate tunnel environment, makes Fire-ViT an ideal solution for early warning systems against fires in tunnels, fulfilling the
demand for high-standard, fine-grained fire detection.
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1. Introduction

With the rapid development of China’s social economy and the
significant enhancement of its scientific and technological strength,
road tunnels, as an important part of the transportation network, have
grown rapidly to 24,850 by the end of 2022, with a total length of
26,784.3 km. Tunnels play a central role in modern transportation
systems, but the potential risk of tunnel fires has increased, posing a
challenge to safe operations. The narrow and closed characteristics
of the tunnel make the evacuation and rescue operations extremely
difficult once the fire occurs, often resulting in heavy losses. There-
fore, the construction of early fire monitoring and warning system
is very important to improve tunnel safety [1].

At present, the tunnel fire detection technology is mainly com-
posed of the Internet of Things (IoT) sensor alarm system and
machine vision fire identification technology, the two technologies
complement each other to form an intelligent protection network to
ensure that fire can be quickly detected and responded to. However,
early IoT detectors are vulnerable to environmental factors, result-
ing in insufficient detection accuracy and frequent false alarms. In
addition, infrared and optical sensors require manual verification,
increasing operation and maintenance costs [2].

In recent years, the development of AI technology has provided
a new method for the early monitoring and warning of highway tun-
nel fire. Combining machine vision and IoT smoke sensing systems,
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video-based fire detection enables efficient fire identification and
response by analyzing characteristics such as the color, shape, and
rate of change of flames and smoke [3]. Researchers are developing
new algorithmic models, exploring ways to reduce data process-
ing costs, and building larger fire datasets to enhance the model’s
generalization.

Although the application of machine vision technology in tun-
nel fire warning has broad prospects, it still faces challenges such as
accuracy, processing large-size images, real-time performance, cost,
multimode recognition, hazard degree recognition, and anomaly
recognition [4]. Future research will focus on the development of
machine vision algorithms that can achieve higher accuracy, real-
time performance and robustness in low-illumination, large-size
images, and small-scale datasets. Multimodal data fusion will be the
key to reduce cost, improve recognition accuracy, and reduce false
positives.

This study effectively improves the application effect of
machine vision technology in tunnel fire early warning system, with
the specific objectives as follows:

1) Construct a tunnel fire dataset containing more than 5000 high-
resolution images, covering 20 types of tunnel fire simulation
images under different scenarios, to ensure the universality and
practicality of the dataset.

2) Using the core algorithm framework vision transformer (ViT), a
model called Fire-ViT was developed to automatically identify
key fire characteristics such as flame, smoke, and temperature
changes in tunnels.

3) The performance of Fire-ViT model was compared with
other convolutional neural network (CNN) related algorithms,
and the model performance was optimized by adjusting model

Pdf_Fol io:89

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

89

https://doi.org/10.47852/bonviewJCCE42023628
https://orcid.org/0009-0002-3444-3195
mailto:liux2@students.national-u.edu.ph
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Computational and Cognitive Engineering Vol. 4 Iss. 1 2025

hyperparameters and using data enhancement techniques to
reduce the false positive rate and improve the accuracy and
response speed of the model.

2. Literature Review

In 2019, Tian et al. [5] proposed a multitype of flame detec-
tion method based on Faster R-CNN, which improved the average
detector accuracy rate by 3.03% to 8.78%, showing strong anti-
interference ability. Then, Li et al. [6] based on the improved Mask
R-CNN algorithm in 2020, improved the fire image detection accu-
racy by more than 5% through the bottom-up fusion of the feature
pyramid and optimization of the loss function, effectively enhanc-
ing the generalization ability of the model. These research results of
fire monitoring based on deep learning not only play an important
role in the field of fire prevention and control but also provide valu-
able experience for the application of deep learning technology in
other fields such as image recognition and processing.

With the rapid development of machine vision technology, the
field of fire detection has also ushered in significant technological
progress. From different angles, researchers have proposed a vari-
ety of effective fire detection solutions, which have significantly
improved the accuracy and efficiency of fire detection. For exam-
ple, the real-time fire warning and monitoring method based on
the human visual attention mechanism utilizes the FMF algorithm
and the dynamic frame difference method to effectively identify the
flame region in the video frame [7]. These innovations not only pro-
vide strong technical support for fire prevention and control but also
bring new research directions to the field of tunnel fire monitoring.

In recent years, the transformer architecture has made great
progress in the computer vision space. It was originally used for
natural language processing tasks, such as machine translation and
language modeling, but has since been applied to image classi-
fication and intensive prediction tasks and has shown excellent
performance [8]. ViT demonstrates its advantages over multiple
image recognition benchmarks by applying it directly to image
patch sequences, reducing the computational resources required
compared to traditional convolutional networks. Detection trans-
former (DETR) and faster-RCNN (ViT-FRCNN) models based on
vision converters improve target detection from a new perspective,
respectively. DETR directly outputs prediction in parallel through
transformer architecture. However, ViT-FRCNN combines adap-
tive clustering converters to achieve end-to-end target detection
[9]. Fax-RCNN model (ViT-FRCNN) based on vision converters
(Josh Beal,2021) is one of the most widely used target detec-
tion methods [10]. Swin transformer improves efficiency and is
compatible with a wide range of visual tasks by introducing shift
window calculations and layered design [11]. Pyramid vision trans-
former (PVT) model shows its versatility and high efficiency in
different visual tasks, especially in object detection and segmen-
tation tasks [12]. The positioning and focusing vision transformer
(LF-ViT) effectively reduces the computing and memory require-
ments by reducing significant spatial redundancy, while the
optimization method proposed by Ataiefard et al. [13] can improve
the training throughput by reducing unnecessary token interactions.

In the field of fire monitoring, research based on ViT is rel-
atively limited, but the proposal of fire former model marks a
new exploration in this field [14]. This model optimizes the forest
fire monitoring algorithm by using self-attention mechanism and
significantly improves the stability and reliability of tunnel firemon-
itoring and early warning system by constructing the spatial feature
relationship between smoke and surrounding natural environment

elements. The successful application of fire former model opens
a new direction for fire monitoring research based on ViT. Future
research can further explore the optimization strategy of ViT archi-
tecture to improve the accuracy and real-time performance of fire
monitoring.

Although deep learning and machine vision technologies have
made significant progress in the field of fire monitoring, especially
for image classification tasks, relatively little research has been done
on tunnel fire monitoring and ViT-based research. The particular-
ity of tunnel environment, such as narrow space, light variation,
and smoke interference, poses higher challenges for fire monitor-
ing algorithms. At present, the number of studies on the application
of machine vision in tunnel fire monitoring in the literature is lim-
ited, indicating that this field has not received widespread attention.
Although ViT has achieved great success in areas such as image
classification, it does not mean that it can be directly applied in
the field of fire monitoring, which requires in-depth research on
its adaptability and performance. In general, VIT-based tunnel fire
monitoring research is currently in its infancy, which provides a
broad space for future research, and it is necessary to develop new
algorithms to adapt to the special challenges of the tunnel environ-
ment and explore the practical application potential of ViT in fire
monitoring.

3. Theoretical Framework

In this study, a new tunnel fire detection model Fire-ViT is
developed by improving transformer model to efficiently identify
fire location, scale, and burning degree. This model integrates HD
and thermal imaging technology and realizes accurate identifica-
tion and prediction of fire characteristics through four main steps:
image acquisition, data preprocessing, feature extraction, and clas-
sification recognition, as shown in Figure 1. In the feature extraction
phase, the model utilizes multihead self-attention mechanisms and
multiperceptron (MLP) blocks, combined with LN standardization
and residual connectivity, to optimize the network to extract key
flame and smoke features. Part of the classifier uses MLP Head to
further distinguish smoke, flame and other interfering factors, and
realize the classification detection of fireworks.

Key innovations in the Fire-ViTmodel include the combination
of high-definition and thermal images to extract richer pyrotech-
nic features, parallel computing to improve classification prediction
speed, and the introduction of technical improvements such as cod-
ing loss, data enhancement, supervised learning, and denoizing
training to meet the specific needs of tunnel fire detection. These
improvements not only improve the accuracy and robustness of the
model but also speed up the calculation speed and provide earlier
warning detection capability for tunnel fires. Through this techni-
cal scheme, Fire-ViT model provides an effective solution strategy
for tunnel fire warning and management, demonstrating its potential
and value in dealing with complex fire scenarios.

4. Research Methodology

4.1. Research design

This research has successfully developed a Fire-ViT fire detec-
tion algorithm based on PyTorch and completed efficient training
and evaluation on Kaggle platform. With CUDA accelerated Tesla
T4 GPU and the latest PyTorch 2.0.0 release, combined with the
Adam optimizer and refined training strategy, the model training
efficiency is ensured.
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Figure 1
Fire-ViT conceptual framework

As shown in Figure 2, the Fire-ViT model makes use of trans-
former architecture, especially the design of multiple multihead
attention layers and MLP layers, to realize in-depth learning of
global and local image features.

Traditional convolutional neural networks (CNNs) are often
difficult to achieve ideal fitting results when faced with the chal-
lenge of insufficient dataset. In addition, although PVT network is
suitable for intensive partition training of images to achieve high
output resolution, it is easy to affect the calculation speed due to too
large dataset when processing large-size tunnel images with more
noise [15]. Therefore, the transformer model, which has both high
resolution and low compute and memory costs, was chosen as the
solution in this study. With its multihead self-attention mechanism,
transformer model can segment large-size images into small blocks
without relying on many recursion and convolution operations and
use linear embedded sequences of these image blocks as inputs
[16]. This processing is like labeling words in natural language pro-
cessing (NLP) and training an image classification model through
supervised learning.

Feature extraction in this study aims to segment the candidate
flame region by the color of flame and smoke, and then extract
the key features of the fire region in the image, such as the flame
formation position, shape, temperature, burning speed, smoke den-
sity, and the change rate of smoke diffusion area. The encoder of the
transformer model consists of alternating multihead self-attention
layer (MSA) and multilayer perceptron (MLP) blocks. Before each
block, linear transformations are performed by application layer
normalization (LN), and then residual connections are used to help
optimize the deepening network structure, thereby delivering criti-
cal feature information and continuously extracting global and local
features of the image. Although batch normalization (BN) is gen-
erally more efficient than LN in the field of image processing, LN
is chosen to process images in this study because BN is not suit-
able for cases where the time series length is not fixed. Each step of
the transformer model is automatically converted to parallel matrix

operations, an advantage that makes it superior to CNN in handling
large-size images [17].

This study refers to the research specifically solving the deep
transformer training problem [18–20], through parallel computing
to improve ViT, several serial transformer blocks are processed in
parallel, which is equivalent to reducing the depth of the model and
increasing the width of the model, which can accelerate the reason-
ing speed of the model. See area 2 in Figure 2. We replace the serial
computation with two parallel computation operations, formula (1)
and formula (2):

xl+1 = xl + mhsal,1 (xl) + mhsal,2 (xl) (1)

xl+2 = xl+1 + f f nl,1 (xl+1) + f f nl,2 (xl+1) (2)

In terms of model optimization, several innovative strategies such
as coding loss optimization, data enhancement, supervised learning,
and denoizing training are adopted to comprehensively improve the
classification accuracy, stability, and generalization ability of the
model.

4.2. TunnelFire dataset

In this study, TunnalFire2024, a practical tunnel pyrotechnic
monitoring dataset, was constructed and filmed inside a tunnel under
construction in Jiangxi Province, China, in April 2024, addressing
the need of tunnel fire monitoring. We simulated and recorded six
different fire scenarios, including no fire, fog, exhaust, smoke, small
fire, and large fire, with the aim of comprehensively capturing the
key characteristics of the fire scenario. Capturing data from both
perspectives with HD and thermal imaging cameras increases the
diversity and richness of the dataset. Each scene was filmed sepa-
rately into a video, totaling 20, each about 3 minutes long, ensuring
high-quality data and detail capture.
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Figure 2
Fire-ViT implementation architecture

We further refined the scene into 20 subclasses and constructed
a detailed labeling system based on four core dimensions, such
as image type, lighting conditions, flame/smoke size and concen-
tration, and main elements in the image, which provided a solid
foundation for model training and verification. To ensure a balanced
dataset, at least 200 images were collected from each category, for
a total of 5034 images, which were divided into the training set and
the test set in a ratio of 7:3.

The TunnalFire2024 dataset, which covers the full range of tun-
nel fire scenarios, aims to promote global scientific exchange and
cooperation, advance tunnel fire monitoring technology, and con-
tribute to public safety. We open this dataset to the Kaggle website
to inspire more innovative thinking and solutions.

4.3. Evaluation

To fully evaluate the performance of the Fire-ViT model,
we used multidimensional metrics such as accuracy, FPS, recall,
accuracy, and F1 scores. The formula is as follows:

Accuracy = TP+TN

TP+FP+FN+TN
(3)

FPS = 1000ms

preprocess+inference+postprocess (4)

Recall = TP

TP+FN
(5)

Precision = TP

TP+FP
(6)

F1 Score = 2×(Precision×Recall)
Precision+Recall (7)

These measures take into account the model’s predictive accu-
racy, speed, and overall performance. By comparing with the
actual labels in the test set, the concepts of TP (true positive
example), FP (false-positive example), TN (true-negative exam-
ple), and FN (false-negative example) are used to calculate the
above indexes, and the model performance is further analyzed
through the confusion matrix. During the evaluation process, we
also made hyperparameter adjustments and data enhancements to
the model to improve its performance and generalization ability.
This comprehensive evaluation method ensures the efficiency and
accuracy of Fire-ViT model in tunnel Fire image prediction and
classification.

4.4. Experimental Config

This study utilized the TunnalFire2024 dataset to conduct a
detailed comparison and analysis of models such as Fire-ViT, ViT,
CNN, ImageNet, ResNet, and VGG-16 based on two key metrics:
FPS and Accuracy. CNNs are pivotal in computer vision, enabling
feature extraction and learning from images for tasks like clas-
sification and recognition [21]. ImageNet, developed by Stanford
University, is a crucial CNN-based image classification algorithm
that uses a vast database of tagged images to advance research in this
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area [22]. ResNet, or Residual Neural Network, introduces residual
blocks to enhance training of deep networks, significantly improv-
ing model performance and accuracy [23]. VGG-16, devised by the
University of Oxford, is a classic CNN model known for its depth
and efficiency. It utilizes small convolution kernels and pooling lay-
ers to capture intricate image details, setting a benchmark in image
classification [24, 25].

4.4.1. Parameters setting
Multiple parameters are covered: the learning rate is set to

0.0001 to balance the update speed and convergence stability; The
batch size is chosen as 16 to reduce memory consumption and accel-
erate model convergence. The training period is set as 50 to improve
the learning ability and avoid overfitting. Dropout was used as a
regularization technique to reduce the risk of overfitting. The acti-
vation function selected RELU to accelerate the convergence speed
and improve the sparse expression ability. The optimizer uses Adam
to speed up training and improve stability due to its advantages of
momentum and adaptive learning rate; The loss function was cross-
entropy loss, which was suitable for multi-classification problems,
and the SoftMax layer was used to optimize the model performance.
The model adopted a pretraining strategy and used the model pre-
trained on ImageNet to accelerate convergence and improve the
performance of new tasks. Finally, the model output layer is set to
20 categories to adapt to the specific image recognition task. The
setting of these parameters aims to fully tap the potential of the Fire-
ViT model and improve the accuracy and efficiency of tunnel fire
detection.

4.4.2. Quantitative results
As can be seen from the performance report Table 1 of Fire-

ViT, Fire-ViT, and ViT achieve 99.87% and 99.34% accuracy
values, respectively, which proves their accuracy in detecting and
segmenting flame pixels. Due to the use of both global and local
features, with transformer as the Backbone, they segment tunnel
fire pixels well and provide finer fire details. However, in terms
of robustness, the loss value of Fire-ViT (0.0204) is significantly

lower than the loss value of ViT (0.0609) and is significantly lower
than other classical CNN and deep CNN models, and there is lit-
tle difference between Fire-ViT and actual tunnel fireworks image
classification. The parallel processing module of Fire-ViT has sig-
nificantly improved the accuracy and robustness of tunnel fireworks
image classification.

Fire-ViT parallel computing processing ensures that the num-
ber of model channels matches, and the input data includes
high-definition images with a resolution of 2160×3840 and thermal
images with a resolution of 720 × 544 to unify into images with a
resolution of 384×384. During the test, 1511 images are divided into
20 categories. Considering that there are many categories of image
classification, the accuracy of the model may reduce the recognition
accuracy due to interference. Therefore, using the pretrained model
for classification and the transfer method can not only extract high-
level and finer features faster but also reduce the computing power
demand and the segmentation flame pixel positioning time in the
training process.

Table 2 shows the comparison and analysis of Fire-ViT, ViT,
CNN, ImageNet, ResNet, and VGG-16 models in inference speed
(FPS) and classification accuracy (accuracy) based on Tunnal-
Fire2024 dataset. The results show that Fire-ViT outperforms other
networks in terms of performance metrics.

It can be seen from Table 2 that the FPS value of the Fire-ViT
model after parallel computing processing (29.37) is significantly
higher than that of the ViT model (27.58), and the accuracy is as
high as 99.87% at the speed of FPS = 30. In addition, the CNN
model and ImageNet model have the best FPS scores of 254.38 and
183.15, respectively, indicating that their inference speed is better
than other models, but the accuracy is not ideal. ResNet shows bet-
ter results in terms of recognition accuracy and speed compared
to CNN, ImageNet, and VGG-16. However, it is still difficult to
model global information compared to Fire-ViT and ViT, achieving
an accuracy of 96.43%, which is 3.44% lower than the accuracy of
Fire-ViT (99.87%). The VGG-16 model with 1511 images as a test
set is much slower than the CNN, ImageNet, ResNet models with
the same test set, and its accuracy (95.83%) is 4.05% lower than the

Table 1
Quantitative results of Fire-ViT and transformer on TunnalFire2024 dataset

Model Backbone Input Resolution Accuracy (%) Loss
Fire-ViT ViT 384 × 384 99.87 0.0204
ViT ViT 384 × 384 99.34 0.0609
CNN CNN 384 × 384 92.52 0.4040
ImageNet Mobile Net 384 × 384 96.23 0.2122
ResNet ResNet 384 × 384 96.43 0.2333
VGG-16 VGG-16 384 × 384 95.83 0.2445

Table 2
384 x 384 image size 43 TunnalFire2024 datasets, in the Fire-ViT, ViT, CNN, ImageNet, ResNet, and VGG-16 model were analyzed

Model Backbone Test Data Accuracy (%) FPS
Fire-ViT ViT 1511 99.87 29.37
ViT ViT 1511 99.34 27.58
CNN CNN 1511 92.52 254.38
ImageNet Mobile Net 1511 96.23 183.15
ResNet ResNet 1511 96.43 92.93
VGG-16 VGG-16 1511 95.83 57.11
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accuracy (99.87%) of the Fire-ViT model. The reason is that there
are more network layers than other models.

4.4.3. Qualitative results
This study compares the performance of Fire-ViT with tradi-

tional models (including transformer, VGG16, ResNet, ImageNet,
and CNN) for fire image segmentation tasks in depth, as shown in
Figure 3. The Fire-ViT model performs better than the traditional
transformer model in high definition and thermal image process-
ing, accurately identifying and separating flames and backgrounds,
and maintaining high efficiency even in complex environmental

Figure 3
Comparison of image masks generated by Fire-ViT, ViT,

ResNet, VGG-16, CNN, and ImageNet

conditions. It is superior to other models in the accurate detec-
tion of small fire areas and flame shapes, showing its application
advantages in the field of fire monitoring.

In contrast, although VGG16 performs well in the differentia-
tion of fire pixels, it is insufficient in the sharpness of edges and the
capture of small area fire pixels. ResNet is effective in fire shape
detection, but the feature extraction accuracy of small fires needs to
be improved. The ImageNet model has misjudgment in the identi-
fication of small fire areas, while the CNN model can identify the
main outline of the fire, but it is not accurate enough in the extraction
of fireworks feature information.

In addition, the robustness of the Fire-ViT model was evalu-
ated by using images downloaded from the Internet, and the results
showed that it can accurately segment fire pixels and detect the exact
shape of the fire under various conditions (such as foggy environ-
ments), showing better visual effects and higher accuracy than ViT.
These comparative results highlight the advance and practicability
of Fire-ViT in fire image processing.

5. Conclusion and Suggestion

In this study, we explore the performance of multiple models
in tunnel fire image classification tasks, including Fire-ViT, ViT,
CNN, ImageNet, ResNet, and VGG-16. The results show that the
Fire-ViT model performs well in both classification accuracy and
inference speed, especially in the processing of tunnel fire images.
The application of its parallel computing mechanism and transfer
learning strategy significantly improves the efficiency and accuracy.

1) Parallel computation and model performance

Through its parallel computing mechanism, Fire-ViT effec-
tively combines the global context information of transformer
architecture with the local feature recognition capability like CNN.
This design enables Fire-ViT to quickly identify the fine structure
and global distribution features in the flame image and achieve a fast
and accurate early warning of tunnel fires. On the TunnalFire2024
dataset, Fire-ViT achieved 99.87% accuracy and a speed of infer-
ence (FPS) of 29.37, significantly outperforming other traditional
models.

2) Model comparison

In contrast, while the ViT model also demonstrated good accu-
racy (99.34%), its reasoning speed was slightly slower (FPS =
27.58). This may be due to the lack of parallel processing capabil-
ities characteristic of Fire-ViT. In addition, although the traditional
CNNmodel has a fast inference speed, its accuracy is not as good as
the Fire-ViT model based on transformer architecture, which shows
its limitations in dealing with complex scenes.

3) The importance of image resolution

The study also highlights the importance of evaluating all
models at a uniform resolution (384 × 384), which ensures fair
comparison between models, and highlights the importance of
consistency in preprocessing for the model’s ability to generalize.

4) Innovation and advantages of Fire-ViT model

Fire-ViT not only makes significant progress in accuracy and
robustness but also optimizes the frame rate of the ViT model
to achieve a response speed in the millisecond level, fully meet-
ing the needs of real-time detection. By combining the input of
high-definition image and thermal image, using parallel computing
technology and optimization of MLP Head classifier, Fire-ViT has
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shown its important application value in the field of tunnel fire early
warning.

In order to further improve the performance of tunnel fire
detection technology, we propose the following suggestions: con-
tinuously expand the data set size and explore the strategy of
integrating multimodal information to enrich the database of model
training; Continuously optimize the Fire-ViT model, including
the adjustment of hyperparameters and the application of data
enhancement methods, to improve the generalization ability and
performance of the model; Consider applying the Fire-ViT model to
a real tunnel environment while addressing the challenges of real-
time performance and deployment cost; A wide range of scenarios
was tested in various tunnel environments to verify the generaliza-
tion ability and stability of the model under different conditions.
Exploring the combination of Fire-ViT model with other existing
fire detection technologies, the aim is to build amore comprehensive
and efficient fire warning system. By implementing these strategies,
we expect to see more research and innovation in the future to fur-
ther improve the efficiency and accuracy of tunnel fire detection
technology to ensure tunnel traffic safety.
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