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Abstract: Anomalies and defects in the manufacturing process hinder operating efficiency and product quality. The Whale Optimization
Algorithm (WOA) optimizes the XGBoost model for better anomaly identification by iteratively refining hyperparameters. Experiments
using real-world manufacturing datasets prove proposed model works. Comparing the proposed model to traditional anomaly detection
methods shows its superior performance in industry patent concept. The optimized XGBoost model’s interpretability and anomaly detec-
tion features are also discussed. In this paper, WOA is applied in this work to optimize hyperparameters of XGBoost, a robust gradient
boosting technique for accurate anomaly detection in manufacturing systems. Optimized XGBoost gained 1.00 precision value, 0.9 recall
value, and 0.96 f1-score for class 0.0 and gained a 0.95 precision value, 1.00 recall value, and a 0.97 f1-score for class 1.0. The proposed
model gained 0.993 Train Score and 0.964 Test Score. Our findings suggest that integrating XGBoost with the WOA may uncover man-
ufacturing process irregularities. Optimization improves detection accuracy and provides a flexible and interpretable framework, helping
modern industrial processes maintain quality and efficiency. This research encourages machine learning optimization for industrial patent
applications, advancing anomaly detection methods.
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1. Introduction

Modern manufacturing requires anomaly detection to ensure
product quality, operational efficiency, and company performance.
Strong anomaly detection approaches are needed as industries use
more automated systems and novel technologies. Anomaly detec-
tion is crucial to product quality. Even minor deviations from the
norm can affect production. Manufacturing companies may quickly
repair problems with real-time anomaly detection systems before
they finish products. To meet quality and consumer expectations,
this proactive approach is needed.

A good factory has efficient production procedures. Anomaly
detection boosts operational efficiency by preventing disruptions.

*Corresponding author: Nasratullah Nuristani, Department of Spectrum Man-
agement, Afghanistan Telecommunication Regulatory Authority, Afghanistan.
Email: n.nuristani@atra.gov.af

Anomaly detection tracks machine characteristics, finds equipment
issues, and optimizes production schedules to optimize mainte-
nance, limit downtime, and ensure material quality. Early detection
of abnormalities can yield significant financial rewards. Manu-
facturers can avoid faulty goods, excessive rework, and waste
by addressing concerns quickly. Predictive maintenance based
on anomaly detection can increase machinery and equipment
lifespan, reducing repair and replacement costs and improving
cost-effectiveness [1].

Complex supply chains and machinery are typical in man-
ufacturing. Any process irregularity can threaten safety and cost
money. Anomaly detection prevents equipment failures, material
disparities, and process anomalies. Preventative risk management
is crucial for workplace safety and the company’s financial line.
Instant decision-making is crucial in the ever-changing manufactur-
ing industry. Anomaly detection systems let plant operators make
quick decisions by revealing anomalies during operations. To avoid
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problems that can snowball, you need to be able to change machine
settings, conduct maintenance, or temporarily stop production in
real time [2].

Technology, consumer tastes, and new laws all shape indus-
trial processes. Iteratively learning from new data lets anomaly
detection systems adapt. The detection models’ ability to adapt
to changing industrial conditions ensures their outlier detection
accuracy. Anomaly detection is essential in production. Its impor-
tance goes beyond quality control to operational efficiency, cost
reduction, risk mitigation, and real-time decision-making. Manu-
facturing companies must invest in effective anomaly detection
systems to stay competitive and survive as more industries utilize
data-driven strategies and automation. Manufacturers should prior-
itize anomaly detection to enhance processes, produce high-quality
goods, and handle today’s industrial complexity [3].

1.1. Anomaly detection algorithms

Industry 4.0 has transformed production with IoT, AI, and ML.
Anomaly detection algorithms in manufacturing processes are one
key application of this technology. These algorithms are essential
for identifying irregularities, ensuring product quality, decreasing
downtime, and maximizing productivity.

1.2. Statistical methods

Manufacturing relies on statistical anomaly detection algo-
rithms. Process parameters and sensor data are monitored using
Z-scores, median, standard deviation, and mean. A considerable
deviation from statistical standards may raise concerns and require
further investigation. These strategies help identify anomalies when
historical data establishes usual behavior [4]. The Z-score of a data
point shows how far it is from the mean of a distribution. If your
dataset has a normally distributed mean (C) and standard deviation
(𝜎), you can calculate the Z-score (Z) for a given data point (X)
using the following formula:

Z = X − μσ (1)

To identify anomalies, the Mahalanobis Distance (D) of a data point
X in a multivariate dataset with a mean vector v and a covari-
ance matrix can be estimated by setting a threshold on the absolute
Z-score.

D = (X − μ)t∑X
−1 (X − μ) (2)

1.3. Machine learning algorithms

1) Supervised learning:

Supervised anomaly detection train algorithms with labeled datasets
of normal and abnormal behavior [5]. Because of this, the model
can identify typical process features and trends. Supervised learning
systems like Random Forests and Support Vector Machines identify
manufacturing anomalies.

2) Unsupervised learning:

Unsupervised learning approaches work well in weakly described
anomalies or with scarcely labeled data. PCA, K-Means, and
hierarchical clustering are used in this lesson.

3) Deep leaning:

Deep learning, especially autoencoder neural networks, is increas-
ingly used to detect anomalies. Deviating patterns drive autoen-
coders’ learning process, which reconstructs input data. These
algorithms are excellent for spotting small manufacturing pro-
cess anomalies because they can find nuanced relationships in
multidimensional data.

4) Time series analysis:

Manufacturing uses time series data and advanced algorithms to
analyze patterns. Time series data can be evaluated for outliers using
exponential smoothing, seasonal decomposition, and moving aver-
ages. These methods reveal trends, cyclical patterns, and surprising
outliers in sequential production data [6].

5) Ensemble methods:

Combining anomaly detection systems improves ensemble perfor-
mance. Ensembles use numerous algorithms to improve detection
accuracy. Manufacturers employ ensemble methods like bagging
and boosting to improve anomaly detection.

6) Hybrid approaches:

Domain-specific knowledge, statistical methods, and machine
learning algorithms form a hybrid approach. These approaches use
complementary methods to discover more anomalies and adapt to
different production conditions.

Anomaly detection algorithms revolutionize production preci-
sion, productivity, and quality. Many technologies, from statistics
to advanced machine learning, allow manufacturers to proactively
recognize and fix unusual events. Advanced anomaly detection
algorithms will define manufacturing’s future by guaranteeing oper-
ational excellence and product quality is intimately linked as
technology improves [7].

1.4. Problem formulation

Automated systems and Industry 4.0 technology make pro-
duction efficiency and quality crucial in today’s industry. Anomaly
detection is essential to find abnormalities in normal operation
and act quickly to reduce defects, downtime, and efficiency. The
complexity and challenges of designing and deploying depend-
able industrial anomaly detection systems make them an intriguing
research topic. The main challenge is to adapt powerful anomaly
detection systems to complicated industrial processes. Multivari-
ate data complexity, real-time detection capabilities, and changing
production settings cause issues [8–10]. We intend to help create
flexible manufacturing anomaly detection technologies by solving
these difficulties.

Key aspects of the research problem:

1) Dynamic and evolving processes: Product deviations, equip-
ment wear, and maintenance activities affect manufacturing
process parameters, making them dynamic. The research focuses
on detecting abnormalities that change with these processes and
keeping detection models current and accurate.

2) Heterogeneous, multivariate data: Multivariate sensor and
source data are common in production. Working with varied
data sets and extracting anomaly detection features is difficult.
This research topic requires cutting-edge feature engineering,
dimensionality reduction, and data fusion strategies to capture
anomalies in complicated, multivariate datasets.
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3) Real-time detection criteria: In production, punctuality is cru-
cial. To repair problems quickly, anomalies must be detected in
real time. We want to create a way to rapidly and effectively
identifymanufacturing schedule abnormalities so we don’t make
faulty products.

4) Unsupervised learning in constrained data sets: Labeled
anomaly data is expensive and difficult to obtain thus, many
manufacturing processes lack it. To solve this research sub-
ject, we require effective unsupervised learning systems that can
use industrial processes’ massive unlabeled data with sparsely
labeled data.

5) Interpretable models for operator understanding: In manu-
facturing, humans and machines must cooperate. This work area
requires easy-to-understand anomaly detection models so oper-
ators can trust the system’s conclusions. This fosters teamwork
and simplifies human-in-the-loop procedures.

Addressing the research challenge has major manufacturing
implications. Solution execution can improve efficiency, opera-
tional costs, and product quality. Anomaly detection improvements
can enhance industrial automation and enable adaptable and robust
production systems.

2. Review Literature

According to Crespino et al. [11], traditional data process-
ing systems cannot handle rising data quantities. Automated data
collection and big data analytics have helped certain organiza-
tions boost earnings and customer satisfaction. Big Data is helping
aircraft manufacturers increase production and sales. Real-time
predictive analysis improves output and quality by identifying
industrial anomalies. The initial findings of the TOREADOR Euro-
pean project pilot aerospace action research work will be briefly
covered in this paper.

Nakazawa and Kulkarni [12] identify and separate wafer map
defect anomalies using deep convolutional encoder-decoder neural
networks. We generate synthetic wafer maps for eight defect pat-
terns for training, validation, and testing using amodel. Abnormality
detection relies on pattern recognition. Our synthetic wafer map
models trained on training basis partition can detect hidden defect
patterns in genuine wafer maps.

Scime et al. [13] propose a Convolutional Neural Network
architecture for layer-wise powder bed imaging data pixel-wise
localization (semantic segmentation). Real-time performance, data
transfer across additive manufacturing machines, and segmenta-
tion at the imaging sensor’s original resolution are the algorithm’s
main benefits. Six devices exhibit electron beam, laser, and binder
jetting algorithms. Finally, the method outperforms the authors’
previous methods in localization, accuracy, computing time, and
generalizability.

An anomaly detection system by Bozcan et al. [14] creates
a workload-based abnormality score. Robots work cleverly than
manufacturing experts. The framework addresses two fundamental
method concerns. First, it warns people when the robot’s behav-
ior deviates significantly. Second, the framework can guide human
professionals to record innovative state demonstrations, prevent-
ing redundant samples. This architecture outperforms parametric
models for smart manufacturing applications that use behavioral
cloning and a growing training dataset. Four real-world refrigerator
assembly line inspection and automobile plug datasets are provided.
We claim it is the largest real-world dataset for smart manufactur-
ing anomaly detection employing robotic arms. Our technique is

compared to others utilizing real-world datasets and quantitative
evaluation.

Lee et al. [15] propose time series anomaly detection utilizing
this dataset. The popular time series data LSTM model is com-
binedwith the anomaly detection SVDDmodel in the LSTM-SVDD
model. The model can learn the typical data range and identify
anything outside of it as odd. Non-learning test data distribution
associated with predictions. Another strong performance measure
is ROC (96.31). Automatic anomaly categorization may help small
manufacturers with minimal AI infrastructure.

Jeon et al. [16] improve anomaly detection for car camera
lens dirtiness. Regardless of pre-annotated locations, training and
testing trim and resize input photos and whiten soiling masks. In
the anomaly detection challenge, patch-wise detection approaches
outscored reconstructive and probabilistic algorithms by 1.6% and
0.7%, respectively.

For unsupervised picture anomaly detection and segmentation,
Wan et al. [17] offer pretrained feature mapping. The proposed
PFM translates the image from one pretrained feature space to
another, facilitating anomaly detection. We explore and recommend
multi-hierarchical bidirectional PFM to improve performance. The
recommended approach outperforms state-of-the-art algorithms on
the famous MVTec AD dataset with 97.5% anomaly detection
and 97.3% anomaly segmentation across all 15 categories. Over-
all and in terms of computation time, the proposed approach is
better. Comprehensive ablation experiments prove the framework’s
efficiency.

Subhan et al. [18] identify image-based structural anomalies in
industrial execution systems using an optimized VGG16 convolu-
tional neural network. The optimized VGG16 model classifies test
data as normal or exceptional using binary classification. Compared
to another classifier, the updated VGG16 has high anomaly detec-
tion accuracy and might improve system reliability. Experimental
results using publicly available image-based anomaly datasets show
the suggested technique detects management execution system
anomalies well.

In 2023, Kim [19] detected manufacturing irregularities using
deep generative model-based self-supervised representation learn-
ing. An imbalance in data for regular and defective products hurts
deep learning models. We employ the Gramian angular field to por-
tray time series data, StyleGAN to enrich images with anomalous
data, and boosting for supervised learning classifier selection to
solve this problem. We tested the classifier before and after data
augmentation. In wire arc additive manufacturing and CNC milling
machine tests, the suggested strategy enhanced anomaly detection
accuracy, recall, and F1-score over pre-augmentation. Bayesian tun-
ing of the boosting algorithm’s hyperparameters greatly enhanced
performance. The proposed method solves data imbalances and can
be applied to various industrial businesses.

The literature work by Trilles et al. [20] maps EC anomaly
detection trials withMCUs. In 2021–2023, 18 of 162 scientific paper
manuscripts from four databases were published. This article exten-
sively discusses TinyML and MCU anomaly detection. ML/DL
anomaly detection techniques, AIoT validation metrics, model esti-
mation data, ML’s software and hardware applications in EC, the
most common microcontrollers, power supplies, and communi-
cation technologies, and a TinyML anomaly detection algorithm
taxonomy will be examined in this survey. Finally, TinyML analysis
and its benefits and downsides are discussed.

Gunasegaram et al. [21] offer ML-assisted CLC to con-
trol AM irregularities and defects. Avoidance, mitigation, and
repair relate to defect causes, in-situ detectability, and control-
lability. First, we examine machine learning models for offline
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optimization and in-situ diagnostics, then we address in-situ pro-
cess control with ML. Researchers used inverse ML models or
reinforcement learning to make situation-aware control decisions
quickly. The defects addressed so far are easy to assess, and
in-situ management systems that apply ML prioritize mitigation
over prevention or repair. We also underline the multiple tech-
nologies needed for industrial autonomous in-situ control. Finally,
we examine important but under-discussed adaptive control dif-
ficulties. Our work initiates thorough talks on in-situ adaptive
control, filling a vacuum in AM literature.

2.1. Research gaps

Industrial process anomaly detection methods have improved
but information gaps still exist. We must uncover and fix these gaps
before building anomaly detection technologies that better address
production challenges.

1) Adaptability to Dynamic Processes: Many anomaly detection
methods cannot dynamically adjust because industrial processes
change. Changing products and deteriorating machinery are two
of many reasons manufacturing operations fluctuate.

2) Handling Heterogeneous, Multivariate Data: Current anomaly
detection systems can’t handle manufacturing’s complex, multi-
dimensional, and heterogeneous data. Manufacturing processes
have many variables, making it challenging for algorithms to
record and analyze them.

3) Real-time anomaly detection: Preventing production issues and
downtime demands immediate action. Some anomaly detection
systems may not work in real time, causing delays in detection
and response.

4) Unsupervised Learning in Data-Scarce Environments: Many
manufacturing processes lack labeled data for anomaly detection
model training, making supervised learning difficult.

5) The interpretation of anomaly detection models is still far from
complete, especially in sectors that require human contact.
Human operators may struggle to trust and understand black-box
models.

6) Benchmark Datasets and Evaluation Metrics: Lack of estab-
lished benchmark datasets and clear evaluation criteria for man-
ufacturing anomaly identification makes comparing methodolo-
gies and generalizing research outcomes difficult.

7) Security and Privacy Concerns: Since manufacturing systems
handle sensitive data, anomaly detection methods’ privacy and
security effects need further work.

By filling these research gaps, manufacturers may create
more effective, adaptive, and industry-specific anomaly detection
solutions. Quality control, operating efficiency, and production
reliability will improve.

3. Material and Methods

3.1. Dataset

Labeled datasets make anomaly detection difficult due to
human bias in judging outcomes. The Industrial Internet of Things
(IIOT) tracks huge manufacturing equipment every 10 millisec-
onds. Few manufacturers want to build anything truly distinctive.
Due to infrequent aberrations, the dataset is substantially skewed.
A top Indian wafer (semiconductor) manufacturer provided a use
case. The anonymized dataset has 1558 attributes that need topic
expertise.

This dataset includes Train.csv file having 1763 rows and
1559 columns. Test.csv consists of 756 rows and 1558 columns.
Attributes Feature_1 to Feature_1558 represents the various
attributes that were collected from the manufacturing machine
shown in Figure 1.

Class (0 or 1) represents Good/Anomalous class labels
for the products. Figure 2 shows the heat map of those features as
below.

3.2. Proposed XGBoost model

In today’s fast-paced manufacturing environment, where cus-
tomer satisfaction is key, product quality is essential. As more
industries adopt new technology, anomaly detection solutions are
needed. This concept is demonstrated by XGBoost, a powerful
machine learning algorithm. ExtremeGradient Boosting (XGBoost)
is a powerful and versatile machine learning technique. It solves
classification and regression problems well and was created by
Tianqi Chen. Decision trees and ensemble learning make XGBoost
a more accurate prediction model. Complex systems and many vari-
ables make manual anomaly detection in manufacturing processes
difficult. Traditional rule-based systems may struggle to keep up
with modern assembly lines’ dynamic nature. Thus, data-driven
technologies that immediately search mountains of data for patterns
and outliers are in demand [22].

XGBoost (eXtreme Gradient Boosting) is a popular machine
learning algorithm used for regression and classification tasks.
While the core of XGBoost involves boosting decision trees, the
mathematical equations governing its optimization process can be
complex. The primary objective of XGBoost is to minimize a loss
function by iteratively adding weak learners (typically decision
trees) to the model, as described in [23].

XGBoost minimizes a loss function and regularization term-
sum objective function. The XGBoost objective function is:

Objectives = ∑n

i=1 L (yi, yk) + K∑
k=1 𝛽 (fk) (3)

Where:
L: Loss function
Yi: Predicted output
K: Number of trees𝛽: Regularization term

These equations provide a high-level overview of the math-
ematical components involved in XGBoost. The optimization
process, including the handling of missing values, tree construction,
and updates to the weights, involves additional details. The actual
implementation of XGBoost is highly optimized for efficiency and
speed. XGBoost is primarily used for supervised learning tasks such
as regression and classification, and it is not inherently designed for
anomaly detection [24–27]. However, the authors adapt XGBoost
for anomaly detection in manufacturing by leveraging it within
an ensemble learning framework. Here’s a general outline of the
approach, along with some key equations:

1) Define a target variable for anomaly detection:

The authors usually use y to signify the label or outcome.
An anomaly detection binary target variable indicates whether a
sample is normal (0) or abnormal (1).
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Figure 1
Feature distribution

Figure 2
Heat map for features

2) Modify the objective function:

The authors adapt the XGBoost objective function to handle the
anomaly detection task. They use a binary cross-entropy loss
function for the classification task:

L(y, ŷ) = −(ylog(ŷ) + (1 − y)log(1 − ŷ)) (4)

y is the predicted probability of being anomalous.

3) Threshold for anomaly classification:

The authors set a threshold for anomaly classification after training
the XGBoost model. This threshold can be changed to balance false
positives and negatives.

4) Prediction for anomaly detection:

Each sample’s anomaly probability is calculated after training. Sam-
ples are classified by whether their estimated probability exceeds
the threshold.

5) Data preprocessing and feature engineering:

The authors preprocess manufacturing data and create anomaly-
detecting features. This may contain statistical metrics, time series
features, or domain-specific indicators.

Unsupervised learning methods like isolation forests, one-
class SVM, and autoencoders discover anomalies. The approach
should be tailored to your manufacturing data and the abnormalities
you’re aiming to detect. The formulae below are adapted for binary
classification using XGBoost but may need tweaking for your use
case [25].

XGBoost effectively ranks dataset characteristics by impor-
tance. Small changes in several factors might cause produc-
tion issues, making this expertise essential. XGBoost focuses
on production-impacting features. Rare manufacturing anomalies
distort datasets. Boosted and weighted sampling allow XGBoost
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to find and classify outliers without favoring the majority class.
Scalable XGBoost suits data-intensive industries. XGBoost sim-
plifies huge equipment performance, product quality, and environ-
mental datasets. To prevent manufacturing errors and downtime,
anomalies must be discovered quickly. XGBoost’s speed and effi-
ciency allow it to analyze and warn users of problems in real time
so they can fix them.

# Import necessary libraries
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
# Load and preprocess your manufacturing data
# Ensure your data includes a label indicating normal (0) or
anomaly (1)

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split
(features, labels, test_size=0.2, random_state=42)

# Define XGBoost parameters
params = {

‘objective’: ‘binary:logistic’,
‘eval_metric’: ‘logloss’,
‘eta’: 0.1,
‘max_depth’: 3,
‘subsample’: 0.8,
‘colsample_bytree’: 0.8,
‘seed’: 42

}
# Convert data to DMatrix format
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
# Train the XGBoost model
num_rounds = 100
model = xgb.train(params, dtrain, num_rounds)
# Make predictions on the test set
y_pred_proba = model.predict(dtest)
# Set a threshold for anomaly detection
threshold = 0.5
y_pred = [1 if proba > threshold else 0 for proba in
y_pred_proba]

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
# Print evaluation metrics
print(f”Accuracy: {accuracy}”)
print(“Confusion Matrix”:)
print(conf_matrix)

Manufacturing anomaly detection is hard, but XGBoost
works. The algorithm is opaque, making findings difficult to
interpret, and therefore, precision and transparency must be bal-
anced. Tuning hyperparameters and selecting features requires
domain understanding and industrial context. XGBoost in pro-
duction may solve anomaly identification concerns. Production
efficiency and product quality depend on its scalability, feature
importance analysis, and ability to manage complicated, imbal-
anced information [28]. XGBoost is a valuable partner in the
increasing field of data-driven solutions for enhanced production
processes and efficiency [29–32].

# Step 1: Initialize Manufacturing dataset features
# Step 2: Load and Preprocess Data
# Step 3: Split Data into Training and Testing Sets
# Step 4: Initialize Hyperparameters using Whale Optimization
Algorithm

# Step 5: Define Objective Function for WOA (Optimization)
# Step 5.1: Use XGBoost with current hyperparameters to

train the model
# Step 5.2: Use the trained model to make predictions on the

test set
# Step 5.3: Evaluate the performance of the model (e.g.,

anomaly detection metrics)
# Step 5.4: Return the negative of the performance metric

(as WOA is a minimization algorithm)
# Step 6: Run Whale Optimization Algorithm to Optimize
Hyperparameters

# Step 7: Train Final XGBoost Model with Optimized
Hyperparameters

# Step 8: Detect Anomalies in Manufacturing
# Step 9: Post-process Anomaly Predictions (if needed)
# Step 10: Display or Act on Detected Anomalies

This work uses sensor information from a factory that tracks
several operational parameters. We obtained data from industrial
partners or public repositories. The dataset includes vibration, tem-
perature, and pressure. Data was preprocessed before analysis to
eliminate outliers, missing values, noise, and inconsistencies. Impu-
tation was employed for missing data, while normalization or
standardization was applied for feature comparability. Principal
Component Analysis (PCA) and correlation analysis were used
to determine the most important anomaly detection characteristics
and reduce dimensionality [33]. The recommended solution uses
XGBoost and Whale Optimization Algorithm (WOA) to improve
anomaly identification accuracy. The gradient boosting framework
XGBoost was chosen for its ability to capture complex patterns and
manage vast amounts of data. However, you must adjust XGBoost’s
hyperparameters to maximize its performance. Learning rate, max-
imum depth, and estimators are examples. This was done via WOA
hyperparameter optimization. WOA mimics the bubble-net feeding
method—based on humpback whale social behavior—to find the
global optimum. WOA enabled dynamic parameter change, which
improved detection accuracy and reduced false positives [34].

A popular 80/20 split divides the preprocessed dataset into
training and validation sets during training. We adjusted the
XGBoost model using WOA after training with default hyperpa-
rameters. Cross-validation during training checked for overfitting
to ensure the model could be used in varied contexts. Evaluation
metrics included accuracy, recall, F1-score, and AUC-ROC. These
criteria were chosen to assess the model’s outlier detection accu-
racy with few false positives. The WOA iteratively optimized the
model until its performance plateaued after identifying the optimal
hyperparameters.

The Python-built system was customized with XGBoost and
WOA using custom scripts. The trials were run on a multi-core
CPU and GPU workstation to speed up computing. A random
seed was used for data splitting and model initialization to ensure
reproducibility. We also supplied detailed system setup documen-
tation, including hardware, software, and library requirements, so
other researchers may replicate the study. The model was tested
on a secret test set to guarantee it could resist and reliably detect
irregularities in real-world manufacturing. The proposed strategy
surpassed baseline models in detection accuracy and efficiency,
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including standard XGBoost without WOA and other machine
learning algorithms [35].

4. Result and Analysis

In this work, the authors executed different traditional machine
learning models and the proposed model on a prescribed dataset.
Table 1 demonstrate various experimental settings for executing
these models on the dataset, as shown below:

Table 1
Experimental setting

S. No
Experimental
Settings Values/Configurations

1 Dataset Real-world manufacturing dataset
2 Preprocessing Standard preprocessing techniques

applied
3 Train-Test Split

Ratio
80% training, 20% testing

4 Hardware Intel Core i7, 16GB RAM
5 Software/Frame-

works
XGBoost, Python, Whale
Optimization Library

Table 2 shows the list of hyperparameters associated with
XGBoost model. It depicts the default value of those hyperparame-
ters and optimized values achieved with WOA.

These values are assessed in light of the manufacturing dataset
and anomaly detection needs. The Whale Optimization Algorithm
finds the ideal hyperparameter values to minimize the anomaly
detection objective function, and these values are indicative of that
set. The appropriate settings depend on your data and optimiza-
tion procedure. The performance of these traditional and proposed
models has been measured with the help of the following metrics:

1) Accuracy (ACC)
2) Precision (P)
3) Recall
4) F1 Score
5) Specificity
6) False Positive Rate (FPR)
7) Area Under the ROC Curve (AUC-ROC)
8) Area Under the Precision-Recall Curve (AUC-PR)
9) Confusion Matrix

Table 2
Hyper-parameter tuning

S. No. Hyperparameter
XGBoost
Default Value

Optimized Value
(WOA)

1 n_estimators 100 150
2 learning_rate 0.3 0.2
3 max_depth 3 5
4 min_child_weight 1 3
5 subsample 1.0 0.8
6 colsample_bytree 1.0 0.7
7 gamma 0 0.1
8 reg_alpha 0.0 0.01
9 reg_lambda 1.0 0.5
10 scale_pos_weight 1.0 1.2

These metrics provide a comprehensive view of the model’s
performance on classification tasks. Depending on the specific
requirements and characteristics of the problem, different met-
rics may be prioritized. In anomaly detection scenarios, precision
and recall are often crucial metrics for understanding the trade-off
between correctly identifying anomalies and avoiding false alarms.
Table 3 depicts the performance gained by various machine learning
models as below.

Table 3
Performance metric

Class precision recall f1-score support
Optimized 0.0 1.00 0.93 0.96 328
XGBoost 1.0 0.95 1.00 0.97 320
XGBoost 0.0 0.98 0.91 0.95 328

1.0 0.94 0.97 0.94 320
GaussianNB 0.0 0.79 0.77 0.78 328

1.0 0.77 0.78 0.78 320
KNeighbors 0.0 0.82 0.81 0.81 328

1.0 0.81 0.82 0.81 320
SVM 0.0 0.80 0.86 0.83 328

1.0 0.84 0.78 0.81 320
0.0 0.79 0.75 0.77 328Logistic Regression
1.0 0.76 0.79 0.78 320

Figure 3 demonstrates the performance of proposed model.

Optimized XGBoost gained 1.00 precision value, 0.9 recall
value, and 0.96 f1-score for class 0.0 and gained 0.95 precision
value, 1.00 recall value, and 0.97 f1-score for class 1.0. The authors
evaluated the performance of the traditional machine learningmodel
in Figure 4 as shown below:

XGBoost’s integration with the WOA for manufactur-
ing anomaly identification adds new capabilities to industrial
anomaly detection methods. The WOA and the popular gradi-
ent boosting algorithm XGBoost are combined in this work to
create a hybrid solution. This hybridization uses the WOA’s
exploration-exploitation balance for hyperparameter optimization
with XGBoost’s efficient gradient boosting. WOA hyperparameter
optimization is new. The program uses a novel hyperparame-
ter space exploration method inspired by humpback whale social
behavior. This bio-inspired strategy can optimize complex machine
learning models for industrial anomaly detection.

The proposed framework’s industrial focus is unique. In
complex data-driven production processes, accurate abnormality
detection is essential for product quality and operational effi-
ciency. The work examines industrial anomaly detection challenges
and requirements. The research focuses on the optimal XGBoost
model’s interpretability. This is crucial in business, as domain
experts and decision-makers must understand anomaly predic-
tions. The research is optimizing the anomaly detection system for
interpretability to make it more reliable and applicable. Applying
the proposed methodology to real-world manufacturing datasets
makes the research useful. Real-world industrial data testing helps
explain how the integrated technique handles production process
complexity.

The optimized model examines training and inference com-
putational resources. By addressing scalability for bigger manufac-
turing datasets, the suggested framework is guaranteed to work in
various industrial environments. The optimized model emphasizes
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Figure 3
Performance gained by proposed model

transparency. This research aims to illuminate anomaly identifica-
tion’s key components so domain experts may trust the model’s
decision-making process. Its tailored approach for manufacturing
anomaly detection using state-of-the-art machine learning methods,
biological optimization algorithms, and domain-specific aspects
makes it unique. Manufacturing process anomalies provide difficul-
ties that the proposed framework addresses. It enhances industrial
data analytics’ rapidly evolving field.

4.1. Discussion

Using XGBoost and the WOA to find production anomalies
raises some intriguing questions. The iterative WOA optimization
process improves XGBoost model predictions. Since the method
efficiently searches hyperparameter space, the model may adapt
to manufacturing data. XGBoost, which can understand intricate
patterns, and WOA, which can explore the world, create a model
that can detect minute anomalies and deviations from normal
operation. The interpretability of anomaly detection systems in

production is crucial. Optimized XGBoost model interpretability
helps domain experts understand anomaly forecasts. Explainable
AI is needed to validate outliers, earn stakeholder trust, and
comprehend decision-making.

Anomaly patterns vary widely due to production procedures.
A key strength of the integrated framework is its adaptability to
different manufacturing scenarios. Adaptability boosts the model’s
resilience. Due to its ability to monitor and re-optimize manufactur-
ing data patterns, it is ideal for dynamic production environments.
Comparative assessments show the suggested anomaly detection
system outperforms standardmethods. The enhanced XGBoost with
WOA, which outperforms standard approaches, could revolutionize
manufacturing anomaly detection. Precision, recall, and F1-score
can show how successfully the model recognizes outliers with few
false positives. Scalable anomaly detection methods are needed to
handle manufacturing datasets’ growing complexity and scale. The
integrated framework’s computing efficiency and scalability must
be discussed before implementation. Distributed computing and
parallelization can help manage large production data.
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Figure 4
Performance gained by traditional machine learning model

5. Conclusion and Future Scope

XGBoost and theWOAmay detect production process anoma-
lies. We found that this integrated framework boosts manufacturing
system anomaly detection accuracy and operating efficiency. Our
experiments on real-world manufacturing datasets show that the
WOA-fine-tuned XGBoost model outperforms standard anomaly
detection methods in precision and recall. The WOA’s iterative
optimization approach helps the XGBoost model learn from pro-
duction data. This improves prediction. Optimized XGBoost model
interpretability helps understand anomaly detection patterns and
characteristics. This openness makes the anomaly detection sys-
tem more reliable and enables domain professionals to understand
and interpret the model’s recommendations to make educated
production decisions.

5.1. Practical implications

The optimized XGBoost model with WOA may discover
manufacturing abnormalities to improve production efficiency and
reliability. Anomaly detection in manufacturing prevents costly
downtime, waste, and product quality issues by finding faults
early. XGBoost, a robust and scalable machine learning method,
and WOA, a natural metaheuristic optimization strategy, allow the
model to fine-tune hyperparameters. Even in complicated and noisy
industrial datasets, anomaly detection is more accurate and resilient.
The optimized model can detect tiny patterns with lower computa-
tional costs, which standard methods may miss, making it ideal for
real-time applications.

Another benefit of this optimized approach is predictive main-
tenance. By recognizing anomalies early, repairs and maintenance
can be done quickly, reducing equipment breakdowns. Thus, indus-
trial systems becomemore efficient and productive. Due to its ability
to generalize across manufacturing processes, the model can be used
in automotive and electronics industries to create smarter and more
robust manufacturing ecosystems. By reducing false positives and

negatives, the optimizedmodel improves decision-making, resource
allocation, and operational expenses.

More responses are available if the proposed frameworkworks.
Future work could focus on ensemble approaches, domain-specific
knowledge, and optimization algorithm integration. Industry stake-
holders can provide useful information and make framework
customization for certain manufacturing subdomains easier. This
section highlights the enhanced XGBoost with WOA’s promising
effects in detecting manufacturing defects. This innovative anomaly
detection solution meets the changing needs of modern production
settings and comes at a timewhen firms are using advanced analytics
for process optimization and quality control.

The recommended approach has major implications for pro-
duction since fast anomaly discovery and mitigation preserve
product quality, reduce downtime, and optimize resource use.
Advanced machine learning approaches like XGBoost and the
WOA can help manufacturers improve production, identify issues,
and streamline operations for increased efficiency and profitability.
Future work could examine the integrated framework’s scalability
and robustness across industrial contexts and datasets. Ensemble
learning and hybrid optimization methods may improve manufac-
turing anomaly detection systems. The upgraded XGBoost with the
WOA is a major advance in manufacturing anomaly identification.
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