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Abstract: Autism spectrum disorder is a condition that affects around one out of every 54 children. Many studies have identified abnor-
malities in electroencephalography (EEG) signals for ASD diagnosis. The early and accurate identification of autism poses a substantial
difficulty. The detection accuracy needs to be significantly boosted and the computational complexity reduced. The discrete congruence
Levenberg-Marquardt deep convoluted neural learning classification (DCLMDCNLC) approach is introduced to address these issues in
this work. The goal of the DCLMDCNLC approach is to perform automated ASD diagnosis at an early stage with higher accuracy and less
time complexity. The DCLMDCNLC technique is applied to EEG signals through pre-processing, feature selection, and data classification.
Discrete global threshold wavelet-transform-based pre-processing is carried out for EEG signal decomposition to remove unwanted noise.
After that congruence correlation feature selection is carried out using the DCLMDCNLC technique with denoised signals to perform fur-
ther processing. Finally, piecewise regression data analysis is carried out using the DCLMDCNLC technique for accurate autism detection
with higher accuracy. An experimental assessment of the DCLMDCNLC technique is simulated, and the technique is validated using the
EEG dataset for autism detection. Compared with traditional approaches, the DCLMDCNLC technique improves the accurate diagnosis of
autism by 65%, the precision by 15%, the recall by 17%, the rate of errors by 77%, and the autism detection time by 35%.

Keywords: autism spectrum disorder, electroencephalography, congruence correlative feature selection, discrete global threshold wavelet
transform, piecewise regressive data analysis

1. Introduction

Autism is a neurobiological condition that involves limited and
repeated behavioral characteristics in tandem with an absence of
an interpersonal nature, social interactions, and interpersonal com-
munication abilities. Autism is associated with various levels of
disability and functionality, spanning from high functionality (HF)
to minimal functionality (LF). Autism affects social skills, commu-
nication, and individual behavior. It is identified through different
behavioral characteristics, and different autism spectrum disorders
(ASDs) are widely recognized based on the severity level. A recom-
mender model with multi-classification was introduced by Shinde
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and Patil [1] to increase prediction accuracy. Though the accu-
racy was improved, the designed model did not minimize the time
complexity.

To assist trained medical professionals in diagnosing autism,
the response-to-instruction (RTI) protocol was developed by Liu
et al. [2], employing vision-based advances in technology. The
correlation between toddlers’ emotional characteristics and their
surroundings has been utilized to examine autism-related signs.
However, the f-score was not improved by the RTI protocol. A stress
monitoring system was introduced by Tomczak et al. [3] for indi-
viduals with ASDs in educational institutions. However, the ASD
detection accuracy was not improved by the designed system.
A machine learning technique was introduced by Thapa et al. [4]
to categorize individuals under the DSM-IV using minimal data
inputs. Though the accuracy level was improved, the f-score was
not enhanced by this technique.
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Enhanced by federated learning, the convolutional neural net-
work and long short-term memory CNN-LSTM (FCNN-LSTM)
approach was initially developed by Lakhan et al. [5] to detect
ASD among children. The FCNN-LSTM methodology was created
within a decentralized computational architecture. Regional labs
have employed the FCNN-LSTM methodology to validate dataset
information, but the degree of precision could be further improved.
ResNet101 was used with a bidirectional gated recurrent unit
(Bi-GRU) to develop a distinctive hybrid ensemble approach [6].
For ASD and its identification and classification, a model called
ResNet has also been employed, but it has not been possible to
improve the recall metric of this model.

An sMRI classification architecture was introduced by Mishra
and Pati [7] for ASD detection with a data augmentation approach.
The designed framework employed an ensemble model by com-
bining a deep convolutional neural network (DCNN model) with
diverse optimizers. Unfortunately, the framework’s architectural
structure failed to minimize the computation required. A compre-
hensive framework was released in the word of RethikumariAmma
and Ranjana [8] to identify patients who have ASD through mining
relevant features. The designed model increased the pre-processed
image efficiency for categorizing neuron patterns. Nevertheless,
extensive modeling failed to improve the accuracy level.

According to Mazumdar et al. [9], a unique technique was
created by employing information collected through the tracking
of eyes along with machine learning. The distinctive features of
the visuals were examined to identify possible behaviors, includ-
ing objects that contribute to image retention. However, the error
rate was not minimized by the designed approach. The brain
hemodynamic responses of neurotypical adults and those with spec-
trum disorders were discussed by Charpentier et al. [10]. The
responses were investigated using the oddball model to identify
brain responses with different saliency levels and emotional content.
However, the time complexity was not minimized.

The problems associated with models in the existing litera-
ture include low ASD detection accuracy, low precision, low recall,
low f-scores, increased error rates, increased computational costs,
increased computational complexity, and higher ASD detection
times. The discrete congruence Levenberg–Marquardt deep convo-
luted neural learning classification (DCLMDCNLC) technique is
introduced here to address these issues.

1.1. Contributions of this paper

The main contributions of this article are as follows:

1) The DCLMDCNLC technique is introduced to perform auto-
mated ASD diagnosis at initial stage with better accuracy and
minimum time complexity.

2) A Discrete global threshold wavelet-transform-based pre-
processing is designed in DCLMDCNLC technique for EEG
signal decomposition to eliminate the unwanted noise.

3) A congruence correlative feature selection is performed to
DCLMDCNLC technique with denoised signals for relevant
feature selection to perform further processing.

4) Piecewise regressive data analysis is employed to accurate
classification of subjects into autism and non-autism classes.

5) The performance of pre-processing and feature selection steps
leads to a reduction in the amount of time required for
performing ASD diagnosis.

6) Finally, an experimental examination is implemented to compare
DCLMDCNLC technique with existing methods by different
performance metrics.

1.2. Structure of the manuscript

Manuscript is structured to various sections. Literature review
that is related in autism screening is presented in Section 2.
Section 3 describes the proposed DCLMDCNLC model through
pre-processing, feature extraction, and classification processes for
autism detection. Section 4 provides the experimental scenario with
the dataset description. Performance analyses as well as discussion
are explained in Section 4. Finally, Section 5 concludes the article.

2. Related Works

The diagnosis of ASD is essential for medical professionals to
be able to give patients prompt and appropriate care. A combina-
tion of behavioral and architectural MRI findings was employed by
Rakić et al. [11] to classify individuals with autism spectrum disor-
der. Authors used function as a connection pattern among cortical
regions for architectural processing pipelineswith a volumetric exis-
tence of cerebral gray matter quantities inside the central nervous
system. In the work of Parui et al. [12], an approach was presented
to generate a functioning interconnectivity network by employing
the resting state of a functioning magnetic resonance imaging (RS-
fMRI) dataset. Regional connection to the network was determined
using time intervals of fMRI data.

A multiple logistic regression model with various corrections
was introduced by Belica et al. [13] for a log-transformed plasma G-
CSF concentration with increased child risk of autism. The G-CSF
model was examined alongside different activities of the immune
system. Genetic defects in the chromosomes of children with autism
were discussed by Al-Awadi et al. [14] through particular probes
identified using the Fluorescence in situ hybridization (FISH) tech-
nique. The design clarified methods of diagnosing cytogenetic
deflection among autistic patients using karyotyping and the FISH
technique.

A patient with ASD was identified by Bhandage et al. [15]
through Adam war strategy optimization (AWSO) based on a deep
belief network (DBN). An AWSO algorithm was introduced by
combining the Adam optimizer with war strategy optimization
(WAO). However, the precision level of this approach still needs
to be improved. Among the significant biomarkers in children, the
total amount of sialic acid (SA) along with anti-gangliosideM1 con-
nected to (anti-GM1) IgG antibody responses was investigated by
Ashaat et al. [16]. SA was used to identify the ASD diagnostic yield
and its correlation with autism severity. However, the computation
cost was not minimized.

CSF has been used to identify the optimal control group of neu-
rological individuals suffering from arterial hypertension and ASD
[17]. The different kinds of cytokine from CSF have been deter-
mined using an electromagnetic bead multiplexed immunoassay.
Despite this, the degree level of the CSF approach still needs to be
reduced [18]. The use of a deep neural network (DNN) has been
described as a potential alternative approach to evaluating ADOS
rating systems. Convolutional neural network (CNN) technology
has been implemented to achieve higher-quality results. Fortunately,
the deep neural network (DNN) method could reduce the amount of
complexity.

A new multiple model termed a Kalman-like filter was
introduced by Puli and Kushki [19] to combine heart rate and
accelerometry signals. However, the method employed failed to
lower computational expenses. An outlier identificationmethodwas
also developed to diagnose autism using structural magnetic reso-
nance imaging (sMRI) [20]. However, the designed outlier detection
approach still needs improved precision.
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An automated method was designed by Guo [21] to examine
the visual indications of autism using pictures captured of indi-
viduals with ASD. The manual inspection of photos inspired the
approach. Though the developed technique had an enhanced degree
of accuracy, the amount of computing power required remained the
same. Based on Hasan et al. [22], an efficient framework was devel-
oped to evaluate numerous methods using machine learning (ML)
for autism spectrum disorder detection. ASD risk indicators were
determined and prioritized by their respective values.

Autonomic response detection was carried out by Sarabadani
et al. [23], employing children’s favorable and detrimental stimuli
to determine the presence of ASD. However, the error rate was not
minimized by the automatic detection system. The visual processing
variation among individuals with high-functioning autism and those
without it was investigated by Yaneva et al. [24] with eye-tracking
technology. However, the detection accuracy of this approach still
needs to be improved.

Variable frequency complex demodulation (VFCDM), an
unprecedented resolution time-frequency spectral technique, was
developed by Posada-Quintero et al. [25] to decompose ERG
waveforms. The decomposition was carried out with signal flash
strengths to classify ASD. However, the accuracy level could be fur-
ther improved. A deep neural network (DL)-based framework for
recognizing individuals with ASD was put forward by Shin et al.
[26]. Writing with hands patterns have been observed using func-
tional near-infrared spectroscopy (fNIR) data. However, the recall
was not improved by this DL-based algorithm.

In the research of Ma et al. [27], we constructed a multi-
scale dynamic graph learning (MDGL) method capable of gathering
spatiotemporal dynamic rs-fMRI data representations to identify
neurological conditions. The level of accuracy still needs to be
further improved. Based on the research of Huang et al. [28],
an effective federation multi-task learning (MTL) structure built
around functional magnetic resonance imaging (MRI) was demon-
strated to be capable of recognizing various linked mental health
conditions. Still, there has been no improvement in computational
challenges.

As one example, a stress-related monitoring technique can
recognize neurological conditions by employing EEG data [29].
Convolutional neural networks, also called CNNs, have been uti-
lized in conjunction with the framework created for classifying
medical conditions. Nevertheless, no particular system has suc-
ceeded in decreasing the ASD identification time. A machine
learning structure was designed by Jacob et al. [30] that depends on
automated hyperparameter optimization and was employed to rank
the nonclinical markers for autism. Despite an increase in accuracy,
the time complexity remained the same.

3. Methodology

ASD is an intricate neuro-developmental disease. An EEG
records the electrical activity of the brain, with electrodes affixed to
the scalp to capture electrical impulses of different frequencies used
by neurons for communication. In this work, DCLMDCNLC tech-
nique aims to perform automated ASD diagnosis at an early stage
with higher accuracy and less time complexity. The ASD diagno-
sis process is categorized into pre-processing, feature selection, and
data classification, as shown in Figure 1.

The suggested architecture diagram in Figure 1 shows the
DCLMDCNLC technique used to classify the EEG signals auto-
matically. The DCLMDCNLC approach utilizes the Biosemi Active
system to obtain the EEG signals for performing ASD diagnosis.
The EEG LAB transforms the original EEG recordings into an

executable file format. EEG recordings were taken from people with
ages ranging from 18 to 68 years old, 28 people with autism and
28 people without. Electrode that actively participates in the elec-
trochemical reaction is known as active electrode. It takes part in
the reactions that take place in the electrolyte to conduct the elec-
tricity. Both oxidation and reduction reactions can occur in active
electrodes. By using 64 electrodes, the recording duration was set
to a 2.5-min (150-s) resting period with the eyes closed. The EEG
time series epoch was sampled at 2048 Hz. To achieve good tempo-
ral precision, the original signal was sampled 2048 times per. The
input EEG signalsMath input errorwere collected from the input
dataset D. After that, the input signals were pre-processed to remove
the unwanted noise and enhance the signal quality. Next, feature
extraction was performed to extract the relevant features. With the
extracted features, the signals were correctly classified within a
minimum time. Finally, data classification was carried out to cat-
egorize the signal as a non-autism or autism signal with selected
noise-reduced signals. A detailed explanation of the DCLMDCNLC
technique is given in the following subsections.

3.1. DCLMDCNLC technique

EEG signals have modest amplitudes and can be polluted by
noise. The noise in EEG signals must be eliminated for a proper
analysis. In this work, the DCLMDCNLC technique is implemented
to perform efficient ASD diagnosis through the data classifica-
tion process. With the help of the DCLMDCNLC technique, the
autism detection accuracy increases with a minimal error rate. The
main objective of neural learning is to reduce the dimensional-
ity with minimum time consumption for performing the required
tasks. Figure 2 shows a schematic diagram of the deep convolutional
neural learning classifier.

The classifier includes different layers: the input layer, the
output layer, and at least one hidden layer for efficient data clas-
sification. The hidden layers are considered following layers with
small units termed artificial neurons for analyzing the input signals.
The synapses are the connection points between neurons in a partic-
ular layer. In the DCLMDCNLC technique, the input layer collects
the EEG signals and is considered an input. After that, the EEG
signals are passed to the hidden layers for future processing (i.e.,
signal classification). The three hidden layers are the convolutional,
max-pooling, and fully connected layers. The final classifier output
comes from the output layer. Initially, the input layer obtains several
EEG signals S1, S2, S3, . . . Sn. The input layer Int (t) is given as

Int (t) = [ n∑
i=1

Si ∗ weinp] + B. (1)

In Equation (1), Si represents the EEG signals, B represents the bias,
and weinp symbolizes the weight in the input layer. After that, the
input layer is sent to hidden layer 1 (i.e., the convolutional layer),
where the data pre-processing is carried out.

The deep neural network is a convolutional layer where most
of the computations are carried out. The convolutional layer applies
a mathematical operation to the incoming signal. With a collection
of weights and input signals, it describes the linear mathematical
process of convolution.

1) Signal pre-processing

In the convolutional layer, signal pre-processing is carried out
using the DCLMDCNLC technique to reduce the noise without sig-
nal distortion. The goal of signal pre-processing in ASD diagnosis
is primarily noise removal. A discrete wavelet transform (DWT) is
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Figure 1
Architecture diagram of proposed DCLMDCNLC technique
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used for the EEG signal decomposition to preserve desirable sig-
nal features. The wavelet transform describes the EEG signals in
the time-frequency domain. The DWT decomposes the EEG sig-
nal into different sub-bands in the time-frequency scale plane to
obtain denoised signals. A discrete global threshold wavelet trans-
forms (DGTWT)-based pre-processing model is introduced in the
DCLMDCNLC technique to obtain the decomposed EEG signals
without unwanted noise. Figure 3 illustrates the flow process of the
DGTWT-based pre-processing model.

As illustrated in Figure 3, the DCLMDCNLC technique ini-
tially partitions the EEG signal into five different sub-bands with
a DWT. The five sub-bands are the delta sub-band (0 − 4 Hz),
the theta sub-band (4 − 8 Hz), the alpha sub-band (8 − 12 Hz), the

Figure 3
Flow process of the discrete global threshold wavelet transform
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beta sub-band (12 − 30 Hz), and the gamma sub-band (> 30 Hz).
The coefficients of the decomposed signals are thresholds based
on the global threshold rule for removing noise in the signal. The
mathematical expression for the global threshold rule is:

GTr = m̂2 logN. (2)

With the above threshold rule, further processing for autism detec-
tion is performed. The algorithmic representation of the discrete
global threshold wavelet transforms for pre-processing the input
signal is provided below in Algorithm 1.
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Algorithm 1. DGTWT-based pre-processing

Input: EEG Signals
Output: Noise-reduced signals (NRS)
Start
1: For each EEG signal
2: Decompose the input EEG signals into five different sets
3: For each frequency sub-band
4: Apply the global threshold rule
5: Return noise-reduced signals
6: End for
7: End for
End

Algorithm 1 clarifies the DGTWT-based pre-processing step
to obtain the noise-reduced (i.e., pre-processed) signals. Initially,
the DWT is used to perform the signal decomposition. After that,
global threshold rule is applied inDCLMDCNLC technique to attain
a pre-processed signal by removing the noise from the decomposed
signal.Finally, thepre-processedsignal isobtainedfor theEEGsignal
analysis.

2) Feature selection process

After the signal pre-processing, the second hidden layer (i.e.,
the max-pooling layer) performs feature extraction. Using the esti-
mation of neuron activity, the max-pooling layer determines the
correlation measure. The correlation measure is a measure of the
similarity that determines the relationship between the EEG signals
and features. The congruence correlation function is formulated in
the DCLMDCNLC technique as

CFCong = ∑ Str ∗ Sts

√∑ Str
2∑ Sts

2
. (3)

In Equation (3), CFCong is the congruence correlation func-
tion, Str is the set of training EEG signal samples, and Sts represents
the testing data samples. ∑ Str ∗ Sts is the sum of the product of
the paired score of two EEG signal samples. ∑ Str

2 indicates the
square of the d score of the training signals Str. ∑ Sts

2 symbolizes
the squared score of the testing signals.

The outcomes of CFCong are obtained from values between 0
and 1. 0 indicates that the features are not similar and 1 indicates
that the features are identical, which corresponds to the EEG signals
being classified as typical or indicative of autism. When the result
is 0, there is no correlation between the two signal samples. Simi-
larly, when the test result value is 1, there is a correlation between
the two signal samples. The max-pooling layer results are passed
to the third hidden layer (i.e., the fully connected layer) that min-
imizes the dimensions by combining the input at one layer and
transforming it into the next layer.

3) Classification process

The correlation results CFCong are considered an input to the
fully connected layer. The fully connected layer reduces the dimen-
sions of the output by detecting the correlated results depending
on the threshold value with the help of piecewise regression anal-
ysis. The piecewise regression analysis partitions the independent
EEG signal that represents a different relationship between region
features. It is formulated as

PRA = {CFCong > th; Selectcorrelationresults

CFCong < th; Discarded
. (4)

In Equation (4),PRA is the piecewise regression analysis result.
When the correlation exceeds the threshold, it is selected for sig-
nal classification. Otherwise, the correlation results are discarded.
The output of the fully connected layer categorizes the EEG sig-
nal as a standard signal or an autism signal. The output layer uses a
softplus activation function to perform the signal classification. It is
formulated as

SAF = log [1 + eMP] . (5)

Using Equation (5), the softplus activation function SAF attains posi-
tive results. Then, the signal can be accurately classified into specific
classes. The error is then determined as

ER = [Act (SAF) − SAF]2 . (6)

Using Equation (6), ER is estimated, where Act (SAF) denotes the
actual outcome and SAF represents the output predicted by the acti-
vation function. The Levenberg–Marquardt method is applied in
the DCLMDCNLC technique to detect the minimum loss. It is
formulated as

LM = argminER. (7)

In Equation (7), LM denotes the output of the Levenberg–Marquardt
method. Therefore, the final classification results are obtained at the
output layer with higher accuracy and a lower error rate.

Using the above algorithm, the DCLMDCNLC technique effi-
ciently performs ASD diagnoses by accurately determining whether
the data is typical or indicative of autism with minimal error. The
ASD detection accuracy is improved, as the error involved in the
data classification is minimized to ensure effective ASD diagnosis.

Algorithm 2. Discrete congruence Levenberg–Marquardt deep
convoluted neural learning classification

Input: Database, EEG Signals
Output: ensure effective ASD diagnosis
Start
Step 1: Initialize the number of EEG signals S1, S2, S3. . . .Sn

Step 2: For each EEG signal
Step 3: Remove the noisy pixels through pre-processing
Step 7: Measure the congruence correlation between pixels
Step 12: Perform the feature extraction
Step 13: Extract the color, texture, and intensity features
Step 14: End for
Step 15: For each image
Step 16: Apply the softmax plus activation function
Step 17: if (SAF > th), then
Step 18: Signal is classified as autism class
Step 19: Else
Step 20: Image is classified as non-autism class
Step 21: End if
Step 22: End for
End

4. Experimental Settings

Simulations of the proposed DCLMDCNLC technique and
the existing recommender model with multi-classification [1], a
response-to-instruction (RTI) protocol [2], a stress monitoring sys-
tem [3], and a machine learning technique [4] are implemented in
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Java. To detect autism in both children and adolescents, two datasets
are used from the electrophysiological signatures of brain aging in
autism spectrum disorder dataset. EEG signals for 56 different sub-
jects are taken from the first dataset. The observations were gathered
from 28 individuals with an autism spectrum disorder diagnosis and
28 people without the disorder. The latter were used as neurotypi-
cal regulates and varied in age between 18 and 68. The results were
achieved using a 2.5-min (150-s) eyes-closed resting paradigm. The
dataset is split into 80% of training dataset and 20% of testing
dataset. Five metrics are used to assess the performance of different
diagnosis methods:

1) The autism detection accuracy
2) The autism detection time
3) Precision
4) Recall
5) The error rate

The metrics are examined with the help of table and graph
representations.

4.1. The autism detection accuracy

The autism detection accuracy is the number of signals or
subjects correctly detected to have autism. The autism detec-
tion accuracy is measured in terms of a percentage (%). It is
formulated as

ADAcc = [ Tp + Fp

Tp + Fp + Tn + Fn
] ∗ 100. (8)

From Equation (8), the autism detection accuracy ADAcc can be
determined. Tp represents true positive, Fp represents false positive,
Tn represents true negative, and Fn represents false negative.

Table 1 and Figure 4 show a comparative analysis of the
autism detection accuracy for a number of subjects, which varies
from 5 to 50. The autism detection accuracy is determined for
five different techniques in total. For the 35 subjects, the autism
detection accuracy using the proposed DCLMDCNLC technique
was 89%, compared to 42%, 47%, 56%, and 63% for the exist-
ing methods proposed by Shinde and Patil [1], Liu et al. [2],
Tomczak et al. [3] and Thapa et al. [4], respectively. The pro-
posed DCLMDCNLC technique provided superior accuracy to all
of the existing methods considered. This is because discrete global

threshold wavelet-transform-based pre-processing and congruence
correlative feature selection are carried out using the DCLMDC-
NLC technique with denoised signals for relevant feature selection.
The piecewise regressive data analysis resulted in autism detec-
tion with higher accuracy. Ten different autism detection accuracy
results were attained for other subjects. Compared to the methods
proposed by Shinde and Patil [1], Liu et al. [2], Tomczak et al. [3]
and Thapa et al. [4], the autism detection accuracy performance of
the DCLMDCNLC technique was greater by 91%, 82%, 50%, and
38%, respectively.

4.2. The autism detection time

The autism detection time is the amount of time needed
to detect subjects with autism disorder accurately. The autism
detection time is measured in terms of milliseconds (ms). It is
calculated as

ADTime = N ∗ Time (detecting one subject) . (9)

Using Equation (9), the autism detection time (ADTime) can be mea-
sured. N represents the number of subjects and Time (one subject)
represents the time needed to analyze a subject.

Figure 4
A graphical representation of the autism detection accuracy of
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Table 1
Autism detection accuracy results

Autism Detection Accuracy (%)

Number
of
subjects

Existing recom-
mender model with
multi-classification

Existing RTI
protocol

Existing stress
monitoring

system

Existing machine
learning

technique

Proposed
DCLMDCNLC

technique

5 40 40 60 60 80
10 45 47 63 65 85
15 47 49 66 68 89
20 50 53 69 71 95
25 48 51 62 68 93
30 47 49 58 65 91
35 42 47 56 63 89
40 48 51 53 60 90
45 50 53 57 64 92
50 56 56 60 67 95
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Table 2
Autism detection time results

Autism detection time (ms)

Number of
subjects

Existing recommended
model with multi-

classification
Existing (RTI)

protocol

Existing stress
monitoring

system

Existing machine
learning

technique

Proposed
DCLMDCNLC

technique

5 35 31 25 20 15
10 39 35 29 22 17
15 43 38 32 25 21
20 47 42 36 28 24
25 51 45 40 30 27
30 55 48 43 33 30
35 59 52 48 36 32
40 62 56 51 39 35
45 66 60 54 43 38
50 70 64 58 47 40

Figure 5
A graphical representation of the autism detection time results
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Table 2 and Figure 5 show a comparative analysis of the autism
detection time for number of fields ranging from 5 to 50. The autism
detection time is computed using the same five techniques as before.
For 15 fields, the autism detection times of the proposed DCLMDC-
NLC technique and the existingmethods by Shinde and Patil [1], Liu
et al. [2], Tomczak et al. [3] and Thapa et al. [4] were 21, 43, 38, 32,
and 25 ms, respectively. The proposed DCLMDCNLC technique
provides a shorter autism detection time than the existing autism
detection techniques. This is due to the application of the discrete
global threshold wavelet transform and the congruence correlative
feature selection for pre-processing and relevant feature selection.
Subsequently, piecewise regressive data analysis was performed for
autism detection with minimum time consumption. As before, ten
different autism detection time results were obtained for other sub-
jects. The autism detection time of the DCLMDCNLC technique
was 48%, 42%, 34%, and 14% lower than that of the existing meth-
ods by Shinde and Patil [1], Liu et al. [2], Tomczak et al. [3] and
Thapa et al. [4], respectively.

4.3. Precision

The precision is determined from the number of true positive
and false positive subjects. It is calculated in terms of a percentage
(%) as

Pn = ( Tp

Tp + Fp
) ∗ 100. (10)

From Equation (10), the precision (Pn) can be determined from the
accurate positive data (Tp) and false positive data (Fp).

Table 3 and Figure 6 show a comparative analysis of the
precision results for number of subjects varying from 5 to 50.
The precision level is determined using the same five techniques
as before. For 45 subjects, the precision values of the proposed
DCLMDCNLC technique was 96%, compared to 80%, 87%, 92%,
and 93% for the existing methods by Shinde and Patil [1], Liu et al.
[2], Tomczak et al. [3] and Thapa et al. [4] respectively. The pro-
posed DCLMDCNLC technique increased the precision level over
those of all existing methods. This is because of the use of a discrete
global threshold wavelet transform to perform pre-processing and
congruence correlative feature selection for feature selection. Next,
piecewise regressive data analysis was performed for autism detec-
tion with a higher precision level. As before, ten different precision
results were attained for different number of subjects. The preci-
sion was increased using the proposed DCLMDCNLC technique by
27%, 21%, 8%, and 5% compared to the existing methods by Shinde
and Patil [1], Liu et al. [2], Tomczak et al. [3] and Thapa et al. [4]
respectively.

4.4. Recall

The recall is computed based on the number of true posi-
tives and false negative data during autism spectrum detection. It is
measured in terms of a percentage (%) and calculated as

Recall = ( Tp

Tp + Fn
) ∗ 100. (11)

Figure 6
A graphical representation of the precision results
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Table 3
Precision results

Precision (%)

Number of
subjects

Existing recommender
model with

multi-classification

Existing response-
to-instruction
(RTI) protocol

Existing stress
monitoring

system

Existing machine
learning

technique

Proposed
DCLMDCNLC

technique

5 50 50 67 67 75
10 55 57 71 74 78
15 62 65 74 77 80
20 65 69 76 80 83
25 71 74 80 83 86
30 73 77 82 86 90
35 75 81 85 89 92
40 78 84 88 91 94
45 80 87 92 93 96
50 83 90 95 95 98

Table 4
The recall results

Recall (%)

Number of
subjects

Existing recommender
model with

multi-classification

Existing response-
to-instruction
(RTI) protocol

Existing stress
monitoring

system

Existing machine
learning

technique

Proposed
DCLMDCNLC

technique

5 50 50 67 67 75
10 53 56 68 72 77
15 58 60 71 76 78
20 62 65 74 80 82
25 65 70 77 81 85
30 71 75 79 83 88
35 74 78 82 85 90
40 78 81 85 87 93
45 80 84 86 88 95
50 83 88 89 90 97

Figure 7
A graphical representation of the recall results
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Using Equation (11), a recall (Recall) is computed from the accurate
positive data Tp and false negative data Fn.

Table 4 and Figure 7 show a comparative analysis of the recall
for number of subjects varying from 5 to 50. The recall level is

computed for the same five techniques as before. For 25 subjects,
the recall of the proposed DCLMDCNLC technique was 85%, com-
pared to 65%, 70%, 77%, and 81% for the existing methods by
Shinde and Patil [1], Liu et al. [2], Tomczak et al. [3] and Thapa et al.
[4] respectively. Among the five different autism detection tech-
niques, the proposed DCLMDCNLC technique provides the best
recall level. This is due to the application of the wavelet transform
for pre-processing and the congruence correlation for feature selec-
tion. Piecewise regression was carried out for autism detection with
higher recall levels. Consequently, ten different recall results were
attained for different number of subjects. The recall was increased
using the proposed DCLMDCNLC technique by 29%, 24%, 11%,
and 6% compared to the existing methods by Shinde and Patil [1],
Liu et al. [2], Tomczak et al. [3] and Thapa et al. [4] respectively.

4.5. Error rate

The error rate is the number of signals or subjects incorrectly
determined to have autism disorder. The error rate is computed in
terms of a percentage (%) as

ERRA = [ Tn + Fn

Tp + Fp + Tn + Fn
] ∗ 100. (12)
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Table 5
The error rate results

Error Rate (%)

Number of
subjects

Existing recommender
model with

multi-classification
Existing RTI

protocol

Existing stress
monitoring

system

Existing machine
learning

technique

Proposed
DCLMDCNLC

technique

5 60 60 40 40 20
10 55 53 37 35 15
15 53 51 34 32 11
20 50 47 31 29 5
25 52 49 38 32 7
30 55 51 42 35 9
35 58 53 44 37 11
40 60 55 47 40 10
45 57 52 43 36 8
50 54 49 40 33 5

Figure 8
A graphical representation of the error rate results
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FromEquation (12), the error rate (ERRA ) can be computed. A lower
error rate corresponds to a more efficient method

Table 5 and Figure 8 show a comparative analysis of the error
rate for number of subjects varying from 5 to 50.

For 50 subjects, the error rate of the proposed DCLMDC-
NLC technique was 5%, compared to 54%, 49%, 40%, and 33%
for the existing methods by Shinde and Patil [1], Liu et al. [2],
Tomczak et al. [3] and Thapa et al. [4] respectively. The pro-
posed DCLMDCNLC technique reduced the error rate compared
to existing techniques. This is because of the wavelet transform for
pre-processing and the congruence correlation for feature selection.
Piecewise regression was carried out for autism detection with a
minimal error rate. Ten different error rate results were achieved
for other subjects. The error rate was minimized using the proposed
DCLMDCNLC technique by 82%, 81%, 74%, and 72% compared
to the existing methods by Shinde and Patil [1], Liu et al. [2],
Tomczak et al. [3] and Thapa et al. [4] respectively.

5. Conclusion

A novel DCLMDCNLC technique has been applied to perform
automated ASD diagnosis at an early stage with higher accuracy.
Discrete global threshold wavelet-transform-based pre-processing
is carried out for EEG signal decomposition to remove unwanted

noise. After that, congruence correlation feature selection is carried
out using the DCLMDCNLC technique with denoised signals to
perform further processing. Finally, piecewise regression data anal-
ysis is carried out using the DCLMDCNLC technique for accurate
autism detection with higher accuracy. An experimental assessment
of the DCLMDCNLC technique is simulated and the technique is
validated using the EEG dataset for autism detection. Compared
with traditional approaches, the DCLMDCNLC technique improves
the accurate diagnosis of autism by 65%, the precision by 15%, the
recall by 17% the rate of errors by 77%, and autism detection time
by 35%.
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