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Abstract: Image moments are an important tool used for image reconstruction. An image can be represented in terms of image moments,
which is known as image reconstruction from its moments. To construct an image from the moments, a question often arises that how many
moments are required for the reconstruction of image. Theoretically, many image moments may be required for accurately reconstructing an
image. However, since image moment construction can be computationally challenging, often in practice only a finite number of moments
are used for the image reconstruction. The difference in reconstructed and original image for many numbers of images can lead to a satisfying
answer. However, accurate reconstruction may not often be possible, and we are often relying on other approaches to find similarity between
the original image and reconstructed image. We used a similarity based on a topological data analysis tool known as the persistence diagram,
determining the bottleneck distance between the original and the reconstructed image as the measure of similarity. Our investigation was
conducted on the common images utilized in image processing tasks. The findings indicate that there is no direct correlation between the
number of moments and the quality of image reconstruction. It is necessary to choose an appropriate number of moments, which may be
very small, instead of calculating a high number of image moments.
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1. Introduction

Sharing information is simpler than it has ever been in the
modern world, yet this also makes it easier for people to spread
false information. Sharing multimedia, which may include con-
cealed watermarks, is a frequent practice; however, this practice
may damage the message that was intended to be sent [1]. The
use of robust watermarking techniques is crucial for the protection
of copyright and the validation of sources since photos are trans-
ferred across channels that may or may not be secure. Even though
there are a lot of strategies, only a few of them are resistant to rota-
tion. Although numerous approaches, including DC coefficients and
picture moments, have been investigated, there are still limits. Tak-
ing this into consideration, a unique computational approach for
computing Polar Harmonic Transform (PHT) moments, which is
presented in reference [2], offers promise for enhancing the accu-
racy of watermarking, particularly for aerial photos. Through the
utilization of polar complex exponential transform (PCET) and PST
[3, 4], these strategies improve the robustness of the system against
rotating attacks while simultaneously preserving its reversibility.
An examination of the proposed method in comparison to other
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approaches reveals that it possesses greater rotational invariance,
hence showing the effectiveness of the proposed method.

It is well known that orthogonal circular moments are invari-
ant in translation, rotation, and scaling. This makes the moments for
image reconstruction an important tool, since many image descrip-
tors are not rotational and scaling invariant. Image moments are
essential for reconstructing images because they can capture impor-
tant geometric and intensity features, reduce noise and artifacts,
provide efficient data representation, improve algorithmic stability
and convergence, allow real-time processing, and work well with
machine learning methods. Due to their extensive and strong charac-
teristics, they are essential for achieving image reconstructions that
are of high quality and efficiency. These moments have a wide range
of uses, including the detection of counterfeiting and the imaging
of biological conditions. To compute these moments, it is neces-
sary to integrate basis functions with image functions over a unit
disk. This process sometimes necessitates mapping from rectangular
to polar coordinates. Rotational invariance is best achieved by the
utilization of techniques such as inscribed circle mapping. Object
recognition and medical imaging are only two of the many industries
that could benefit greatly from the application of image moments.
They are defined as double integrals of a two-dimensional func-
tion with base polynomial functions, and they have applications in
a variety of fields, including picture registration, object detection,
and more. These moments may be geometric or orthogonal, with the
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latter providing robust computation in discrete domains. Both these
types of moments are possible. Over particular domains, such as
rectangles or unit disks, it is possible to define many types of orthog-
onal moments, such as the Legendre and Chebyshev moments.

Gridding methods are a significant factor in determining the
accuracy of moment computation, with polar grids typically produc-
ing more accurate results. On the other hand, new research indicates
that rectangular grids, when combined with Gaussian numerical
integration, have the potential to beat polar grids in applications such
as watermarking. While using conventional approaches, ambiguity
occurs while integrating pixels that are located on the boundary of
the unit circle, which results in approximations being developed.
To circumvent this limitation, the strategy that has been proposed
plans to make use of the complete unit disk for the computa-
tion of moments by employing a method that combines analytical
and numerical approaches. The accuracy of moment computation
is improved by this approach, which is beneficial to a variety of
applications that deal with image processing. This study involved
analyzing similarity between an image and a reconstructed image
using a tool called bottleneck distance, which is derived from
topological data analysis. The bottleneck distance, when used in
conjunction with the persistence diagram, offers a precise measure
of similarity between an image and its reconstructed counterpart.
This metric, derived from the image’s topology, additionally ensures
that the image moments maintain the integrity of the image’s rota-
tion and scaling. Hence, the integration of topology and image
moments will introduce a novel aspect to image processing and
reconstruction.

2. Literature Review

This study presents a new two-stage robust reversible water-
marking system. It uses the PHT [3, 4]. The purpose of this scheme
is to achieve high robustness and capacity while simultaneously
retaining invisibility and reversibility. Here, PHT moments are used
for robust watermarking due to their resilience to attacks, computa-
tional efficiency, and numerical stability, especially when compared
to other transformations like Fourier Mellin and Zernike moments.
Watermarking uses PHT moments because of their precision and
potential resistance to attacks [5]. There is a correlation between
the total absolute values of the PHT moment’s order, repetition, and
robustness, indicating that these values are suitable for watermark
embedding [6]. The PHT moments are the image’s global proper-
ties, and they serve as a foundation for the development of robust
watermark embedding schemes [7, 8]. The suggested transforms are
better than the current PHTs and fractional orthogonal transforms
in terms of accuracy, numerical stability, digital image reconstruc-
tion, RST invariances, noise resistance, and how quickly they can be
used [9]. The research presents fractional-order PHTs for grayscale
images [10], as well as fractional-order quaternion PHTs for color
images [11]. We use both transforms to analyze grayscale photos.
A computational framework based on kernels achieves an effective
computation of the transforms in polar coordinates [12].

The work presented in Ali et al. [13] and Pal et al. [14]
explains a method for categorizing textures. The approach makes
use of picture visibility graphs and topological data analysis. We
evaluated the method on two different image texture datasets and
found encouraging results. This study suggests that there is potential
for successfully integrating topological features with graph-based
approaches for texture classification. When applied to the Brodatz
dataset, the gradient boosting model managed to obtain the maxi-
mum level of accuracy. The KTH-TIPS dataset was the one in which
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the support vector machine model demonstrated the best level of
accuracy.

Algebraic methods (AM) and PHT are two examples of image
reconstruction techniques that play important roles in improving
the quality and robustness of images. AM provides efficient field
function determination by unique grid discretization algorithms, as
explained in Qi et al. [15] and Qu [16]. This results in a reduction in
the amount of computing burden and memory needed. Conversely,
PHT, as emphasized in Yang and Deng [17], focuses on developing
image-invariant descriptors for watermarking applications, thereby
enhancing its resilience against attacks. Furthermore, the use of
wavelet transforms and deep learning in laser polarization picture
reconstruction, as demonstrated in Zhang et al. [18], demonstrates
the development of innovative techniques for denoising, feature
extraction, and edge detection, which ultimately results in enhanced
visual effects. These varied approaches illustrate the value of cre-
ative methods in image processing, which can respond to a variety
of requirements, including speed, accuracy, resilience, and visual
quality.

A process that includes transforming images into polar repre-
sentations to improve orientation invariance is known as image polar
transformation [19]. This transformation method, which includes
orientation-invariant histograms of oriented gradients [20], is effec-
tive in improving visual tasks such as facial expression recognition.
However, methods for reconstructing images, like those used in
snapshot-channeled imaging spectroscopy, use neural networks to
get around the problems that come up with Fourier-based reconstruc-
tions. This ensures that the reconstruction’s spectral and polarization
accuracy are high [20]. Furthermore, they design polarization
super-resolution approaches to enhance the detailed polarization
information in images. Deep convolutional neural networks can
efficiently balance intensity and polarization restoration for high-
resolution polarized image reconstruction [21]. These techniques,
when taken as a whole, contribute to the technological advancement
of image processing and analysis in a variety of domains, ranging
from remote sensing to microscopic super-resolution imaging.

The suggested orientation-invariant image representation,
which uses polar models for both handcrafted features and deep
learning features, is not only on par with the best methods but
also keeps a compact representation on a set of difficult bench-
mark image datasets [22]. A vision transformer-based representation
learning framework for PoISAR image classification is proposed
[23]. This framework makes use of self-attention as an alterna-
tive to convolution, which shifts the focus from the information in
local neighborhoods to the long-range interactions between each
pixel. An adaptive image reconstruction approach based on variable
exponential function regularization is proposed [24]. This method
focuses on the diversity of the PSF and makes use of variable-
exponent regularization to improve the kernel’s flexibility. The
purpose of this paper is to propose an alternative reconstruction
algorithm that is based on the image recombination transform [25].
This algorithm offers an alternative solution to address this prob-
lem, even in the weak modulation depth of structured illumination
microscopy. This solution is ideal for long-term, in vivo, super-
resolution imaging of live cells and tissues.

Both theoretically and experimentally, PHFMs outperform the
moments in reconstructing images and recognizing rotationally
invariant objects [26]. Consideration of noise and other attacks con-
firms this. We generate a collection of rotation-invariant features
by deriving a collection of two-dimensional transforms from a col-
lection of orthogonal projection bases. We refer to these features
as PHTs, which incorporate the orthogonality and invariance bene-
fits of Zernike and pseudo-Zernike moments, without the inherent
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limitations of these moments [27, 28]. If you want to get a better-
reconstructed picture of polarimetric imaging in bad lighting or with
some things blocked out, the authors of this paper suggest using a
denoising convolutional neural network model along with 3D inte-
gral imaging. We developed this model to enhance the reliability of
the reconstructed image [29].

When compared to methods that are based on Cartesian grids,
the research presents a uniformly sampled polar or cylindrical grid
approach for picture reconstruction. This approach improves com-
puting performance and reduces the amount of memory that is
required [30]. The purpose of this research is to offer a method for
reconstructing laser polarization images that makes use of wavelet
transformation and deep learning. This method enhances target
identification and image quality through feature extraction and edge
recognition. When compared to all the rotation-invariant feature
extraction methods that are currently available, PHTs are the most
efficient. This article introduces several innovative computation
methodologies that expedite the computation of these transforms
[31].

Using the PCET, the researchers discovered that increasing the
number of moments used for image reconstruction does not nec-
essarily result in an improvement in the quality of the image that
is brought back to life through the application of image moments
approaches [32]. The PHTs are the most efficient rotation-invariant
feature extraction approach currently available. This article dis-
cusses several innovative computation methodologies for quickly
computing these transforms [33]. This work presents a technique
for phase retrieval. We use the algorithm when we encounter two
related sets of Fourier-transform magnitude data [34]. We consider
these sets of data to originate from a single object, observed in
two different polarizations through a distortion-causing medium.
The bottleneck distance is used to conduct an analysis of the qual-
ity of the reconstructed images that were created utilizing the
image moments. In terms of topological analysis, the bottle dis-
tance increases as the number of moments increases; however, after
achieving a minimum, there was no further reduction detected. This
indicates that to achieve quality in image reconstruction, the opti-
mal number of moments is required, rather than a high number of
moments. Therefore, in practical situations only a finite number of
orders and repetitions are used for finding the polar function back
from the image moments.

3. Research Methodology

The PHT is highly useful because of its ability to offer a
resilient and concise depiction of image characteristics, specifically
for jobs involving pattern identification and image analysis. The
PHT is a method of describing images using the polar coordinate
system. This allows PHT to capture properties that are invariant
to rotation and scale, making it particularly useful for applications
where objects may appear in various orientations or sizes. The har-
monic basis functions used in PHT ensure superior discriminatory
capability and noise resilience. Moreover, the capability of PHT
to decrease dimensionality while maintaining crucial information
enhances its effectiveness in many computer vision applications.

3.1. PCET

PCET is a member of a family known as PHT. PCET C,, of
order u in the set Z and repetition v in the set Z, where Z is the set of

integers, of a function f (r, ¢) in polar domain is a complex function
defined over the unit disk |z| < 1as,

2 1
Co=3 [ [ FwGoew a0
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The functions Hy, (r, ¢) form an orthogonal system.
The functions g (1, $) can be recovered from the moments by
using the following relation.

g d) =2 ¥ CuHu(r ) &)

The above equation represents a theoretical perspective. In practice,
inverting using large number of moments is not useful, as their com-
putation can be time and resource consuming. Therefore, in practical
situations only a finite number of orders and repetitions are used for
finding the polar function back from the image moments. Following
equation represents this discussion by limiting the limits of u and v.

maxu maxv

grnd)= Y Y CuHy@d) 3)

u=minu v=minv

3.2. PHT approximation

Let I be a square image of size N X N. We normalize the posi-
tion of the pixels by taking center of the image as origin and the
column from left to right is assigned with the x-coordinate between
—1 and 1. Similarly, the rows from top to bottom are assigned with
y-coordinates between —1 and 1. The x-coordinate of the center of
each pixel is computed by adding and dividing the x-coordinated
of the left and right borders of the pixels by 2. Similarly, the y-
coordinate of the center of each pixel is computed by adding and
dividing the y-coordinate of the top and bottom borders of the pix-
els by 2. The moments are then approximated by multiplying each
pixel intensity with Hy, (r, ¢) and the area of each pixel.

Note here that (r, ¢) are transformed from the Cartesian coor-
dinates of the image pixel. Further, note that the computations are
limited to those pixels which have r < 1.

In a similar way, by computing H, (r, ¢) for a given pixel with
position transformed in polar domain, corresponding intensities val-
ues can be reconstructed by multiplying the H,, (r, $) with image
moments and summing them. The entire process of computing
image moments and image reconstruction can be computationally
challenging. We used a first-order approximation to compute the
image moments. This computation is not computationally demand-
ing and has demonstrated remarkable outcomes in the field of image
processing.

3.3. Topological data analysis

The topological data analysis presents an interesting analysis
of data. It helps with measuring occurrences and disappearances of
features from the images. Here, the image dataset is first transformed
into an abstract object called a simplicial complex. Simplicial com-
plexes are not ordinary graphs. In a typical graph, a node can be
connected to several or no nodes, meaning we only find nodes
(0-simplices) and edges (1-simplices). In contrast, simplicial com-
plexes also have higher-dimensional simplices. Using k +1 nodes,
we can create a k-simplex. Various criteria give rise to difference
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simplicial complexes. By changing the criteria smoothly, we see a
consistent variation in the simplicial complexes. This consistency
variation provides appearance and disappearance of features with
variation in criteria. The appearance and disappearance time in
terms of criteria are independent of each other and when they are
represented by showing as coordinates in two-dimensional orthog-
onal system. The resulting diagram is persistence diagram.

Here, we computed persistence diagrams of the original images
and reconstructed images. The persistence diagrams are computed
from one-dimensional and second-dimensional complexes. The
change in the topological properties is then quantified in terms of
change in the persistence diagram. The difference in persistence
diagrams can be summarized in terms of bottleneck distance. To
compute this distance, the points are mapped one to one from one
persistence diagram to another persistence diagram in such a way
that sum of distances is minimum, mathematically,

d= _inf max|p;—p2ll o “4)

all mapping

To compute the distances, an infinite norm was used. In the
simplicial complexes in which the image forms, a point on the
persistence diagram indicates the emergence and extinction of a
specific feature. The bottleneck distance computes a metric using
points from the persistence diagram. We pair the points on the two-
persistence diagram so that even a small alteration in the image
results in the two-persistence diagrams appearing the same.

In persistent homology, bottleneck distances measure how sim-
ilar two-persistence diagrams are by highlighting the most important
differences between traits that are similar. At various points in time,
the behavior of bottleneck distances corresponds to changes in the
topological characteristics of the underlying data. Significant topo-
logical events, such as the formation or elimination of large-scale
structures, can cause a dramatic increase in the bottleneck distance,
suggesting significant changes. In contrast, when there is stability,
the bottleneck distance does not change significantly, indicating that
topological characteristics stay consistent throughout time. Because
they can find changes in the topology, bottleneck distances are use-
ful for looking at how complex data structures change over time and
how long they last.

3.4. Dataset and algorithms

For the applications of topological data analysis, we selected
standard images used in image processing task as shown in
Figure 1. The following algorithm is used to analysis the vari-
ation in image reconstruction. The flowchart of the algorithm is
shown in Figure 2. The main components of the algorithm are listed
below:

1) Find image moments for an image.
2) Use image reconstruction to approximate the original image.

Figure 1
Test images used for the analysis of topological changes in image reconstruction
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Figure 2
Flowchart of the algorithm

Input Image

Compute image moments

!

Reconstruction of image

!

Compute persistence diagram

Compute persistence diagram

Find bottleneck distance

3) Find persistence diagrams of first and second order for the orig-
inal image.

4) Find persistence diagrams of first and second order for the
reconstructed image.

5) Find the bottleneck distances of both the orders separately.
6) Form a distribution of the bottleneck distances.

4. Experimental and Result Analysis

In Figure 3, we show the reconstructed images from the stan-
dard images shown in Figure 1. The quality of reconstructed image
depends on the number of moments. The maximum number of u and
v varied between 5 and 100 at an interval of 5. The visual analy-
sis shows that an ideal number of u and v must be around 30, when
zeroth order approximation was used for integration involved in the
image reconstruction. Our analysis includes the study of topological
changes in the image after reconstruction as compared to original
image. Earlier in this article we show how to find the difference
between two images topologically by analyzing the bottleneck dis-
tance between the persistence diagrams. The manuscript also studies
the variation on topological changes in terms of bottleneck distances
with variations in number of moments used for the image recon-
struction. In Figure 4, the variation in bottleneck distances for the
persistence diagram of first-dimensional homology, with respect to
variation in number of moments, is shown. The number of moments
taken is between 5 and 100 with an interval of 5. The image shows
that the bottleneck distance decreases when we increase the num-
ber of moments. However, after finding some optimal moments, the
bottleneck distance starts increasing. Figure 3

Similarly, in Figure 5, the variation in bottleneck distances
for the persistence diagram of second-dimensional homology, with
respect to variation in number of moments, is shown. The num-
ber of moments taken is between 5 and 100 with an interval of 5.
The image shows that the bottleneck distance decreases when we

Figure 3
Reconstructed images from the test images used for the analysis of topological changes in image reconstruction
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Figure 4
Bottleneck distance with respect to moments of the difference
between persistence diagram of 12 test images created from the
persistence diagram of first-dimensional homology
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increase the number of moments. However, after finding some opti-
mal moments, the bottleneck distance starts increasing. However,
the increase in bottleneck distance is not as prominent as in first-
dimensional homology.

In Table 1, bottleneck distance with respect to moments of
the difference between persistence diagram of 12 test images cre-
ated from the persistence diagram of first and second-dimensional
homology is shown. The bottleneck distance is averaged over the
12 images to show the conclusion. Table 1 also shows that bot-
tleneck distances are showing a decreasing and then increasing
pattern with increase in number of moments for the construction of
images. However, the pattern is more apparent in one-dimensional
homology. In second-dimensional homology, the bottleneck
distance becomes more like constant after increasing some
moments.

Table 1
Bottleneck distance with respect to moments of the
difference between persistence diagram of 12 test
images created from the persistence diagram of first-
and second-dimensional homology. The bottleneck
distance is averaged over the 12 images to show the

conclusion
Moments 1t dimensional 2" dimensional
10 49.42 43.42
20 43.25 42.58
30 42.75 42.13
40 46.17 44.67
50 49.04 44.46
60 53.45 4421
70 52.92 45.63
80 55.42 43.75
90 57.63 46.17
100 59.5 45.58
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Figure 5
Bottleneck distance with respect to moments of the difference
between persistence diagram of 12 test images created from the
persistence diagram of first-dimensional homology
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5. Conclusion

This article analyzes the topological changes that occur dur-
ing image reconstruction using the image moments. We compute
the topological changes by comparing the bottleneck distances
between the original and reconstructed persistence diagrams. The
persistence diagrams are computed from one-dimensional and
second-dimensional complexes. The change in the topological prop-
erties is then quantified in terms of change in the persistence
diagram. The difference in persistence diagrams can be summa-
rized in terms of bottleneck distance. We reconstructed the images
from standard test images used in image processing tasks. The
image moments are computed using the PCET. This transforma-
tion is invertible with high accuracy provided enough number of
moments are taken for the inversion. The transformations are not
computationally intensive; therefore, the method can be applied
for large-scale and real-time applications. However, in practice
inverting using large number of moments is not useful, as their
computation can be time and resource consuming. The number of
moments between 5 and 100 at an interval of 5 is used for image
reconstruction. The bottleneck distance analysis between the orig-
inal and the reconstructed images shows that using large number
of moments do not improve the results. An optimal number of
moments are required to generate the image back. Utilizing enough
moments in the process of image reconstruction presents a robust
method for enhancing the quality and efficiency of the procedure,
especially in applications that include large-scale and real-time
operations. Moments can capture the fundamental characteristics
of an image, decrease unwanted disturbances and imperfections,
enhance the effectiveness of computational processes, improve the
stability and convergence of algorithms, enable efficient real-time
processing, and seamlessly integrate with machine learning meth-
ods. Moments are critical to achieving high-quality and efficient
image reconstructions. However, the computational approach may
also change the topology of the reconstructed images. The accu-
racy of the computed image moments can also alter the variations in
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topological analysis of the image reconstruction. The computation
approach and their variation in topological differences between the
original and reconstructed image could be an interesting analysis,
which we will try to pursue in the future. Further, the integra-
tion involved in the image moment computation is simplified using
zeroth order approximation. The accurate moment computation can
be achieved using the actual computation of the integration. Further
research can focus on finding alternative methods to find accurate
image moments.

Recommendations

The finding revealed that the increase in moments for image
reconstruction will not necessarily increase the quality of the image
reconstructed using the image moment techniques, using PCET. The
quality of reconstructed images using the image moments is ana-
lyzed based on bottleneck distance. The bottle distance increases
with an increasing number of moments but after reaching a min-
imum further reduction was not observed indicating that to get
quality in image reconstruction, an optimal number of moments is
required not the large number of moments as far as topological anal-
ysis is concerned.
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