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Abstract: This paper presented a fuzzy transportation problem to represent the uncertainty of transportation in parameters to produce
an appropriate solution. In addition to making reliable solutions for real-world decision-making problems, the objective of transportation
problem cost, demand, and supply parameters are demonstrated using heptagonal fuzzy numbers (HFN). The multiplication and division
operations are presented with an example to make the inner performance of any two HFNs. A new ranking technique has been derived to
defuzzify the linear HFN using an alpha-cut-based ranking technique, and it has been compared with the existing ranking technique. Fur-
thermore, a generalized ranking heptagonal fuzzy method (GRHFM) algorithm is framed by incorporating defined operations and ranking
techniques to solve the heptagonal fuzzy regional shipment problem. The effectiveness of our proposed method is demonstrated through a
numerical example of an adopted case study. It determines the feasible shipment cost for vegetable transportation from the regional mar-
kets utilizing HFNs, which further compare solutions obtained through various algorithms. The conclusion section discusses the suggested
GRHFM and alpha-cut ranking efficiency, outcomes, decision management, and future directions based on the existing transportation study.
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1. Introduction

The regional transportation industry is one of the many that
the COVID-19 pandemic has severely impacted. Regional vegetable
transports have experienced significant setbacks due to the virus
spreading in urban areas. The resolution of transportation issues of
regional shipment needs to be developed and modified since the
local shipment reflects on the region’s economy. In the literature,
various transportation problems (TPs) [1, 2], such as urban and lin-
ear continuous transportation, were proposed and solved. To derive
an optimal fuzzy allocation for ambiguous TPs, Pandian and Natara-
jan [3] developed an algorithm. Korukoglu and Ballı [4] enhanced
the Vogel approximation method for the TP by incorporating accu-
rate parameters. In real-world applications of TPs, all the parameters
may not be treated as exact values due to unpredictable circum-
stances. In the context of the computational complexity of linear
programming, finding an initial basic feasible solution (IBFS) [5]
is crucial for solving optimization problems. It serves as a starting
point for algorithms such as the simplex method or interior point
methods to iteratively improve and find the optimal solution. As per
the literature, scientists are still working to create an adaptive heuris-
tic method to reach an optimal solution space for TP, notably [6, 7].
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The fully rough integer interval TP [8] has been solved by applying
the rough slice sum method.

The idea of fuzziness is introduced into transportation costs to
address real-world decision-making difficulties, using a heptagonal
fuzzy number (HFN). Researchers later developed fuzzy numbers
for broader applications [9, 10]. The optimal solution to TPs [11]
with a fuzzy cost coefficient was presented. A new fuzzy trans-
portation algorithm was introduced to find optimal fuzzy solutions
[12]. An algorithm for solving a specific type of fuzzy transportation
problem (FTP) was proposed by Luo et al. [13]. A straightfor-
ward heuristic approach for the triangular fuzzy unbalanced TP [14].
A simplified approach using a generalized trapezoidal fuzzy num-
ber was created [15], for solving FTPs in pentagonal and triangular
fuzzy environments [16]. A goal programming approach for the
fuzzy octagonal TP under budgetary constraints [17]. A TP using
fuzzy octagonal numbers [18]. The fuzzy programming approach
to multi-objective solid TPs. Further study on fuzziness and its
application to transportation problems is needed [19–21], along
with solution approaches for the logarithmic transportation prob-
lem using column generation techniques [22]. The collaborative
TP based on energy consumption with overlapping coalitions was
solved [23].

A few studies have been devoted to concurrently addressing
the local shipment based on uncertainty, focusing on distribution
functions at the scheduling and planning levels. Furthermore, to our
knowledge, limited research has been done based on the case study
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of local shipment in an uncertain environment. Section 2 provides
the literature review to incorporate this study’s research gap and jus-
tification. Section 3 discusses the recent well-known fuzzy numbers
and the linear heptagonal fuzzy numbers (LHFN) and their opera-
tions. Section 4 deals with formulating a fuzzy transportation model
and incorporating fuzziness concepts. In Section 5, two types of
ranking functions of LHFN are discussed. Section 6 elaborates the
solutionmethodology procedure to solve the heptagonal fuzzy trans-
portation problem (HFTP). Section 7 explains the case study and
numerical examples of the HFTP. Finally, a conclusion is presented
in Section 8.

2. Literature Review

The transportation system naturally has uncertainties, which
is why fuzzy numbers were introduced to represent such uncer-
tainties. The variables in TP are not always well understood
and consistent. Lack of precise information, uncertainty about
transportation costs, varying demand-supply incidents, and other
factors may contribute to imprecision. In 1965, Zadeh [24]
introduced the notion of fuzziness that Bellman and Zadeh rein-
forced. This concept has since been extended into a theory that
applies fuzzy linear programming to solve problems with diverse
objective functions.

Many ranking functions are available in the literature for fuzzi-
fied numbers to defuzzify for further use. The ranking functions are
in a major role in solving optimization problems like TPs, decision-
making problems, traveling salesman problems [25], etc. Song and
Leland [26] and Garg and Rizk-Allah [27] also contributed to the
ranking function and to the adaptive learning technique for solv-
ing these behavioral management problems. Srivastava et al. [28]
present the merits and demerits of various defuzzification strate-
gies that are used in fuzzy set theory, etc. The trapezoidal type-2
fuzzy number is an extension of the trapezoidal fuzzy number. Das
et al. [29] proposed a trapezoidal type-2 fuzzy variable defuzzifi-
cation process centered on a critical value-based reduction method
and nearest interval approximation. Kaur and Kumar [30] used the
ranking function to solve a four-dimensional trapezoidal FTP. Many
applications can be used with FTPs to solve the realistic issues
of transportation, time, cost, reliability, etc. [31, 32]. Ghatee and
Hashemi [33] derived ranking function-based solutions of a fully
fuzzified minimal cost flow problem.

This article emphasizes ranking-based solutions for trans-
portation network problems involving FTPs, aiming to optimize
all uncertain parameters of the transportation network using the
ordering technique introduced by Nishad and Abhishekh [34]. The
advantage of the proposed method of Rani et al. [35] over the
existing procedure is that the fuzzy optimum result is obtained
without any dummy destination. A fuzzy transshipment network
model for a well-balanced diet plan and ranking function-based
transportation problems are solved in different fuzzy environments
[36, 37]. Silmi Juman et al. [38] contributed an approach to cre-
ating an efficient result for the fuzzy TP by using the ranking
function. A zero-position maximum allocation technique for solv-
ing an intuitionistic environment by using the ranking function
and adaptive technique to solve an unknown demand fuzzy TPs
with dual analysis. Aliakbari et al. [39] presented a relief logistics
planning model to optimize the total cost. Bisht and Srivastava
[40] applied a fuzzy trapezoidal technique to optimize the trans-
port model based on information with interval values. Singh and
Singh [41] extended the particle swarm optimization algorithm to
solve the transport system in an uncertain situation. Fuzzy trans-
portation systems for sustainable and damaged items have been

constructed and solved in disaster response operations in fuzzy
environments by researchers [42–46].

Various researchers have developed many fuzzy numbers, but
triangle fuzzy numbers only provide a three-dimensional representa-
tion of uncertainty (low, medium, and high-range values). However,
capturing uncertainty often requires a more flexible approach, lead-
ing to the concept of HFN. It is also known as seven-sided fuzzy
numbers, and it offers a wider range of options for representing
uncertainty compared to triangle fuzzy numbers. They allow for
a more nuanced representation of uncertainty, enabling decision-
makers to make more informed and robust decisions. Additionally,
HFNs offer more accurate and precise representation by including
intermediate values between the extreme ranges.

This study considered a fundamental problem of everyday
food and vegetables bought from a nearby store. Vegetables come
from places where they are readily available, and the transportation
network resembles a vast spider web. Every year, the price of
vegetables fluctuates primarily due to transportation costs. Many
researchers are studying the transportation problem because it is
an important part of human life, involving not just moving from
one place to another but also shifting commodities as a kind of
journey.

2.1. Research gap and contributions

According to the literature review, most of the ranking func-
tions are defined for other existing fuzzy numbers, but the newly
introduced LHFNs have limited ranking functions only. As well,
this fuzzy number is not used in fully fuzzified regional transship-
ment problems. To utilize fuzzy numbers the constrained operations
present in the existing literature, additional investigation is required.
In addition, solutions for heptagonal FTP have not yet been inves-
tigated. Therefore, more research is needed to understand the
capabilities of LHFNs in this context.

A few ranking functions are not widely applicable due to their
complex mathematical formulations. Additionally, current ranking
functions fail to differentiate between highly uncertain LHFNs,
which significantly respect fuzzymembership grades and often arise
in contexts with limited information about a system. The creation
of a new defuzzification method surpasses current techniques. This
innovative approach notably decreases computational effort while
improving the clarity of fuzzy systems. Additionally, it exhibits
enhanced accuracy and robustness when managing uncertain data.
The method also yields promising outcomes in practical appli-
cations. Furthermore, this research addresses identified gaps and
makes the following key contributions:

1) An advanced alpha-cut (𝛼-cut) based ranking function is pro-
posed to determine the defuzzification of fuzzified LHFNs.

2) The concept ofmultiplication and division operations for LHFNs
is introduced as an extension to optimization problems, enhanc-
ing computational techniques.

3) A Heptagonal fuzzy transportation network model has been
developed to examine the proposed algorithm, focusing on opti-
mizing cost and other factors effectively.

4) The developed ranking function has been implemented in prac-
tical situations and algorithms, demonstrated through a specific
case study.

5) The presented weighted operator algorithm shows superior per-
formance in resource allocation and efficiency compared to the
non-weighted operator algorithm, with sensitivity analysis con-
ducted through systematic parameter variations in membership
functions.
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3. Definition and Operations of Heptagonal Fuzzy
Number

Definition 3.1. A fuzzy number ̃Ax = (h1, h2, h3, h4, h5, h6, h7) in
R is an HFN, and then its membership function 𝜇 ̃A ∶ R ⟶ [0, 1]
has the following characteristics [44], as presented in Figure 1. The
membership function is,

𝜇A ̃x (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 forX < h1,
X−h1

2(h2−h1) for h1 ≤ X ≤ h2,
1
2

for h2 ≤ X ≤ h3,
1
2
+ X−h3

2(h4−h3) for h3 ≤ X ≤ h4,
1 forX = h4,
1
2
+ h5−X

2(h5−h4) for h4 ≤ X ≤ h5,
1
2

for h5 ≤ X ≤ h6,
1
2

h7−X

h7−h6
for h6 ≤ X ≤ h7,

0 forX ≥ h7.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 1
Graphical representation of linear heptagonal fuzzy number

Definition 3.2. (Linear heptagonal fuzzy number asymme-
try) A LHFN with asymmetry can be written as ̃ALasx =

{(h1, h2, h3, h4, h5, h6, h7 ∶r, s) ∶ 𝜇 ̃ALasx
(x)}, where membership

function can be described as

𝜇 ̃ALasx
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 forX < h1

r ( X−h1
h2−h1

) for h1 ≤ X ≤ h2

r for h2 ≤ X ≤ h3

r + (1 − r) ( X−h3
h4−h3

) for h3 ≤ X ≤ h4

w forX = h4

s + (1 − s) ( h5−X

h5−h4
) for h4 ≤ X ≤ h5

s for h5 ≤ X ≤ h6

s ( h7−X

h7−h6
) for h6 ≤ X ≤ h7

0 forX ≥ h7

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
The heights of h2 and h3 are “r”, and the height of h5 and h6 is
“s”, and if both heights of the heptagonal asymmetry fuzzy are the
same (r = s), then it’s called a heptagonal symmetry fuzzy number
as shown in Figure 2.

3.1. Arithmetic operations of LHFNs

Let ̃kx = (k1, k2, k3, k4, k5, k6, k7) , L̃x = (l1, l2, l3, l4, l5, l6, l7)
be two LHFNs, and then addition and subtraction are already
available in the literature. Novel operations for LHFNs involving
multiplication and division are presented and described below:

Definition 3.3. (Addition) The + symbol represents the process of
combining two or more LHFNs into a single sum. The addition for-
mula is derived as follows:

K̃x + L̃x = (k1 + l1, k2 + l2, k3 + l3, k4 + l4, k5 + l5, k6 + l6, k7 + l7)
Definition 3.4. (Subtraction) The subtraction formula is derived
as follows: K̃x − L̃x = (k1 − l7, k2 − l6, k3 − l5, k4 − l4, k5 − l3,
k6 − l2, k7 − l1)
Definition 3.5. (Multiplication)The following is the formula for the
multiplication of LHFN, where R (L) denotes the rank of LHFN L̃x

K̃x × L̃x = (k1 × R(l), k2 × R(l), k3 × R(l), k4 × R(l),
k5 × R(l), k6 × R(l), k7 × R(l))

Definition 3.6. (Division) The division formula for any two LHFNs
is as follows: K̃x/L̃x = (k1/R(l), k2/R(l), k3/R(l), k4/R(l), k5/R(l),
k6/R(l), k7/R(l))

Figure 2
Graphical representation of symmetry and asymmetry LHFN
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Example: Let us consider two HFNs: one is K̃ ={12, 15, 19, 20, 21, 25, 28}, and another one is L̃ ={14, 18, 21, 24, 27, 30, 34}.
The multiplication of these two fuzzy numbers is K̃ × L̃ ={288, 360, 456, 480, 504, 600, 672}, and the division of these two

fuzzy numbers is K̃/L̃ ={0.50, 0.62, 0.79, 0.84, 0.87, 1.042, 1.17}.
4. Problem Formulation for Fuzzy Transportation

The HFTP is developed using LHFN as an extension of an FTP.
In the TP, the coefficient of the objective function and constraints,
along with all other parameters, are not assumed to be real num-
bers. However, in the practical situation of a transportation system,
considering a transportation parameter’s fixed value is unrealistic.
Transportation costs for vector, supply, and demand are not always
accurate. Thus, the FTP is more realistic in literature and trans-
portation management practice. Several scholars have investigated
FTP in fuzzy environments. Fuzziness on cost vector, supply, and
demand is used to construct the study as follows:

MinimizeZ = m∑
s=1

n∑
t=1 C̃st ̃Xst

subject to constraints
n∑

t=1 ̃Xst = ̃𝛽s, s = 1, 2, . . . ,m
m∑

s=1 ̃Xst = ̃𝛿t, t = 1, 2, . . . , n
m∑

s=1 ̃𝛽s = m∑
t=1 ̃𝛿t, ̃Xst ≥ 0, for all s and t

(1)

The following parameters are used in this paper to develop the
proposed FTP:̃𝛽s: Fuzzy accessibility at sth source,̃𝛿t: Fuzzy demand at tth destination,

C̃st: Fuzzy transportation cost from source (s) to destination (t),̃Xst: Number of fuzzy units carries over from source to
destination.

The FTP problem can be represented as shown in Table 1.
Now using the instructions given below to assign the supply and
demand units in source and destination, respectively: For combina-
tion {⪯ ̃𝛽, ≈ ̃𝛿} and {⪰ ̃𝛽, ⪰ ̃𝛿} the most desirable allocation is{ ̃𝛿 if ̃𝛽 ⪰ ̃𝛿̃𝛽 if ̃𝛽 ≺ ̃𝛿}. For combination {≈ ̃𝛽, ≈ ̃𝛿} and {⪯ ̃𝛽, ⪯ ̃𝛿}, the

most desirable allocation is minimum of { ̃𝛽, ̃𝛿}. For combination{⪰ ̃𝛽, ≈ ̃𝛿}, the most desirable allocation is ̃𝛿. For combination{⪰ ̃𝛽, ⪰ ̃𝛿}, the most desirable allocation is maximum of { ̃𝛽, ̃𝛿}.
New fuzzy extension parameters are provided under uncer-

tainty for numerous real-world applications. Many researchers have
used fuzzy numbers to evaluate real-life transportation studies,
introducing triangular, trapezoidal, and pentagonal fuzzy numbers
and extending pentagonal fuzzy numbers to hexagonal and HFNs
[44]. This paper presents an 𝛼-cut-based new ranking function as a
theoretical extension of an HFN and its application in FTP.

4.1. Fuzzy basic feasible solution

Standardized form of fuzzy transportation network model con-
version involves max ̃z ≈ C̃x̃, subject to 𝛿x̃ ≈ ̃𝛽, and ̃x ≥ 0̃.
Now, 𝛿 represents an (s × t) nonnegative matrix, while ̃𝛽, C̃, x̃ are
nonnegative fuzzy matrices of dimensions (s × 1) , (1× t, (t × 1),
respectively, comprising LHFNs.

Theorem 4.1. Let’s consider a fuzzy basic feasible solution x̃Γ =Γ−1 ̃𝛽 for (1). Suppose there exists a column 𝛿t in 𝛿 that is not
part of Γ. If ( ̃zt − ̃ct) ≤ 0̃ is satisfied, then yst > 0 for some
s, s ∈ {1, 2, 3,⋯ ,m}, and then achieved fuzzy feasible basic solu-
tion can be constructed through reforming the Γ with 𝛿t values.

Proof. Suppose x̃Γ = ( ̃xΓ1, ̃xΓ2, ̃xΓ3,⋯ , ̃xΓm) is a fuzzy basic fea-
sible solution with k nonnegative components such that

Γ ̃xΓ ≈ ̃𝛽 or ̃xΓ = Γ−1 ̃𝛽, where ̃xΓs = [𝜌s, 𝜎s, 𝜅s, 𝜅s] , 𝜌s ≤𝜎s, 𝜅s ≥ 0 for s = 1, 2, 3, . . . ,m, and 𝜌s+𝜍s

2
> 0 for s =

1, 2, 3, . . . ,k, 𝜌s+𝜍s

2
= 0 to the case of s = k+ i, ⇒ i = 1, 2, . . . ,m.

That is, ̃xΓs > 0̃ case of s = 1, 2, 3, . . . ,k, ̃xΓs = [−𝜎s, 𝜎s, −𝜅s, 𝜅s]
for s = k + 1,k + 2, . . . ,m.
Now the equation Γ ̃xΓ ≈ ̃𝛽 becomes:

m∑
s=1 ̃xΓs𝛽s + [−𝜎k+1, 𝜎k+1, 𝜅k+1, 𝜅k+1] 𝛽𝜍k+1+ [−𝜎k+2, 𝜎k+2, 𝜅k+2, 𝜅k+2] 𝛽k+2+⋯+ [−𝜎m, 𝜎m, 𝜅m, 𝜅m] 𝛽m ≈ ̃𝛽

(2)

That is,∑k
s=1 ̃xΓi𝛽s +∑m

s=k+1 [−𝜎s, 𝜎s, 𝜅s, 𝜅s] 𝛽s ≈ ̃𝛽.
Then for any column 𝛿t of Δ which is not in Γ, we write 𝛿t =∑m

s=1 yst𝛽s = y1t𝛽1 + y2t𝛽2 +⋯+ yrt𝛽r +⋯+ ymt𝛽m = ytΓ.
Table 1

Tabular form of fuzzy transportation problem

Objectives

1 2 3 . . . n Accessibility S̃

1 C̃11 C̃12 C̃13 . . . C̃1n ⪯ / ≈ / ⪰ ̃𝛽1
2 C̃21 C̃22 C̃23 . . . C̃2n ⪯ / ≈ / ⪰ ̃𝛽2
3 C̃31 C̃32 C̃33 . . . C̃3n ⪯ / ≈ / ⪰ ̃𝛽3⋮ ⋮ ⋮ . . . ⋮ ⋮Constraints

m C̃m1 C̃m2 C̃m3 . . . C̃mn ⪯ / ≈ / ⪰ ̃𝛽m

Requirement D̃ ⪯ / ≈ / ⪰ ̃𝛿1 ⪯ / ≈ / ⪰ ̃𝛿2 ⪯ / ≈ / ⪰ ̃𝛿3 . . . ⪯ / ≈ / ⪰ ̃𝛿n
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If the basis vector 𝛽r for which yr ≠ 0 is replaced by 𝛿t of Δ, sub-
sequently, the updated vectors (𝛽1, 𝛽2,⋯ , 𝛽r−1, 𝛿t, 𝛽r+1,⋯ , 𝛽m)
continuously frame a basis.

For yrt ≠ 0 and t ≤ k, can be rewritten 𝛽r = 𝛿t

yrt
−∑m

s = 1
a ≠ r

yst

yrt
𝛽s =

𝛿yyry− ∑k
s = 1
s ≠ r

yst

yrt
𝛽s− ∑m

s=k+1 yst

yrt
𝛽i. Equation (2) transforms

k∑
s=1
s≠r

̃xΓs𝛽s + ̃xΓr𝛽r + m∑
i=k+1 [−𝜎s, 𝜎s, 𝜅s, 𝜅s] 𝜎s ≈ ̃𝛽

⇒ k∑
s=1
s≠r

( ̃xΓs − ̃xΓr

yrt
yst) 𝜎s + ̃xΓr

yrt
𝛿t

+ m∑
s=k+1 ([−𝜎s, 𝜎s, 𝜅s, 𝜅s] − ̃xΓr

yrt
yst) 𝜎s ≈ ̃𝛽

(3)

Since ̃xΓs = [−𝜎s, 𝜎s, 𝜅s, 𝜅s], for s = k + 1,k + 2,⋯ ,m, it follows
that,

k∑
s=1
s≠r

( ̃xΓs − ̃xΓr

yrt
yst) 𝜎s + ̃xΓr

yrt
𝛿t + m∑

s=k+1 ( ̃xΓs − ̃x𝛾r

yrt
yst) 𝜎s ≈ ̃𝛽

where ̂ ̃xΓs = ( ̃xΓs − ̃xΓr

yrt
yst) , s ≠ r and ̂ ̃xΓr = ̃xΓr

yrt
, it will renew an

updated fuzzy solution to Δx̃ ≈ ̃𝛽.
It shows that this updated fuzzy solution is also reliable and feasible.
It needs to

( ̃xΓs − ̃xΓr

yrt
yst) ⪰ 0̃, s ≠ r# (4)

and ̃xΓr

yrt
≥ 0̃.

Select yrt > 0 such that ̃xΓr

yrt
≈ mins { ̃xΓs

yst
∶ yst > 0}. TheñxΓr

yrt
⪯ ̃xΓs

yst

⇒ [ 𝜌r

yrt
, 𝜍r

yrt
, 𝜅r

yrt
, 𝜅r

yrt
] ⪯ [ 𝜌s

yst
, 𝜌s

yst
, 𝜅s

yst
, 𝜅s

yst
] ⇒ [𝛼s

yst
− 𝜌r

yrt
, 𝜌s

yst
−

𝜌r

yrt
, 𝜅r

yrt
+ 𝜅s

yst
, 𝜅r

yrt
+ 𝜅s

yst
] ≥ 0̃.

⇒ { ( 𝜌s

yst
−𝜍r

yrt
)+( 𝜍s

yst
− 𝜌r

yrt
)

2
} ≥ 0 ⇒ (𝜌s+𝜍s

yst
) − (𝜌r+𝜍r

yrt
) ≥ 0

⇒ ( ̃xΓs

yst
− ̃xΓr

yrt
) ≥ 0̃. .

Here, the updated results are fuzzy, feasible results basically.

Once the basic solution vectors are updated, then the resulting vec-
tor ̃Γ = ( ̃𝜎1, ̃𝜎2, . . . , ̃𝜎m), where ̃𝜎s = 𝜎s for s ≠ r and ̃𝜎r =𝛿s. The updated basic fuzzy feasible solution x̂Γ, where ̂ ̃x𝛾s =( ̃xΓs − ̃xΓr

yrt
yst) , s ≠ r and ̂ ̃xΓr = ̃xΓr

yrt
are the basic variables.

5. Development of Ranking in Heptagonal Fuzzy
Number

The existing and new ranking functions and their defuzzifica-
tion are explained in this section. Many fuzzy decision issues use
fuzzy numbers to rate options. A technique is needed to make a
crisp value from imprecise parameters or fuzzy numbers to con-
vey alternate preferences. Sincemany rankingmethods are available
in the literature, this study focuses on the 𝛼-cut method and the
centroid of centroid method. Defuzzification is the process of turn-
ing an imprecise quantity into a precise one, whereas fuzzification
converts precise to fuzzy. The logical union of two or more fuzzy
membership functions defined on the output variable’s universe of
discourse can be the output of a fuzzy process. The defuzzification
and max membership principle, the centroid method, the weighted
average method, the first (or last) of maxima, mean max, center of
largest area, and center of sum techniques are also available here,
only focusing on methods such as those mentioned earlier.

5.1. Exiting ranking function

The existing ranking function serves as a crucial tool for order-
ing elements within a fuzzy environment based on their degrees
of membership. It facilitates more effective decision-making in
respective environments characterized by uncertainty and impreci-
sion parameters. Available ranking functions are the following:

5.1.1. Average ranking method
Khalifa et al. [47] presented an Average Ranking Method

(ARM)method to identify the critical path for project networks with
normalized HFNs. The ranking functions as

R ( ̃Ax) = h1+h2+h3+2h4+h5+h6+h7
8

(5)

5.1.2. Centroid of centroid method
For the centroid of LHFNs, as shown in Figure 3, we make

two trapezoidal and one rhombus divisions of the heptagon, namely,
AHID, DKLG, and IJKD, respectively, and find the centroid of
these separated regions as Z1,Z2, and Z3. The Centroid of Centroid
Method (CCM) [44] is used as a point of reference to estab-
lish the ordering of generalized LHFNs. Compared to the centroid
point of the heptagon, the centroid of centroids Z1,Z2, and Z3
would be a superior position. Let the generalized LHFN ̃Ax =(h1, h2, h3, h4, h5, h6, h7 ∶ W), then the centroids of these triangles
are

Z1 = ( 2h1+7h2+7h3+2h4
18

, 7(w)
36

),
Z2 = ( 2h4+7h5+7h6+2h7

18
, 7(w)

36
),

Z3 = (h4, w

2
). As Z1,Z2, and Z3 form a triangle because they are

non-collinear. Therefore, the centroid Z ̃AH
= ( ̃x, ỹ) of a triangle with

the generalized LHFNs Z1,Z2, and Z3, is

Z ̃AH
( ̃x, ỹ) = (2h1 + 7h2 + 7h3 + 22h4 + 7h5 + 7h6 + 2h7

54 , 11 (w)54 )
The following definition describes the generalized LHFNs’ ranking
function:

R ̃AH
( ̃x, ỹ) = ( 2h1+7h2+7h3+22h4+7h5+7h6+2h7

54
, 11(w)

54
) (6)
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Figure 3
Graphical representation centroid of centroid ranking of LHFN

The generalized LHFN’s ranking is given as follows:

R ̃AH
( ̃x, ỹ) = √ ̃x2 + ̃y2

5.2. Proposed ranking function

To evaluate the ranking of LHFNs, we developed a
ranking technique based on 𝛼-cut. The 𝛼-cut of ̃A =(h1, h2, h3, h4, h5, h6, h7) , 0 ≤ 𝛼 ≤ 1 is ̃A = [ ̃AL (𝛼) , ̃AR (𝛼)] as
follows:

The left 𝛼-cut from h1 to h2 is denoted and defined as

(X−h1)(h2−h1) = 𝛼 → X = h1 + 𝛼 (h2 − h1) then ̃AL1 (𝛼)= L−11 = h1 + 𝛼 (h2 − h1)𝛼 - cut from h2 to h3 is denoted and defined as

(X−h2)(h3−h2) = 𝛼 → X = h2 + 𝛼 (h3 − h2) then ̃AL2 (𝛼)= L−12 = h2 + 𝛼 (h3 − h2)𝛼 - cut from h3 to h4 is denoted and defined as

(X−h3)(h4−h3) = 𝛼 → X = h3 + 𝛼 (h4 − h3) then ̃AL3 (𝛼)= L−13 = h3 + 𝛼 (h4 − h3)
and the right 𝛼− cut from h4 to h5 is as follows

(h3−X)(h5−h4) = 𝛼 → X = h5 + 𝛼 (h5 − h4) then ̃AR1 (𝛼)= R−1
1 = h5 − 𝛼 (h5 − h4)𝛼 - cut from h5 to h6 is given by

(h6−X)(h6−h5) = 𝛼 → X = h6 + 𝛼 (h6 − h5) then ̃AR2 (𝛼)= R−1
2 = h6 − 𝛼 (h6 − h5)

𝛼 - cut from h6 to h7 is follows

(h7−X)(h7−h6) = 𝛼 → X = h7 + 𝛼 (h7 − h6) then ̃AR3 (𝛼)= R−1
3 = h7 − 𝛼 (h7 − h6)

Now the left 𝛼-cut is L−1 (𝛼) = L−11 (𝛼)+L−12 (𝛼)+L−13 (𝛼)
3

, where

L−1(𝛼) = h1+𝛼(h2−h1)+h2+𝛼(h3−h2)+h3+𝛼(h4−h3)
3= h5+h6+h7+𝛼(h4−h7)

3

(7)

Again, the right 𝛼 - cut is R−1 (𝛼) = R−11 (𝛼)+R−12 (𝛼)+R−13 (𝛼)
3

, where

R−1(𝛼) = h5−𝛼(h5−h4)+h6−𝛼(h6−h5)+h7−𝛼(h7−h6)
3= h5+h6+h7+𝛼(h4−h7)

3

(8)

The 𝛼-cut-based new ranking function:

R ( ̃AH) = 1
2

∫w
0 𝛼7[ h1+h2+h3+𝛼(h4−h1)

3
+ h5+h6+h7+𝛼(h4−h7)

3
]d𝛼

∫w
0 𝛼7d𝛼

(9)

Note. The above formula applies to any fuzzy number heights, even
normalized ones. For x = 1, the formula is derived as follows:

R ( ̃AH) = h1+9h2+9h3+16h4+9h5+9h6+h7
54

(10)

5.3. Comparison of ranking function

Let’s consider the LHFN divided into two types: LHFN
symmetry and asymmetry. The general form of the numbers is(h1, h2, h3, h4, h4, h5, h6, h7;w (𝛼)). The examples of the abovemen-
tionedfuzzynumbersare tabulated inTable2, and thederived ranking
methods are compared for HFNs. We compared ranking approaches
using different examples with varying membership values. Table 2

The ranking function results of linear heptagonal fuzzy asym-
metric, symmetric numbers are defuzzified through the introduced
ranking functions in Equation (9). The centroid of centroid and 𝛼-
cut defuzzification methods are used to defuzzify the fuzzy numbers
displayed in Table 2. It clearly explains that the proposed ranking
method gives an exact rank of the taken numbers. If the mem-
bership value of the fuzzy number (1, 2, 3, 4, 5, 6, 7) is 0.1, and
if we defuzzify using existing and proposed ranking methods, the
resulting numbers are 4.0000, 4.0001, and 3.8347, respectively. The
center value of the number is 4 by the membership value 0.1, which
should be reflected, but the existing methods provide slightly
different outcomes from this value. Furthermore, for the member-
ship value 0.7, the defuzzification value of the proposed method

Table 2
Ranking methods comparison by varying membership values

Value of w&𝛼 Fuzzy number ARM CCM Proposed
0.1 (1, 2, 3, 4, 5, 6, 7) 4.0000 4.0001 3.8347
0.3 (5, 9, 10, 12, 14, 15, 19) 12.1250 12.1298 11.8550
0.5 (6, 9, 12, 14, 16, 19, 21) 13.8750 13.9633 13.5680
0.7 (4, 10, 12, 14, 16, 19, 21) 13.7500 14.0192 13.6477
0.9 (3, 5, 9, 11, 13, 15, 19) 10.7500 10.7423 10.2904
1.0 (2, 4, 7, 11, 13, 15, 17) 10.0000 10.4511 9.6863
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(13.6477) for the asymmetric LHFN (4, 10, 12, 14, 16, 19, 21) pro-
vides better results compared to the existing method (13.7500)
because the center of the LHFN is intermediate of two values 13 and
14 of asymmetric LHFN.

To better understand the proposed 𝛼-method efficiency, we
considered LHFN {3, 7, 8, 12, 15 , 17, 20: w (𝛼) with changing val-
ues of w (𝛼) between [0, 1], and then the results of the ranking
methods for this example are graphically represented in Figure 4.
However, the existing ranking function does not affect the ranking
function or expose the ranking method results. The fuzzy set/num-
ber concept emphasizes the membership function. If membership
values increase, the suggested ranking function enhances the results
of defuzzification through the ranking method.

Based on the obtained defuzzification values by using the
above-described procedure on LHFNs; the alpha-cut defuzzified
value for the HFNs yields a more accurate value than the centroid
of centroids technique. Furthermore, when employing LHFN, the𝛼-cut method (Equation (9)) for defuzzification consistently outper-
forms the centroid of centroid method (Equation (6)).

6. Solution Technique for Fuzzy Heptagonal
Transportation

A detailed description of the generalized ranking heptagonal
fuzzy method (GRHFM) is given to solve the FTP. Two novel fuzzy
matrices X (wfcd) and Y (wfcs) are created using the obtained ratios
(p̃i j = d j

si
, i = 1, 2, 3, . . . ,m, and p̃ ji = si

d j
, j = 1, 2, 3, . . . , n)

incorporating a cost multiplier to assign allocations. The suggested
technique executes the allocations using the resultant value of the
fuzzy requirement/availability, beginning with the lowest values in

the new weighted fuzzy transportation cost matrix. The technique
can generate effective IBFS to both balanced and unbalanced prob-
lems, and the algorithm for this purpose is presented as follows in
Algorithm 1:

Algorithm 1 Generalized Ranking Heptagonal Fuzzy Method
Input: Sum of heptagonal fuzzy demands and supplies.

Analyze the equality: If it is equal, then go
to the compute step; otherwise, add dummy
rows or columns to equalize the demand and
supply, and then go to the compute step.

Compute: Proportional fuzzy demand (p̃i j), supply, (p̃ ji)
matrix (PFDM, PFSM):

p̃i j = ̃d j

si

, p̃ ji = ̃sĩd j

, i = 1, 2, 3, . . . ,m, j= 1, 2, 3, . . . , n
Update: Compute the weighted-demand (X), supply (Y)

fuzzy transportation cost matrix (DWFCM,
SWFCM) by multiplying p̃i j, p̃ ji and cost
values.

Allocation: Starting with the matrices DWFCM and
SWFCM, make assignments with the lowest
weighted costs, taking into account fuzzy sup-
ply and demand limitations.

Check feasi-
bility:

Finish the algorithm if all fuzzy requirements
are fulfilled. If not, return back to allocation.

Output: Compare the fuzzy matrix allocation values; set
the smaller value. For the defuzzification of
the obtained IBFS, use the ranking function.

Figure 4
Representation of existing and proposed ranking function defuzzification results
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Figure 5
Flowchart for the representation of GRHFM steps for HFTP

A numerical illustration of the GRHFM through the case study
by applying the presented procedure (Section 7) consisting of five
demands and five supplies. The proposed fuzzy heptagonal trans-
portation problem is described through the algorithm Figure 5.

7. Numerical Exposure

The perishable nature of vegetables makes them unfit for long-
term storage, necessitating their transportation. The transporter has
many problems with many types of vehicles, and vehicle rentals
fluctuate according to fuel cost, capacity, and route. Furthermore, in
some instances, the cost to transport thosevegetables from the farm to
the market is more than the cost to produce a kilogram of vegetables
at the farmer’s end. In that case, the cost of transportation is nearly
equal to the cost of growing vegetables, so the vegetable price is
generallyhigherwhen theyreach thepeople.Therefore, aclearchoice
can be made to incorporate transportation costs with the LHFN for
any transportation problem that persists seven days a week.

7.1. Case study

This case study considers the transport network of famous
markets in Tamil Nadu state, namely, Chennai, Madurai, Trichy,
Coimbatore, and Kumbakonam. Vegetables are used in our daily

lives almost seven (heptagonal) days a week to see how much
the prices go up and down in the months mentioned. The consid-
eration of seven-face fuzzy numbers has been used to represent
the uncertainties of the cost data in the adapted case study prob-
lem. LHFN has explored the opportunity to represent the cost data
variations collected in October from seven local transporters, as
tabulated in Table 3.

The LHFN was used to estimate the price of seven transporter
data from five suppliers to receivers for fivemarkets examined in the
aforementioned months. The ideal cost to transport five vegetable
varieties will be determined by this investigation. The difficulty of
this study is that the city will not have the natural environment to
group all the vegetables, so they are shifting the vegetables from one
market to another according to need. LHFNs are used to calculate
vegetable transportation costs for five markets. Demand and supply
are also implemented in LHFN environments since product costs
vary in availability and demand. This study and strategy will reduce
transportation costs (purchasing).

The HFTP is shown in Table 3, whose sum of all demands∑ ̃ai
and sum of all supply ∑ ̃b j are the same so that the given HFTP
is balanced ∑ ̃ai = ∑ ̃b j = (43,51,65,72,79,93,101). The above
fully fuzzy transportation problem is solved by using the general-
ized ranking heptagonal fuzzy method and obtaining the minimum
fuzzy total transportation cost as sources.

Table 3
Imprecise cost input of fuzzy transportation problem through LHFN

Destinations̃𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (62, 65, 68, 73,

75, 79, 83)
(25, 29, 36, 40,
47, 53, 60)

(3, 4, 8, 9, 10, 13,
14)

(70, 73, 75, 79,
83, 85, 88)

(12, 16, 17, 20,
23, 24, 28)

(10, 12, 15, 16,
17, 20, 22)̃𝛿2 (55, 59, 60, 62,

63, 64, 68)
(86, 89, 91, 93,
95, 96, 99)

(87, 89, 91, 96,
98, 102, 107)

(2, 4, 7, 8, 9, 10,
12)

(5, 7, 8, 13, 15,
17, 19)

(12, 13, 14, 15,
16, 17, 18)̃𝛿3 (90, 93, 94, 96,

97, 100, 104)
(56, 58, 62, 65,
68, 72, 75)

(72, 73, 79, 80,
84, 87, 89)

(44, 45, 47, 50,
53, 55, 56)

(59, 62, 64, 65,
66, 68, 71)

(11, 13, 15, 17,
19, 21, 23)̃𝛿4 (48, 50, 53, 57,

59, 63, 65)
(50, 53, 56, 58,
60, 64, 67)

(23, 25, 26, 29,
31, 34, 36)

(6, 7, 9, 12, 13,
15, 17)

(81, 83, 86, 87,
88, 91, 93)

(4, 6, 10, 11, 12,
16, 18)

Sources

̃𝛿5 (48, 52, 53, 56,
59, 60, 64)

(15, 17, 20, 23,
24, 28, 30)

(81, 84, 86, 87,
88, 90, 93)

(11, 15, 16, 18,
19, 21, 23)

(4, 6, 9, 12, 15,
17, 19)

(6, 7, 11, 13, 15,
19, 20)̃𝛿 (8, 10, 13, 14, 15,

18, 20)
(11, 13, 14, 16,
18, 19, 21)

(11, 12, 16, 18,
20, 24, 25)

(6, 7, 11, 12, 13,
17, 18)

(7, 9, 11, 12, 13,
15, 17)

(43, 51, 65, 72,
79, 93, 101)
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Table 4
Transportation problem using formula p̃ij = dj

si
to find PFDM

Destinations̃𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (0.50, 0.63, 0.81,

0.88, 0.94,
1.13, 1.25)

(0.69, 0.81, 0.88,
1.00, 1.13,
1.19, 1.31)

(0.69, 0.75, 1.00,
1.13, 1.25,
1.50, 1.56)

(0.38, 0.44, 0.69,
0.75, 0.81,
1.06, 1.13)

(0.44, 0.56, 0.69,
0.75, 0.81,
0.94, 1.06)

(10, 12, 15, 16,
17, 20, 22)

̃𝛿2 (0.53, 0.67, 0.87,
0.93, 1.00,
1.20, 1.33)

(0.73, 0.87, 0.93,
1.07, 1.20,
1.27, 1.40)

(0.73, 0.80, 1.07,
1.20, 1.33,
1.60, 1.56)

(0.40, 0.47, 0.73,
0.80, 0.87,
1.13, 1.20)

(0.47, 0.60, 0.73,
0.80, 0.87,
1.00, 1.13)

(12, 13, 14, 15,
16, 17, 18)

̃𝛿3 (0.47, 0.59, 0.76,
0.82, 0.88,
1.06, 1.18)

(0.65, 0.76, 0.82,
0.94, 1.06,
1.12, 1.24)

(0.65, 0.71, 0.94,
1.06, 1.18,
1.41, 1.47)

(0.35, 0.41, 0.65,
0.71, 0.76,
1.00, 1.06)

(0.41, 0.53, 0.65,
0.71, 0.76,
0.88, 1.00)

(11, 13, 15, 17,
19, 21, 23)

̃𝛿4 (0.73, 0.91, 1.18,
1.27, 1.45,
1.64, 1.82)

(1.00, 1.18, 1.27,
1.45, 1.64,
1.73, 1.91)

(1.00, 1.09, 1.45,
1.64, 1.82,
2.18, 2.27)

(0.55, 0.64, 1.00,
1.09, 1.18,
1.55, 1.64)

(0.64, 0.82, 1.00,
1.09, 1.18,
1.36, 1.55)

(4, 6, 10, 11, 12,
16, 18)

̃𝛿5 (0.62, 0.77, 1.00,
1.08, 1.15,
1.38, 1.54)

(0.85, 1.00, 1.08,
1.23, 1.38,
1.43, 1.62)

(0.85, 0.92, 1.23,
1.38, 1.54,
1.85, 1.92)

(0.46, 0.54, 0.85,
0.92, 1.00,
1.31, 1.38)

(0.54, 0.69, 0.85,
0.92, 1.00,
1.15, 1.31)

(6, 7, 11, 13, 15,
19, 20)

Sources

̃𝛿 (8, 10, 13, 14, 15,
18, 20)

(11, 13, 14, 16,
18, 19, 21)

(11, 12, 16, 18,
20, 24, 25)

(6, 7, 11, 12, 13,
17, 18)

(7, 9, 11, 12, 13,
15, 17)

Table 5
Constructing PFSM of the transportation problem using the formula ̃𝑝𝑗𝑖 = 𝑠𝑖𝑑𝑗

Destinations̃𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (51.83, 62.78,

78.11, 83.22,
88.33, 104.39,
114.61)

(25.2, 30.0, 37.6,
40.0, 42.4,
50.0, 55.2)

(5.04, 6.03, 7.47,
8.01, 8.46,
9.99, 10.98)

(65.57, 102.7,
98.75, 105.07,
112.18,
131.93,
144.57)

(16.6, 26.0, 25.0,
26.6, 28.4, 33.4,
36.6)

(10, 12, 15,
16, 17, 20,
22)

̃𝛿2 (53.32, 57.66,
62,66.34,
70.68, 75.02,
79.98)

(69.75, 75.33,
81.84, 180.42,
93.0, 98.58,
105.09)

(64.32, 69.12,
74.88, 79.68,
85.44, 90.24,
96.00)

(8.00, 8.64,
9.36, 10.00,
10.64, 11.36,
12.00)

(13.00, 14.04,
15.21, 16.25,
17.29, 18.46,
19.50)

(12, 13, 14,
15, 16, 17,
18)

̃𝛿3 (75.84, 89.28,
102.72,
116.16,
130.56,
144.00,
157.44)

(44.85, 48.75,
61.1, 68.9,
77.35, 85.15,
93.60)

(48.8, 57.6, 66.4,
75.2, 84.8,
93.6, 102.4)

(46.0, 54.0,
62.5, 71.0,
79.0, 87.5,
96.0)

(59.80, 70.20,
81.25, 92.30,
102.70, 113.75,
124.80)

(11, 13, 15,
17, 19, 21,
23)

̃𝛿4 (16.53, 24.51,
40.47, 45.03,
49.02, 64.98,
73.53)

(14.5, 22.04,
36.54, 40.02,
43.5, 58.0,
65.54)

(6.38, 9.57,
16.24, 17.69,
19.43, 25.81,
29.00)

(3.96, 6.00,
11.04, 12.00,
15.96, 15.96,
18.00)

(28.71, 43.50,
80.04, 87.00,
115.71, 115.71,
130.50)

(4, 6, 10, 11,
12, 16, 18)

̃𝛿5 (24.08, 28.00,
44.24, 52.08,
59.92, 76.16,
80.08)

(8.74, 10.12,
15.87, 18.63,
21.62, 27.37,
28.75)

(28.71, 33.93,
53.07, 62.64,
72.21, 92.22,
96.57)

(9.00, 10.44,
16.56, 19.44,
22.50, 28.44,
30.06)

(6.00, 6.96, 11.04,
12.96, 15.00,
18.96, 20.04)

(6, 7, 11, 13,
15, 19, 20)

Sources

̃𝛿 (8, 10, 13, 14,
15, 18, 20)

(11, 13, 14, 16,
18, 19, 21)

(11, 12, 16, 18,
20, 24, 25)

(6, 7, 11, 12, 13,
17, 18)

(7, 9, 11, 12, 13,
15, 17)

The derived Table 4 is the second step of the proposed algo-
rithm. In the first column of this table, demand D̃1 is divided by
one by one S̃1, S̃2, S̃3, S̃4, and S̃5. The same way proceeds for all the
columns. It means the heptagonal fuzzy demand is divided by the
heptagonal fuzzy supply by using the proposed division formula.

Table 5 is framed based on the compute comment of the pro-
posed algorithm. In the first row of this table, supply S̃1 is divided

by D̃1, D̃2, D̃3, D̃4, and D̃5. The same way calculates for all supply
rows. The proposed division formula for LHFNs has been imple-
mented to divide the heptagonal fuzzy supply by the heptagonal
fuzzy demands.

Using the proportional fuzzy demand matrix ( ̃Pi j) in Table 4,
we can proceed to derive the next step (Table 6) by an operation on
each cell that could bemultiplied by the cost matrix table, which was
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Table 6
Demand-weighted fuzzy transportation cost matrix

Destinations̃𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (36.5, 45.99,

59.13, 64.24,
68.62, 82.49,
91.25)

(27.6, 32.4, 35.2,
40.0, 45.2, 47.6,
52.4)

(6.21, 6.75, 9,
10.17, 11.25,
13.5, 14.04)

(30.02, 34.76,
54.51, 59.25,
63.99, 83.74,
89.27)

(8.8, 11.2, 13.8,
15, 16.2,
18.8, 21.2)

(10, 12, 15,
16, 17, 20,
22)

̃𝛿2 (32.86, 41.54,
53.94, 57.66,
62, 74.4, 82.46)

(67.89, 80.91,
86.49, 99.51,
111.6, 118.11,
130.2)

(70.08, 76.80,
102.72,
115.20127.68,
153.60, 149.76)

(3.20, 3.76, 5.84,
6.40, 6.96, 9.04,
9.60)

(6.11, 7.80,
9.49, 10.40,
11.31, 13.0,
14.69)

(12, 13, 14,
15, 16, 17,
18)

̃𝛿3 (45.12, 56.64,
72.96, 78.72,
84.48, 101.76,
113.28).60)

(42.25, 49.40,
53.30, 61.10,
68.90, 78.65,
80.60)

(52.0, 56.80,
75.20, 84.80,
94.40, 112.80,
117.60)

(17.5, 20.5, 32.5,
35.5, 38.0, 50.0,
53.0)

(26.65, 34.45,
42.25, 46.15,
49.4, 57.2,
65.0)

(11, 13, 15,
17, 19, 21,
23)

̃𝛿4 (41.61, 51.87,
67.26, 72.39,
82.65, 93.48,
103.74)

(58.0, 68.44,
73.66, 84.1,
95.12, 100.34,
110.78)

(29.0, 31.61,
42.05, 47.56,
52.78, 63.22,
65.83)

(6.60, 7.68, 12.0,
13.08, 14.16,
18.6, 19.68)

(55.68, 71.34,
87.0, 94.83,
102.66,
118.32,
134.85)

(4, 6, 10, 11,
12, 16, 18)

Sources

̃𝛿5 (34.72, 43.12,
56.060.48, 64.4,
77.28, 86.24)

(19.55, 23.0,
24.84, 28.29,
31.74, 32.89,
37.26)

(73.95, 80.04,
107.01, 120.06,
133.98, 160.95,
167.04)

(8.28, 9.72, 15.3,
16.56, 18.0,
23.58, 24.84)

(6.48, 8.28,
10.2, 11.04,
12.0, 13.8,
15.72)

(6, 7, 11, 13,
15, 19, 20)

̃𝛿 (8, 10, 13, 14, 15,
18, 20)

(11, 13, 14, 16, 18,
19, 21)

(11, 12, 16, 18, 20,
24, 25)

(6, 7, 11, 12, 13,
17, 18)

(7, 9, 11, 12, 13,
15, 17)

represented in the initial FTP. For example, let’s take the value of
PFDM in cell ̃X11 and take the value of ̃X11 in Table 1 and multiply
via the proposedmultiplication formula to obtain the weighted fuzzy
cost matrix by demand (DWFCM).

The proportional fuzzy supply matrix ( ̃P ji) in Table 5 has been
used to derive the SWFCM matrix in Table 7 by the following pro-
cess: multiplying the initial corresponding FTP ̃X11 cell value of
Table1 with PFSM cell value ̃X11 in Table 5 usingmultiplication for-
mula to obtain the results. These are tabulated in a supply-weighted
fuzzy transportation cost matrix.

Allocate the fuzzy supply and fuzzy demand depending upon
the fuzzy costs of the vegetables for Table 6 based on the proposed
fuzzy transport problem model Equation (1). We obtain the one set
of optimal results tabulated in Table 8 using DWFCM.

Table 6 obtained fuzzy total transportation cost as, (1783, 1916,
2140, 2310, 2438, 2643, 2793). Allocate the fuzzy supply and fuzzy
demand depending upon the fuzzy costs of the vegetables for Table
7, through the proposed fuzzy transport problem model (1) using
SWFCM. It provided another set of optimal results for SWFCM tab-
ulated in Table 9 using SWFCM.

Table 7 provided fuzzy total transportation costs as (2122.8,
2276.7, 2482.8, 2619.9, 2739, 2929, 3100). Finally, the proposed
method for solving the HFTP produced two results based on
DWFCM results (1783, 1916, 2140, 2310, 2438, 2643, 2793
as shown in Table 8, and SWFCM is (2122.8, 2276.7, 2482.8,
2619.9, 2739, 2929, 3100) as presented in Table 9. The result of
DWFCM is that after taking the ranking, it provides 2608.64 and
for SWFCM, 2292.02. By comparing these results, the minimum
value obtained from the results (1783, 1916, 2140, 2310, 2438,
2643, 2793) after ranking the fuzzy solutions is 2292.02. Compar-
ing the As mentioned above, a new methodology for resolving the

heptagonal fuzzy environment transportation problem, upon get-
ting solutions, is compared to select the minimum solution. The
minimum solution is the optimal feasible solution for the solved
FTP by this algorithm.

7.2. Comparison of solution

This study conducts a comprehensive comparison of solu-
tion methods to address the fuzzy feasible solution of the FTP.
Additionally, the FTP is solved using various well-known exist-
ing methods, namely, (i) generalized fuzzy least cost method
(GFLCM), (ii) generalized fuzzy north-west corner method (GFN-
WCM), and (iii) generalized fuzzy Vogel’s approximation method
(GFVAM).

Through rigorous experimentation and analysis, we evalu-
ate the efficiency, accuracy, and computational complexity of
each method. This comparative study aims to unveil the strengths
and limitations of diverse approaches, providing decision-makers
and practitioners with valuable insights to choose the most suit-
able method based on the specific characteristics and constraints
of the transportation scenarios. The obtained solutions from the
mentioned methods providing heptagonal fuzzy solutions are tab-
ulated in Table 10. The solution obtained by using GFNWCM
is (3558, 3708, 3955, 4154 , 4342, 4527, 4726), and after ranking,
the solution is 4139.56. The same way for GFLCM obtained
results is (1798, 1934, 2167, 2331, 2468, 2667, 2820), and then
the ranking value is 2315.52, and by using GFVAM, the obtained
result is (1837, 1970, 2140, 2328, 2420, 2625, 2784), and then the
ranking of the obtained solution is 2301.19. The above obtained
fuzzy total transportation costs by using various methods are tab-
ulated below:
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Table 7
Supply-weighted fuzzy transportation cost matrix

Destinatioñ𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (51.83, 62.78,

78.11, 83.22,
88.33, 104.39,
114.61)

(25.2, 30.0, 37.6,
40.0, 42.4,
50.0, 55.2)

(5.04, 6.03, 7.47,
8.01, 8.46,
9.99, 10.98)

(65.57, 102.7,
98.75, 105.07,
112.18,
131.93,
144.57)

(16.6, 26.0, 25.0,
26.6, 28.4,
33.4, 36.6)

(10, 12, 15, 16,
17, 20, 22)

̃𝛿2 (53.32, 57.66,
62, 66.34,
70.68, 75.02,
79.98)

(69.75, 75.33,
81.84, 180.42,
93.0, 98.58,
105.09)

(64.32, 69.12,
74.88, 79.68,
85.44, 90.24,
96.00)

(8.00, 8.64, 9.36,
10.00, 10.64,
11.36, 12.00)

(13.00, 14.04,
15.21, 16.25,
17.29, 18.46,
19.50)

(12, 13, 14, 15,
16, 17, 18)

̃𝛿3 (75.84, 89.28,
102.72,
116.16,
130.56,
144.00,
157.44)

(44.85, 48.75,
61.1, 68.9,
77.35, 85.15,
93.60)

(48.8, 57.6, 66.4,
75.2, 84.8,
93.6, 102.4)

(46.0, 54.0, 62.5,
71.0, 79.0,
87.5, 96.0)

(59.80, 70.20,
81.25, 92.30,
102.70,
113.75,
124.80)

(11, 13, 15, 17,
19, 21, 23)

̃𝛿4 (16.53, 24.51,
40.47, 45.03,
49.02, 64.98,
73.53)

(14.5, 22.04,
36.54, 40.02,
43.5, 58.0,
65.54)

(6.38, 9.57,
16.24, 17.69,
19.43, 25.81,
29.00)

(3.96, 6.00,
11.04, 12.00,
15.96, 15.96,
18.00)

(28.71, 43.50,
80.04, 87.00,
115.71,
115.71,
130.50)

(4, 6, 10, 11, 12,
16, 18)

Sources

̃𝛿5 (24.08, 28.00,
44.24, 52.08,
59.92, 76.16,
80.08)

(8.74, 10.12,
15.87, 18.63,
21.62, 27.37,
28.75)

(28.71, 33.93,
53.07, 62.64,
72.21, 92.22,
96.57)

(9.00, 10.44,
16.56, 19.44,
22.50, 28.44,
30.06)

(6.00, 6.96,
11.04, 12.96,
15.00, 18.96,
20.04)

(6, 7, 11, 13, 15,
19, 20)

̃𝛿 (8, 10, 13, 14,
15, 18, 20)

(11, 13, 14, 16,
18, 19, 21)

(11, 12, 16, 18,
20, 24, 25)

(6, 7, 11, 12, 13,
17, 18)

(7, 9, 11, 12, 13,
15, 17)

Table 8
Solution of proposed heptagonal fuzzy transportation problem obtained by DWFCM (Result set-1)

Destinatioñ𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (10, 12, 15, 16, 17,

20, 22)
(10, 12, 15,
16, 17, 20,
22)̃𝛿2 (6, 7, 11, 12, 13,

17, 18)
(–6, –4, 1, 3,
5, 10, 12)

(–12, –6,–3, 0,
3, 8, 12, 18)

(12, 13, 14,
15, 16, 17,
18)̃𝛿3 (–27, –18, –4, 5,

14, 28, 37)
(–14, –7, 5, 12,
19, 31, 38)

(11, 13, 15,
17, 19, 21,
23)̃𝛿4 (–11, –6, 5, 9,

13, 23, 29)
(–11, –8, –1, 2, 5,
12, 15)

(4, 6, 10, 11,
12, 16, 18)

Sources

̃𝛿5 (–17,–12, –1, 4,
9, 20, 25)

(–5, –1, 6, 9,
12, 19, 23)

(6, 7, 11, 13,
15, 19, 20)̃𝛿 (8, 10, 13, 14,

15, 18, 20)
(11, 13, 14, 16,
18, 19, 21)

(11, 12, 16, 18, 20,
24, 25)

(6, 7, 11, 12,
13, 17, 18)

(7, 9, 11, 12,
13, 15, 17)

Here the comparison of the solution table is very effective in
understanding the effectiveness of the proposed method, and all the
methods of LHFNs height are 1, which means the value of 𝛼 and the
value of w for the centroid method. The proposed method GRHFM
gives the least fuzzy total transportation cost. From the result, it can
be concluded that the proposed method will be more efficient in
finding the optimal transportation cost than any other method.

7.3. Sensitivity analysis

In this section, we discuss the different solutions and their
ranges of 𝛼 and w. The table below explains that if the value of 𝛼
is 1, then the fuzzy solution after ranking is more reliable. When
the value of 𝛼 decreases, the solution’s reliability and effectiveness
also decrease. The last table (Table 10) in the problem is tabulated
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Table 9
Solution of proposed heptagonal fuzzy transportation problem by applying SWFCM concept (Result set-2)

Destinatioñ𝛽1 ̃𝛽2 ̃𝛽3 ̃𝛽4 ̃𝛽5 ̃𝛽
̃𝛿1 (10, 12, 15, 16,

17, 20, 22)
(10, 12, 15, 16,
17, 20, 22)̃𝛿2 (–6, –4, 1, 3, 5,

10, 12)
(6, 7, 11, 12, 13,
17, 18)

(12, 13, 14, 15,
16, 17, 18)̃𝛿3 (–4, 0, 8, 11, 14,

22, 26)
(–31, –20, –3, 6,
15, 33, 43)

(11, 13, 15, 17,
19, 21, 23)̃𝛿4 (–11, –6, 5, 9,

13, 23, 29)
(–11, –8, –1, 2,
5, 12, 15)

(4, 6, 10, 11, 12,
16, 18)

Sources

̃𝛿5 (–11, –8, –2, 1,
4, 10, 13)

(7, 9, 11, 12, 13,
15, 17)

(6, 7, 11, 13, 15,
19, 20)̃𝛿 (8, 10, 13, 14,

15, 18, 20)
(11, 13, 14, 16,
18, 19, 21)

(11, 12, 16, 18,
20, 24, 25)

(6, 7, 11, 12, 13,
17, 18)

(7, 9, 11, 12, 13,
15, 17)

Table 10
Comparison of solutions for different methods based on ranking concepts under fuzziness

Method Fuzzy total transportation cost Optimal transportation cost using ranking

GFNWCM (3558, 3708, 3955, 4154, 4342, 4527, 4726) 4139.56
GFLCM (1798, 1934, 2167, 2331, 2468, 2667, 2820) 2315.52
GFVAM (1837, 1970, 2140, 2328, 2420, 2625, 2784) 2301.19
GRHFM (1783, 1916, 2140, 2310, 2438, 2643, 2793) 2292.02

Table 11
Comparison of solutions and their deviation for varying 𝛼 for different techniques𝜶 -value Method Fuzzy total transportation cost 𝜶-cut total Deviation(%)

GFNWCM (3558, 3708, 3955, 4154, 4342, 4527, 4726) 4136.36 57.616%
GFLCM (1798, 1934, 2167, 2331, 2468, 2667, 2820) 2309.65 1.0227%
GFVAM (1837, 1970, 2140, 2328, 2420, 2625, 2784) 2296.52 0.4526%

0.1

GRHFM (1783, 1916, 2140, 2310, 2438, 2643, 2793) 2286.15 0.0000%

GFNWCM (3558, 3708, 3955, 4154, 4342, 4527, 4726) 4137.07 57.579%
GFLCM (1798, 1934, 2167, 2331, 2468, 2667, 2820) 2310.96 1.0221%
GFVAM (1837, 1970, 2140, 2328, 2420, 2625, 2784) 2297.56 0.4406%

0.3

GRHFM (1783, 1916, 2140, 2310, 2438, 2643, 2793) 2287.46 0.0000%

GFNWCM (3558, 3708, 3955, 4154, 4342, 4527, 4726) 4137.78 57.543%
GFLCM (1798, 1934, 2167, 2331, 2468, 2667, 2820) 2312.26 1.0215%
GFVAM (1837, 1970, 2140, 2328, 2420, 2625, 2784) 2298.59 0.4286%

0.5

GRHFM (1783, 1916, 2140, 2310, 2438, 2643, 2793) 2288.76 0.0000%

GFNWCM (3558, 3708, 3955, 4154, 4342, 4527, 4726) 4137.78 57.543 %
GFLCM (1798, 1934, 2167, 2331, 2468, 2667, 2820) 2313.56 1.0209%
GFVAM (1837, 1970, 2140, 2328, 2420, 2625, 2784) 2299.63 0.4170%

0.7

GRHFM (1783, 1916, 2140, 2310, 2438, 2643, 2793) 2290.06 0.0000%

GFNWCM (3558, 3708, 3955, 4154, 4342, 4527, 4726) 4139.20 57.470%
GFLCM (1798, 1934, 2167, 2331, 2468, 2667, 2820) 2314.87 1.0204%
GFVAM (1837, 1970, 2140, 2328, 2420, 2625, 2784) 2300.67 0.4050%

0.9

GRHFM (1783, 1916, 2140, 2310, 2438, 2643, 2793) 2291.37 0.0000%
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Figure 6
Graphical visualization of feasible solutions for different values of 𝛼

for the value of 𝛼 = 1. But here we have varied the values of 𝛼 like
0.1, 0.3, 0.5, 0.7, 0.9.

The value of 𝛼 = 0.1 means the solution of 𝛼-cut ranking
function has defuzzifying the fuzzified solution, which is 2286.15;
for the value of 𝛼 is increasing, it means that the proposed rank-
ing function and solution methodology have provided better results
compared with another ranking function centroid of the centroid
based on Table 2. For the value of 𝛼 0.9, the ranking function
for GFNWCM, GFLCM, GFVAM, and GRHFM method has pro-
vided results, which are 4139.20, 2314.87, 2300.67, and 2291.37. It
appears that the lowest price is obtained by the proposed method for
the HFTP. It gives a more effective and reliable heptagonal fuzzy
cost for the study of this problem. The different levels of 𝛼-cut and
height (w) are analyzed, and the solutions are tabulated in Table 11,
based on the solutions. We take the result that the value of 𝛼 (= w)
gives the same result, but our proposed classification method gives
an optimal range solution based on the value of 𝛼. As part of our
proposed solution methodology and classification function, we per-
formed a sensitivity analysis to improve comprehension.

The results of this study’s sensitivity have been analyzed by
varying the values of 𝛼, as represented in Figure 6. The proposed
framework can effectively solve the FTP under generalized linear
heptagonal fuzzy with the conditions. The framework can handle
various transportation modes, scenarios, and constraints and can
rank the alternatives and select the best option according to the cri-
teria and preferences of the decision-makers. Therefore, we claim
that our proposed GRHFMmethod for the transportation problem in
a heptagonal fuzzy environment gives an efficient solution in addi-
tion to the existing methods.

From the results of optimal feasible solutions for various
methods based on the experimental data, the different values of

membership (𝛼) provide different solutions. The corresponding
values for GFNWCM, GFLCM, GFVAM, and GRHFM provide
insights into the impact of these conditions on the measured
variables. The objective of minimizing the cost of vegetable trans-
shipment extends to the results of all methods of comparison.
GRHFM provides better results. We compared the other method’s
results with this method’s solution, and the deviations are signifi-
cant as visualized in Table 11. The GFNWCM for the values of 𝛼
is 0.1, 0.3, 0.5, 0.7, and 0.9 having deviations are 57.616, 57.579,
57.543, 57.506, and 57.470. As for other methods, deviations are
1.0227 1.0221, 1.0215, 1.0209, and 1.0204 for GFLCM, and the
resulting deviations in percentage for GFVAM are 0.4526, 0.4406,
0.4286, 0.4170, and 0.4050. According to the outcome of the trans-
portation costs as per the changes of 𝛼-values, all the methods’
results are decreasing; if the values of 𝛼 have increased, then the
optimal feasible result has decreased to reach a better decision for
the solution for FTP.

8. Conclusion

In this study, we have developed a ranking technique for
LHFNs using 𝛼-cut-based technique. For evaluating this 𝛼-cut-
based technique from the available literature, the average and
centroid of the centroid ranking technique are adopted and then ana-
lyzed by changing the values of the height of the fuzzy number.
The main advantage of the proposed approach is that it provides a
consistent ranking order of generalized fuzzy numbers, as demon-
strated through several numerical examples and comparisons with
existing methods. A novel approximate solution technique gener-
ates the crucial IBFS for FTP as a unique problem under fuzziness.
The proposed method, based on a heuristic structure, differs from
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the earlier methods in that it considers the fuzzy cost and the fuzzy
supply-demand coverage ratio (weights). Compared to an existing
ranking function, the proposed ranking function defuzzy the fuzzy
numbers better, indicating that the 𝛼-cut ranking approach is appro-
priate for defuzzifying the LHFN.

The proposed method can solve all FTPs in a similar way,
without any restrictions, which is another superior feature. This
technique has allocated sources according to the demand for goods,
which is assignedmuchmore quickly thanGFVAMandGFNWCM.
According to the results obtained, the ranking of the proposed 𝛼-cut
method gives an appreciated value for finding the reliable trans-
shipment cost compared with the solution of the ranking technique
through the centroid of centroids for LHFNs. The proposedGRHFM
is for solving the heptagonal FTP and gives more effective results
compared with other existing methods. This method is also suitable
for solving both balanced and unbalanced transportation problems.

For future research, LHFNs can be applied in various real-life
applications such as cargo loading, networking, assignment, linear
programming problems, etc. The observed trends and relationships
for the fuzzy-based results of FTP can be developed by propos-
ing new defuzzification techniques for LHFN to provide valuable
insights into the experimental validations.
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