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Abstract: Fruit flies are one of the most harmful insect species to fruit yields. In AlertTrap, implementation of Single-Shot Multibox
Detector (SSD) architecture with different state-of-the-art backbone feature extractors such asMobileNetV1 andMobileNetV2 appears to be
potential solutions for the real-time detection problem. SSD-MobileNetV1 and SSD-MobileNetV2 perform well and result in AP at 0.5 of
0.957 and 1.0, respectively. YouOnly LookOnce (YOLO) v4-tiny outperforms the SSD family with 1.0 in AP at 0.5; however, its throughput
velocity is considerably slower, which shows SSDmodels are better candidates for real-time implementation.We also tested the models with
synthetic test sets simulating expected environmental disturbances. The YOLOv4-tiny had better tolerance to these disturbances than the
SSDmodels. The Raspberry Pi system successfully gathered environmental data and pest counts, sending them via email over 4G. However,
running the full YOLO version in real time on Raspberry Pi is not feasible, indicating the need for a lighter object detection algorithm for
future research. Among model candidates, YOLOv4-tiny generally performs best, with SSD-MobileNetV2 also comparable and sometimes
better, especially in scenarios with synthetic disturbances. SSDmodels excel in processing time, enabling real-time, high-accuracy detection.
TFLITE versions of SSD models also process faster than their inference graph on Tensor Processing Unit (TPU) hardware, suggesting real-
time implementation on edge devices like theGoogle Coral DevBoard. The results demonstrate the feasibility of real-time implementation of
the fruit fly detection models on edge devices with high performance. In addition, YOLOv4-tiny is shown to be the most probable candidate
because YOLOv4-tiny demonstrates a robust testing performance toward citrus fruit fly detection. Nevertheless, SSD-MobileNetV2 will
be the better model, considering the inference time.
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1. Introduction

Agriculture plays an important role in economic growth, and
improving crop yield is of great concern [1] in Vietnam. On the
one hand, insect pesticides can affect the metabolic processes of
crops to degrade crop yield and quality [2]. On the other hand, fruit
flies are known to cause 50 to 100% crop loss unless timely inter-
ventions are implemented. There are just a small number of fruit
fly species that have been discovered, namely Bactrocera dorsalis,
B. correcta, B. cucurbitae, B. tau, B. latifrons, B. zonata, B. tuber-
culata, B. moroides, and B. albistriga, while some species remain
unidentified. The species that are harmful to fruits are the common
fruit fly species, namely B. cucurbitae and B. tau [3]. To optimize
crop yields, agricultural workers tend to use a pesticide scheduler
rather than consider the likelihood of pests’ presence in the crop [4].
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Thus, this not only causes many pesticide residues in agricultural
commodities but also brings great pressure on the ecological envi-
ronment [5]. The overuse of pesticides is partly because information
about pest species and densities cannot be provided in a timely and
accurate way. In contrast, if the information is provided in a timely
fashion, it could be possible to take proper prevention steps and
adopt suitable pest management strategies including the rational use
of pesticides [6, 7].

Traditionally, the information about the environment and pest
species is acquired mainly through handcrafted feature engineering
[6] such that workers manually use sensors and compare a pest’s
shape, color, texture, and other characteristics with justification
from the domain experts. Likewise, counting is typically time-
consuming, labor-intensive, and error-prone [8]. Therefore, it is
urgent and significant to establish an autonomous and accurate
pest identification system. There is a growing tendency of utilizing
machine vision technology to solve these problems with promising
performance in the agricultural research field.
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In this work, we focus on developing a solution to detect ori-
ental yellow flies, which usually harm citrus fruits such as oranges
and grapefruits. We implement and evaluate the object detection
models by applying the models with test sets simulating potential
disturbances occurring in the real scenario. Additionally, the work
presented in this article will not only focus on the use of different
types of object detection algorithms but also apply the TFLITE for-
mat of the models compatible to edge device system such as TPU
processors. This direction of study is to develop real-time detec-
tion application with the emerging edge computing technology to
enhance the performance of the system in terms of detection accu-
racy, power efficiency, and latency reduction with the purpose of
detecting the living fruit flies beside the stuck and dead ones on the
trap. Moreover, the article will describe the hardware implementa-
tion so that the work can be reproduced and further developed. Our
contributions are as follows:

1) We constructed, developed, and provided a more in-depth
discussion of the end-to-end camera-equipped trap, named
AlertTrap with installation of a Lynfield-inspired sticky trap, to
instantly detect fruit flies and the solar-energy powering system
controlled by a separate Raspberry Pi.

2) We evaluate three different compact and fast object detec-
tion deep learning models, namely SSD-MobileNetV1, SSD-
MobileNetV2, and the Yolov4-tiny. Nevertheless, we introduce
artificial disturbances imitating inference effects, which may
compromise the detection performance in the real-time scenario.
Moreover, we also evaluate the SSD-MobileNetV1 and SSD-
MobileNetV2 models with their TFLITE format versions on a
TPU device. With the results, we compare not only their abil-
ity to accurately detect and localize the fruit flies, which we had
trained them to predict but also increase the processing speed as
well as the power saving factor.

2. Literature Review

Insect detection techniques can be classified into three system
types, namely manual, automatic, or semi-automatic systems. Man-
ual insect detection techniques are known as a process in which
trained workers count the trapped flies on a daily basis. These
turn out to be error-prone, time-consuming, and labor-intensive,
while semi-automatic and automatic systems can address the disad-
vantages with the replacement of highly accurate and autonomous
emerging technological software and hardware.

Specifically, the remaining two types of insect detection sys-
tems are often called e-traps as they are fueled by electronic
components with extensive computer algorithms such as a center-
controlled unit connecting with a camera and the trap actuators.
Thus, they are also known as vision-based insect traps. As sug-
gested in the names, the automatic insect detection systems [9–20]
are fully autonomous, whereas the semi-automatic ones [21–24]
involve human interaction in the loop. For example, in Wang et al.
[24], the images of insect body parts are classified to aid humans
to better categorize the insects. Generally, the e-traps are equipped
with a wide range of post-processing techniques to detect and clas-
sify trapped insects. These techniques are recognized by the sensor
type that is used to capture the existence of insects in the trap. Partic-
ularly, they are image-based, spectroscopy-based, and optoacoustic
techniques, which correspond, respectively, to the visible-light cam-
era, the near-infrared (NIR) camera, and the ultrasound sensor.

The image-based techniques consist of three subdomain tech-
niques, namely deep learning [9–12] and shallow learning [12],

which both are subdomains in the machine learning field and image
processing [13–20] techniques.

Shallow learning-wise, Yasmin et al. [12] created a machine-
learning-based classifier that can differentiate between 14 butterfly
species. The texture and color characteristics are extracted by the
writers. A three-layer neural network is used to process the extracted
features. The categorization accuracy achieved is 92.85%.

The detection approach is based on image processing as
described in relative studies [14–17]. While image-processing tech-
niques are simpler than deep learning techniques, their accuracy
is reasonable (70–80%), and the system is wired with the illumi-
nation environment. However, extensive feature engineering must
take place prior to the classification. Doitsidis et al. [13] created
an image processing method to detect olive fruit flies. By using
auto-brightness adjustment, the algorithm first reduces the effect
of changing lighting and weather conditions. Then, using a coor-
dinate logic filter improves the edges by amplifying the difference
between the dark bug and the bright background. Finally, the tech-
nique uses a circular Hough transform followed by a noise reduction
filter to identify the trap’s limits. The achieved accuracy rate is 75%.
In Kumar et al. [14], it was reported that a wireless sensor network
(WSN) was created for detecting pests in greenhouses. The image
processing technique first removes the effect of light changes from
the photos, then denoises them, and finally recognizes the blobs. In
Batz et al. [15], it was suggested that insect image processing, seg-
mentation, and sorting algorithms could be used as insect “soup”
images. In insect “soup” photos, the insects float on the liquid sur-
face. The method was evaluated on 19 soup images by the authors,
and it worked well for many of them. Using McPhail traps, a WSN
was developed to detect the olive fruit fly and medfly in the field
[16]. WSNs are sensor networks that gather data and may be built to
process information and transfer it to humans. WSNs may also have
actuators that respond to specific events. The template comparison
algorithm is the detection algorithm. The identification is based on
the detection of specific anatomical, patterning, and color charac-
teristics.

Near-infrared spectroscopy (NIR) was used to identify infested
olives in harvested crops [17]. The genetic algorithm (GA) extracts
the features from the collected full spectral data. The retrieved fea-
tures serve as the input for the classifier. Hyperspectral imaging was
deployed to identify contaminated mangos [18]. The algorithm’s
overall error proportion of high infested samples ranges between 2%
and 6%, whereas the algorithm’s overall error rate for low infested
samples is 12.3%. To detect contaminated cherries, Xing et al. used
reflectance and transmittance spectra [19]. According to the extent
of damage, the cherries were separated into two categories: “accept-
able” and “non-acceptable.” On transmittance spectra, canonical
discriminant analysis (CDA) achieved 85% classification accuracy.

Batz et al. [15] used optoacoustic spectrum analysis to con-
struct an olive fruit fly detection system. The optoacoustic spectrum
analysis detects the species of insects based on wingbeat analysis.
The authors examined the recorded signal’s temporal and frequency
domains. The random forest classifier is fed the retrieved features
from the time and frequency domains. The random forest classifier
had a precision of 0.93, a recall of 0.93, and an F1-score of 0.93.
The optoacoustic approach, on the other hand, cannot distinguish
between different types of fruit flies, including peaches and figs.
Furthermore, solar radiation affects sensor readings, and the trap is
susceptible to sudden strikes or shocks that cause false alarms on
windy days.

Böckmann et al. [25] utilizes bag of visual words (BoVW) to
encode clusters of key points extracted by scale-invariant feature
transform (SIFT) into some meaningful local features in a so-called
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visual codebook. This kind of dictionary is then used to incorpo-
rate how frequently each feature appears in each patch of newly
extracted key points as the input to train a support vector machine
(SVM) classifier for different classes of flies as well as one back-
ground class for a patch of nothing of interest. In contrast, the
precision values decreased after 7 days of the insects remaining on
the yellow sticky paper by approximately 20% compared to the test
results of the initialization measurement on day 0. Regarding class
mean accuracy, the dictionary size had no obvious influence but on
the recall in individual categories. Within the individual categories,
the recall of the background class was the highest, as expected.
A maximum value of 99.13% was achieved without differences in
color space conversion or dictionary size. The best classification
results were achieved with grayscale images and dictionary sizes of
200 and 500 words.

Regarding deep-learning techniques, Zhong et al. [9] created a
deep-learning-based multiclass classifier that can classify and count
six different types of flying insects. The YOLO algorithm [26] is
used for detection and coarse counting. To increase the number of
training images required by the YOLO deep learning model, the
scientists considered the six species of flying insects as a single
class. The authors augment the images with translation, rotation,
flipping, scaling, noise addition, and contrast adjustment to extend
the dataset size. They also employed a pretrainedYOLO to fine-tune
its parameters on an insect dataset. SVM is used for classification
and fine counting, with global features. The technique was run on
Raspberry PI, with detection and counting performed locally in each
trap. The system attained a 92.5% average counting accuracy and a
90.18% average categorization accuracy. The Dacus Image Recog-
nition Toolkit (DIRT) was created by Kalamatianos et al. [10]. The
toolkit includes MATLAB code samples for fast experimentation,
as well as a collection of annotated olive fruit fly photos acquired
by McPhail traps. On the DIRT dataset, the authors tested various
forms of the pretrained faster region convolutional neural networks
(Faster-RCNN) deep learning detection technique. Prior to classifi-
cation, RCNNs are convolutional neural networks containing region
proposals that suggest the regions of objects. Faster-RCNN had an
mAP of 91.52%, where mAP is the average maximum precision
for various recall levels. The authors demonstrated that image size
has a substantial impact on the detection, but RGB and grayscale
images have almost the same detection accuracy. Because Faster-
RCNN is computationally costly, each e-trap regularly uploads its
collected image to a server for processing. Ding et al. created a tech-
nique for detecting moth flies [8]. Translation, rotation, and flipping
are used to enhance the visuals. To balance the average intensities
of the red, green, and blue channels, the photos are preprocessed
with a color-correcting algorithm. The moths in the photos are
then detected using a sliding window convolutional neural network
(CNN). CNNs are supervised learning algorithms that use learned
weights to apply filters on picture pixels. Backpropagation is used
to learn the weights. Finally, Non-Max Suppression (NMS) is used
to remove the overlapping bounding boxes. Using an end-to-end
deep learning neural network, Xia et al. [11] detect 24 kinds of
insects in agricultural fields. A pretrained VGG-19 network is uti-
lized to retrieve the features. The insect’s position is then determined
through the region proposal network (RPN). The proposed model
had an mAP of 89.22%.

Recently, YOLO is proving its notable performance in thework
by Yun et al. [27] in pest detection. Especially, the reported results
of YOLO v5 by the authors illustrate the mAP of 94.7%, where it
has the highest recall score of 0.92 among all the other state-of-
the-art methods, such as Fast RCNN, Faster-RCNN, and RetinaNet.
The models have been pretrained on COCO dataset [28] and later

fine-tuned on a training dataset of 4,480 subimages made from 280
images of yellow sticky pheromone traps. However, YOLO v5 is
considered slower than YOLO v4. For the AI implementation on
edge devices, works by Nguyen et al. [29] and Pham et al. [30]
demonstrate the AI applications on edge devices pest monitoring as
well. In Pham et al. [30], Lynfield-inspired trap was used with naled-
and fipronil-intoxicated methyl eugenol [31] in replacement of the
yellow sticky paper trap combined with object detection system to
detect only targeted oriental yellow flies. Unlike the yellow sticky
paper, the substance is proved to only attract harmful fruit flies,
and the detection problem is thus reduced to one-class detection
for detecting the existence of the fruit flies and verifying whether
the detection is correct. The work showed primary work and pro-
vided foundation to further develop real-time system for yellow fly
detection in on-field scenario. Compared to Yun et al. [27], the appli-
cation of Single Shot Multibox Detector with variant backbones and
YOLO v4-tiny shows significant speed performance to YOLO v5,
while taking the raw images as input instead of segmented subim-
ages. Nevertheless, the work also showed limitation of applying
detection models on edge device due to the slow processing speed,
which will be further addressed in this article.

3. Methodology

3.1. Overview of the trap system

Most of the time, insects are not stationary, so it is diffi-
cult to get a clear image of flying insects. In studies [32–35], the
authors chose insect specimens that were well preserved in an ideal
laboratory environment to capture images of the insects at high
resolution. However, since fewer environmental factors are con-
sidered in this method, it is limited in specific applications. In this
study, we designed a unique automatic autonomous environment
data reading and pest identification system to try to eliminate the
above problems.

Being largely motivated by preventing the oriental fruit flies
from destroying citrus fruits such as oranges and grapefruits, we
come upwith a trapwhich targets only one type of the species, which
is specifically named B. dorsalis. This can be achieved by replac-
ing the yellow sticky paper with the naled-and fipronil-intoxicated
methyl eugenol attractant to assure only B. dorsalis flies are lured
into the trap. It eases the classification and counting process as no
other insects will get attracted by the methyl eugenol attractant [31].
The objects can be further reassured by the object detection system
before getting counted.

The system involves a twofold setting: (a) an electronic sys-
tem reads environment data with a sticky trap installed, and a digital
camera is set up to collect images of the flies, (b) the object detec-
tion software to recognize fruit flies on the image before sending
all information (environmental data and number of fruit flies) via
email or SMS to alert farmers independently. The whole system is
autonomous and powered by a solar system. This system is imple-
mented on an Arduino Uno and Raspberry Pi system. The results
provide precise prevention and treatmentmethods based on the com-
bination of pest information and other environmental information.
Based on this edge-computing design, the computation pressure on
the server is alleviated, and the network burden is largely reduced.

The edge-computing traps are designed to work separately and
individually re-port the count of fruit flies to the farmers. They are
spread, based on the effectiveness of the attractant, such that each
2–3 devices can cover an area of 1,000 square meters.

Pdf_Fol io:3 03



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

3.2. Hardware

Overall, the hardware part of the system consists of five inter-
connected subsystems with distinctive functions and behaviors,
which are described in Figure 1, namely the solar panel system, the
control system, the sensor system, the trap, and the object detec-
tion and communication system.

The power system of the trap contains a solar panel, a battery,
and a solar charge controller (Figure 1(a)). The solar panel converts
the solar energy to direct current with 830 mA to power the trap sys-
tem. The converted energy is stored in an electrochemical energy
storage with a capacity of 5 Ah and a voltage of 12V. The Arduino
in the operating system will check voltage of the battery with a volt-
age sensor to make sure the battery voltage is above a certain level
required for the system’s operation. If the condition is not met, the
object detection module will not be operated. The pulse width mod-
ulation (PWM) solar charge controller is used to control the device
voltage, open the circuit, and halt the charging process if the battery
voltage is above a certain level.

The operation system (Figure 1(b)) is controlled by an
Arduino microcontroller board. As aforementioned, the Arduino
module reads the battery voltage with a voltage sensor from the
sensor system to decide whether to turn on or off the object detec-
tion system, which is controlled by the Raspberry module. The
SSR10D is used to control, activate, and deactivate the object
detection system. The SSR10D is a solid-state relay and uses lower
power electrical signal to generate an optical semiconductor signal
as an activate signal for the opto-transistor to allow high voltage
going into and powering the device’s output device, which is the
Raspberry device in this case. In addition, the lower electrical
signal is the output from the 2N2222 bipolar junction transistor
receiving control signal from the Arduino module. Hence, the
Arduino can stop the Raspberry Pi 3b+ computer drawing current

from the solar system after it is shut down. The sensor system
(Figure 1(c)) takes responsibility for measuring the three impor-
tant factors, temperature, humidity, and light. Also, it records the
current created by the solar system and the voltage battery. The
humidity and temperature, which also affect the living environ-
ment of the yellow flies, are measured with the AM2315 I2C
sensor. RGB and clear light is measured with the TCS34725 light
sensor with infrared filter and white LED. In addition to the sen-
sor system, INA219 is used to read the solar current and battery
voltage information. Moreover, a DS1307, which is a battery-
backed real time clock (RTC), is used to help the microcontroller
keep track of time. The information from the sensors along with
their corresponding time are stored in an SD card attached to
the device. These two factors, the operation system and sensor
system, help the microcontroller decide whether to turn on the
object detection or not. The object detection system, shown in
Figure 1(e), is operated by the Raspberry Pi 3b+ and collect images
for its fruit fly detection algorithm with a Waveshare Pi camera
with 5 MP. The camera is placed at the top of a double-sized
Lynfield shape trap with several holes at the bottom, shown in
Figure 1(d). To attract and capture only the yellow flies, methyl
eugenol is used as the attractant to the insects [31], which later
helps to simplify the detection and classification problem. The
Raspberry Pi module will receive data from the sensor system and
send all data to the notification system to notify or alert farmers
about the environmental data and the number of detected fruit
flies through email or SMS. The behavior of the whole system is
described in the flow chart shown in Figure 2.

3.3. Software - object detection pipelines

The architectures used to train the yellow fly detection mod-
els are SSD with MobilenetV1 and MobilenetV2 backbones and

Figure 1
Overview of the trap system consisting of (a) the solar panel system, (b) the operation system, (c) the sensor system,

(d) the modified Lynfield trap, and (e) the object detection system
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Figure 2
Flow chart of the trap system

YOLOv4-tiny. The selected models are all single-stage detection
models since, compared to their counterpart, the two-stage detection
models, the single-stage detection models have been shown to have
a faster processing speed with a competitive performance. More-
over, the three models were selected because of their comparable
parameter size and their feasibility for real-time implementation on
edge devices. The pretrained models of these architectures were
fine-tuned with our proposed insect dataset so that they can be used

for the yellow fly detection application, as fine-tuning is also one of
the common solutions to the data scarcity problem in object detec-
tion. Because the models had been trained with COCO dataset [28],
which is a large dataset having over 200,000 labeled images with
1.5 million object instances for 80 object categories, and, hence,
contains common features for object detection problem, fine-tuning
the models with 200 yellow fly images helped the models perform
the yellow fly detection task.
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3.3.1. SSD
To solve the real-time object detection in the yellow fly detec-

tion problem, variants of Single-Shot Multibox Detector (SSD) are
used. The SSD method was first proposed by Liu et al. [36] and
described as a one-stage object detection method that completely
omits the region proposal and pixel/feature resampling stages used
in region proposal-based techniques such as Faster-RCNN. The SSD
network is based on a feed-forward network that uses default bound-
ing boxes with different shapes, ratios, and scales to produce a
fixed-size collection of bounding boxes with corresponding shape
offsets and confidence scores [36]. In addition, the early layers of
the network are based on a standard image classification without
classification layers, which is called the base network [36]. In this
work, MobileNetV1 and MobileNetV2 are used as base networks
for the SSD detection models. The elimination of region proposal
and pixel/feature resampling stages helps to improve the process-
ing speed of the model compared to two-stage techniques such as
Faster-RCNN with a small trade-off in the model’s accuracy, which
enables the implementation of real-time object detection with high
accuracy on embedded system for yellow fly detection problem.

3.3.2. MobileNetV1
The approach was first proposed by Howard et al. [37] and

was described as a lightweight deep neural network for mobile and
embedded system applications with an efficient trade-off between
latency and accuracy. The model is based on depth wise separable
convolution including depth wise convolution layer which is used
to apply a single filter per input channel, and pointwise convolution
layer, which creates a linear combination of the output of the depth
wise layer. In addition, to construct the model further less com-
putationally expensive, width multiplier, which is used to thin the
network uniformly at each layer, and resolution multiplier, which is
applied to input images and the internal representation of each layer,
were introduced as a hyperparameter to tune, and choose the size of
the model.

3.3.3. MobileNetV2
The MobileNetV2 approach was first presented by Sandler

et al. [38]. The approach is built based on MobileNetV1; therefore,
it also makes use of the depth wise separable convolution archi-
tecture which consists of depth wise convolution layer and 1x1
pointwise convolution layer. In addition, the approach also utilizes
linear bottleneck layers in convolutional blocks to optimize the neu-
ral architecture [38]. Moreover, inverted residual design is also used
in the model to implement shortcuts between bottlenecks with the
purpose of improving the ability of gradient propagation across the
multiplier layers. Nevertheless, the implementation of the inverted
design also showed better performance and significantlymoremem-
ory efficiency in the work by Sandler et al. [38].

The training and evaluation of the SSD with MobileNetV1 and
MobileNetV2 base networks is based on the pretrained models pro-
vided in the Object Detection API in TensorFlow Model Garden
[39]. The models were also trained on the Google Colab Pro envi-
ronment to utilize the provided GPUs for the training purpose.

3.3.4. YOLOv4-tiny
The YOLOv4 model is a method for detecting objects that

was developed from the YOLOv3 model proposed by Redmon and
Farhadi [40]. The YOLOv4 approach was created by Bochkovskiy
et al. [41]. It is twice as fast as EfficientDet in terms of performance.
Furthermore, when compared to YOLOv3, average precision (AP)
and frames per second (FPS) in YOLOv4 have increased by 10%

and 12%, respectively. This is because a CSPDarknet53 backbone
and a PANet path-aggregation neck along with the YOLOv3 head
make up for the YOLOv4 architecture. YOLOv4-tiny [42] is the
compressed version of YOLOv4. Based on YOLOv4, it is suggested
that the network topology should be simplified, and parameters
should be reduced so that it may be implemented on mobile and
embedded devices. The YOLOv4-tiny model can be trained in a
shorter time than the YOLOv4.

4. Evaluation

The proposed models, YOLOv4-tiny, SSD-MobileNetV1, and
SSD-MobileNetV2, were evaluated by using performance metrics
such as precision, recall, F1 score, mean IoU, and AP. In addition,
the models’ processing time was also evaluated to check for real-
time application feasibility. The processing time of the models was
calculated while they were run on CPU, GPU, and TPU hardware.
The hardware provided by Colab Pro service was Tesla V100-
SXM2-16GB, TPU V2, and Intel(R) Xeon(R) CPU at 2.30GHz,
which were used to find the average processing time of the models
on GPU, TPU, and CPU respectively. Moreover, besides the regu-
lar test set, the models were also checked with synthetic test images
originating from the original test set. The augmentation effects were
implemented to simulate disturbances that can be captured in prac-
tice, such as leaf, insect, dust, and flaring effect. We also make the
dataset available in GitHub.

4.1. Training dataset

The 200 contributed images of fruit flies in the trap are consol-
idated into two parts, namely training dataset and test dataset, with
the proportion of 75% and 25%, respectively. Therefore, there are
150 images being used to train the models incorporated in this paper.
The remaining 50 images are responsible for evaluating the perfor-
mance of such models.

4.2. Test dataset

For the evaluation of the proposed models, the original test
set, which includes 50 images, was used along with other four syn-
thetic datasets generated from the original test images. The synthetic
datasets were used to simulate the common disturbances, which
could be captured in real-life scenarios such as blurry, dust, salt-
pepper, and flaring effect. Therefore, in general, the total test set
has 250 images, in which 50 images come from the original dataset
and the other 150 images are copies of them with augmentation
effects. An example of an original image and its synthetic versions
are shown in Figure 3.

The synthetic images with dust and salt-pepper augmentation
are to simulate the disturbances coming from the weather and envi-
ronmental conditions, while the blurring augmentation is used to
simulate foggy or out-of-focus issues captured by the camera in the
field andmaybe disrupt the classification of the targeted object class.

4.3. Evaluation metrics

The performance of the trained detectors was evaluated by
being tested with a test dataset. The true positive (TP), false posi-
tive (FP), and false negative (FN) were counted from the detection
results and used to find the precision, recall, and F1 score metrics.
TP is the number of correctly detected objects, while FP shows the
amount of the falsely detected object, and FN informs the number
of targeted objects which were missed during the detection process.
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Figure 3
An example of an original image and its synthetic versions with (a) original image, (b) blurry filter, (c) adding salt-pepper

disturbance, and (d) adding dust disturbance

The three metrics can then be used to evaluate further aspects of the
models’ performance such as precision, recall, F1-score, and AP,
which were also used for model evaluation in this work. In addition,
the average processing time of the models during the detection pro-
cess was alsomeasured and used as another evaluation criterion, and
Mean IoUwas also used to evaluate the localization of the detection.

4.3.1. Precision
Precision is an evaluation metric calculated with TPs and FPs.

The metric indicates how accurate the detector’s performance is by
showing the percentage of correctly detected objects out of the total
detected objects. The relationship between the precision, TP, and FP
numbers can be expressed as the following:

Precision = TP
TP + FP

= TP
All Detections

(1)

4.3.2. Recall
Recall is an evaluation metric calculated with counted TPs

and FNs. The recall value decreases when the number of FNs is
increased. The metric measures howmany objects are missed by the
evaluated detector by showing the percentage of correctly detected
objects out of the total true objects. The relationship between the
recall and TP and FN numbers can be expressed as the following:

Recall = TP
TP + FN

= TP
All Ground Truths

(2)

4.3.3. F1-score
F1-score is an evaluation metric calculated with both precision

and recall metrics, or with all counted TPs, FPs, and FNs. The F1-
score metric combines both precision and recall with equal weight
to show the balance and relative relation between the precision and

recall metrics. The mathematical expression of the F1-score metric
regarding other evaluation metrics is shown as

F1 = 2 Precision ∗ Recall

Precision +Recall= TP

TP+ 1
2
(FP+FN)

(3)

4.3.4. Average Precision (AP)
By adjusting the confidence score threshold, the precision and

recall will also be changed accordingly. Calculating the mean value
of the precision score corresponding to the confidence score thresh-
old varied from 0 to 1, AP for short, can be found.

4.3.5. Mean IoU
IoU stands for intersection over union. The intersection can be

understood as the overlapping area between a ground-truth bound-
ing box and its corresponding detected bounding box, while the
union is the total area of the ground-truth bounding box and the
corresponding detected bounding box with the omission of the
overlapping area. The graphical representation of the mentioned
definition is shown in Figure 4.

Then, the IoU is the ratio of the intersection area over the area
of union of the two bounding boxes. The higher the value of the IoU,
the more matched the two bounding boxes are. Therefore, the mean
IoU, which is the mean value of the IoU values of all available pairs
of detected bounding boxes and their corresponding ground-truth
bounding boxes, shows the localization of the examined algorithm.
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Figure 4
Area of intersection (left) and area of union (right) examples

The mathematical relation between the IoU, the area of intersection,
and the area of union can be expressed with the following formula:

IoU = Area of Intersection

Area of Union
(4)

4.3.6. Processing time
To examine the feasibility of real-time implementation of the

trained models, the models’ processing time was also measured and
used as an evaluation metric. The processing speed of a detector
is found by calculating the mean processing speed of the detector
during its detection operation over 250 test images.

4.4. Experimental results

4.4.1. Precision, recall, F1-score, mean IoU, and AP evaluation
In this work, the models were evaluated for F1-score, mean

IoU, and AP evaluationmetrics with different choices of IoU thresh-
old value. The following shows the performance tables of the trained
detectors through different testing scenarios with IoU threshold val-
ues of 0.25, 0.50, and 0.75, which may reflect the performance of
the algorithms with different localization demands. Additionally, in
this article, the results performance of the models in normal test set
or disturbance free is further discussed.

1) Normal test set

In the normal test case with no augmented and synthetic distur-
bances, it can be observed in all IoU thresholds that YOLOv4-tiny
is the model having the best performance in all aspects among the
three examined algorithms, YOLOv4-tiny, SSD-MobileNetV1, and
SSD-MobileNetV2. Especially, for IoU threshold values 0.25 and
0.5, the YOLOv4-tiny model achieved perfect F1-score, and AP
metrics with the value of 1.0. Moreover, with high localization con-
straints, YOLOv4-tiny still has a good F1-score which is 0.847. In
addition, the detection from the YOLOv4-tiny model also has great
localization based on the mean IoU metric, which is 0.834 for IoU
threshold 0.25 and 0.50, and 0.857 for IoU threshold 0.75. Never-
theless, SSD-MobileNetV2 also has comparable performance to the
performance of YOLOv4-tiny, since for IoU threshold 0.25 and 0.5,
SSD-MobileNetV2 also achieved a great F1-score, and AP metrics
with the values of 0.969 and 1.0, respectively. In the extreme case
of IoU threshold 0.75, SSD-MobileNetV2 can also have good per-
formance with values of 0.751 for F1-score and 0.69 for AP metric.
In addition, SSD-MobileNetV2’s detection also has similar localiza-
tion compared to YOLOv4-tiny, which are 0.811 for IoU threshold
0.25 and 0.50 and 0.847 for IoU threshold with the value of 0.75.
The SSD-MobileNetV1 also has good performance for IoU thresh-
old 0.25 and 0.50; however, with IoU threshold of 0.75, the model’s
performance was heavily compromised. Moreover, in all three IoU
threshold cases, the SSD-MobileNetV2 has better performance than

SSD-MobileNetV1 in all aspects. The performance results on dif-
ferent localization constraints are shown in Figure 5.

Figure 5
Evaluation results on normal test set

2) Blurry test set

In Blurry test set, a Box filter of size 30x30 is convolved over
the images in the normal test set to create the blur effect, which
aims to replicate the foggy weather inside the trap or the out-of-
focus issue of the camera. Generally, this test set changes the overall
features of the fruit flies because of the averaging effect of the
filter; therefore, the models might not work as expected, which
is clearly shown via the results of SSD-MobileNetV2. However,
according to Figure 6, YOLOv4-tiny still shows stable performance
on the test set. Specifically, YOLOv4-tiny can maintain its metrics
values in the variation range of 0.2 throughout three IoU thresh-
olds, whereas SSD-MobileNetV2 is totally collapsed when the IoU
threshold increases and SSD-MobileNetV1 significantly drops in
F1-score and AP by a value of 0.6 at the extreme case IoU threshold.

Figure 6
Evaluation results on blurry test set

3) Salt-pepper test set

The salt-pepper disturbances imply the appearance of
unwanted tiny fraction of leaves or other insects that are acciden-
tally flown into the trap by the wind. It is named “Salt-pepper”
because the effect looks visually like salt and pepper on a dish,
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which is not related to the salt-and-pepper noise from an image
processing point of view. It can be observed from Figure 7 that
YOLOv4-tiny, with extreme localization constraint, IoU thresh-
old 0.75, the model outperformed other models, and it also has
best mean IoU in all IoU threshold constraints. However, adding
the Salt-pepper disturbance makes all three models’ performance
worse than their performance on the remaining test sets. Specif-
ically, SSD-MobileNetV1 suffers the most where in the extreme
case, both its F1-score and AP drop to 0.

Figure 7
Evaluation results on Salt-pepper test set

4) Dust test set

With test imageswith addeddust disturbance, it can be observed
at all IoU thresholds that YOLOv4-tiny has the best performance
in all aspects. Nevertheless, compared to its performance with the
normal dataset, it can be observed that the disturbance effect did
compromise the performance of the model based on the F1-score.
The same conclusion can also be drawn for SSD-MobileNetV1 and
SSD-MobileNetV2modelsbasedon theirperformanceon the test set.
In addition, the dust disturbance also proves to have a great negative
effectontheSSD-MobileNetV2modelwhentheextremelocalization
constraint is applied, since while in the Salt-pepper test set with IoU
thresholdof0.75, theSSD-MobileNetV2couldstillperformwellwith
anF1-Score value of 0.38,whilewith dust disturbance, themodel can
only achieve 0.251 in F1-score. Based on the mean IoU metric, the
dust disturbance also decreases the localization of all three models’
detection results. The evaluation results on the dust test set are shown
in Figure 8.

4.4.2. Processing time evaluation
In this work, the model candidates are examined with CPU,

GPU, and TPU hardware. Moreover, the SSD-MobileNetV1 and
SSD-MobileNetV2 models with TFLITE convert support were also
converted into TFLITE format which is compatible with TPU and
can exploit the advantage of the hardware. Table 1 shows the pro-
cessing time of eachmodel on CPU, GPU, and TPU hardware. It can
be observed that SSD models have a faster processing time than the
YOLOv4-tiny model on GPU, CPU, or TPU hardware. Moreover,
the TFLITE version of SSD-MobileNetV1 and SSD-MobileNetV2
models run on TPU is much faster than SSD-MobileNetV1, SSD-
MobileNetV2, and YOLOv4-tiny inference graphs run on the same
device. In addition, we show the processing speed in FPS for

Figure 8
Evaluation results on dust test set

TFLITE models with SSD-MobileNetV1 and SSD-MobileNetV2
architecture on a TPU device. TPU processors can be found on edge
device such as Google Coral Dev board, and by comparing the pro-
cessing speed of the models in TFLITE format in TPU shown in
this work and the processing speed of the models in Raspberry Pi, it
can be shown that with the same architectures, the TFLITE models’
processing speed on a TPU device is approximately 6 times faster
than the inference models on Raspberry Pi. This shows that TFLITE
model on TPU edge device would be a more feasible for real-time
application implementation.

5. Discussion

The assessments in this research are dedicated to search for
the most appropriate object detection method among the current
state-of-the-art algorithms which have been implemented for insect
and fly recognition under our hardware constraints and problem
definition. As we only target one type of fruit fly that particu-
larly causes harm to the citrus fruits, we have replaced the yellow
sticky paper with a white disk containing the special attractant as a
hard refinement to pick up only the flies we are interested in. The
object detection problem is then simplified to only one-class object
detection, which eases the need for exhausting feature extraction.
However, the general constraints, such as correctness and fast-
ness, for an object detection task on an edge-device still hold since
early detection and separation of the infected areas are extremely
important to the fruit yield. Ultimately, SSD-MobileNetV1, SSD-
MobileNetV2, and YOLOv4-tiny are the best candidates for these
requirements because they utilize extracted features from a back-
bone classification model to automatically propose object-related
regions instead of using a region-proposal module to pool the related
regions before classifying them as many two-stage object detection
models, such as Fast-RCNN and Faster-RCNN.

Regarding the correctness, YOLOv4-tiny clearly outperforms
the two SSD models over all the evaluations on four different
types of test set with very high and stable results. This could
make YOLOv4-tiny become the most probable candidate because
YOLOv4-tiny demonstrates a robust testing performance toward
citrus fruit fly detection, although it has been fine-tuned only on a
training dataset without augmentation effects. SSD-MobileNetV2
shows appropriate robustness given its small number of trainable
parameters by yielding good results in two over four test sets, while
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Table 1
Comparisons of the processing time of the trap object detection system between different types of processing units

Models
CPU

Intel(R) Xeon(R) CPU at2.30GHz
GPU

Tesla V100-SXM2-16GB
TPU

Google TPU v2
SSD-MobileNetV1 3.414 FPS 29.140 FPS 1.025 FPS
SSD-MobileNetV2 3.485 FPS 21.000 FPS 1.024 FPS
SSD-MobileNetV1 TFLITE _ _ 8.743 FPS
SSD-MobileNetV2 TFLITE _ _ 10.058 FPS
YOLOv4-tiny 1.282 FPS 1.207 FPS 0.545 FPS

Table 2
Overall assessment of the models, SSD-MobileNetV2 TFLITE

and YOLOv4-tiny, based on F1-score and inference time

Models

F1-score
(Normal Testset
with 0.75 IoU
threshold)

Inference Time
(TPU Google
TPU v2)

SSD-MobileNetV2
TFLITE

0.751 10.058 FPS

YOLOv4-tiny 0.847 0.545 FPS

SSD-MobileNetV1 only works with the original test set. Neverthe-
less, SSD-MobileNetv2 fails dramatically with the Blurry test set,
which simulates a very frequent event that could happen in a fruit
field. YOLOv4-tiny is no doubt the chosen one among the three
methods if we would not have taken other aspects into account.

Conventionally, highly accurate object detection methods trade
their processing speed for its better performance due to the employ-
ment of more parameters in their architecture. YOLOv4-tiny is not
an exception where its processing speed is far from real time (1.2
FPS compared to 30 FPS). While missing a fraction of time could
lead to undetectable events in which the flies appear, our second
choice, which is the SSD-MobileNetV2 model, should be consid-
ered. To realize this choice after extensive performance analysis
with four different test sets, SSD-MobileNetV2 must have been
fine-tuned with more augmented versions of the original training
dataset before going into production to leverage its robustness to the
level of YOLOv4-tiny while retaining its processing speed. More-
over, TFLITE version of SSD-models is also tested on a cloud
TPU Google engine, TPUv2, for the feasibility of edge-device
deployment. The overall assessment table for YOLOv4-tiny and
SSD-MobileNetV2 (TFLITE) is shown in Table 2 in terms of F1-
score and inference time.

6. Conclusion

Experimental results show that the Raspberry Pi system suc-
cessfully gained environmental data and a number of counted pests
which were transferred to email addresses through the 4G network.
The full YOLO version cannot run in real time on Raspberry Pi,
which poses the need for a lighter object detection algorithm for
future research.

From the results, it can also be concluded that in general,
YOLOv4-tiny, with 0.847 F1-score for IoU threshold 0.75, has
the best performance among the three model candidates. Never-
theless, SSD-MobileNetV2 also has a comparable performance,
0.751 F1-score for IoU threshold 0.75, to the YOLOv4-tiny model.

Moreover, the SSD-MobileNetV2 model also outperforms the
YOLOv4-tiny model in some test scenarios with synthetic distur-
bances. In addition, SSD models, especially SSD-MobileNetV2
model with 10.058 FPS on TPU, have a clear advantage over
YOLOv4-tiny, with 0.545 FPS on TPU, in processing time cri-
terion, which makes real-time detection application with high
accuracy feasible. Furthermore, the TFLITE versions of SSD mod-
els also process faster than the SSD models’ inference graph on
TPU hardware, suggesting the feasibility of real-time implemen-
tation of the SSD models on edge devices with TPU processors
such as Google Coral Dev Board with edge TPU.

Recommendations

In the future work, Google Coral Dev Board will be imple-
mented on the system, which can be used to compare the Raspberry
Pi 3b+’s in accuracy and processing time aspects. In addition, in-
field operation of the system will be tested to check the system’s
practicability and for further improvement. From the test result
with the synthetic test sets, the SSD family models were suscepti-
ble to disturbance and noise compared to the YOLOv4-tiny model.
Our next attempt is also to improve the SSD models’ performance
training the detectors with augmented and synthetic data synthe-
sized from the original dataset. Moreover, by building several trap
devices, we will try to apply federated learning on the multiple
on-field traps so that the detection algorithm can be trained and
improved while being applied on the field. Hence, the detection
performance of the traps can be further boosted. Moreover, the
performance of the detection models can also be enhanced with
the implementation of wavelet analysis due to the preservation of
detailed features. This has been proposed and tested in Le et al. [43].
Furthermore, we also would like to further develop our detection
solution for other types of insects so that it may not only enhance the
yellow fly detection performance but also make the solution appli-
cable for other insect detection problems. To achieve the goal, we
will need to expand our dataset so that it would contain other types
of insects.
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