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Abstract: In contrast to a standard closed-set domain adaptation task, partial domain adaptation setup caters to a realistic scenario by relaxing
the identical label set assumption. The fact of source label set subsuming the target label set, however, introduces few additional obstacles as
training on private source category samples thwart relevant knowledge transfer andmislead the classification process. Tomitigate these issues,
we devise a mechanism for strategic selection of highly confident target samples essential for the estimation of class-importance weights.
Furthermore, we capture class-discriminative and domain-invariant features by coupling the process of achieving compact and distinct
class distributions with an adversarial objective. Experimental findings over numerous cross-domain classification tasks demonstrate the
potential of the proposed technique to deliver superior and comparable accuracy over existing methods.
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1. Introduction

The effectiveness of deep-classification networks is
conditioned on the accessibility of annotated data which is, often,
not readily available. Domain adaptation (DA) methods (Ganin
et al., 2016; Li et al., 2020) mitigate this annotation demand by
transferring knowledge from an already-labeled dataset in a
related domain. A majority of the existing DA approaches (Ganin
& Lempitsky 2015; Ganin et al., 2016; Li et al., 2020) assumes
that labeled and unlabeled domains share identical label set. In
practice, however, obtaining a suitably labeled domain (source)
with such a tight restriction on the label space is challenging.
Partial domain adaptation (pda) (Cao et al., 2018a) relaxes this
constraint by utilizing a large-scale source domain data that
subsumes the target label space.

Such a relaxation introduces the issue of superfluous
information transfer from samples private to source domain
(negative transfer) (Cao et al., 2018a; Cao et al., 2019), thereby
thwarting the classification performance. Existing solutions (Cao
et al., 2018a, 2018b, 2019; Zhang et al., 2018a) have attempted to
down-weight such samples by re-weighting them or by
performing category-level aggregation of all target sample
predictions, for estimating class-importance. However, poor

classification at the initial stages of training may induce severe
errors in such estimations, thereby misleading the optimization
process. In this work, we address the negative transfer problem by
strategically employing a subset of the target samples for adaptive
estimation of class-importance weights.

Prior works (Cao et al., 2018a, 2018b, 2019; Choudhuri et al.,
2020; Zhang et al., 2018a) have focused on the effectiveness of
aligning the latent distributions of source and target via an
adversarial objective. Achieving domain invariance is, however, a
necessary but not a sufficient condition for improving target
classification performance; mitigating the conditional distribution
mismatch across two domains is equally essential (Jing et al.,
2020). Citing this, we have designed a strategy to extract both
category-discriminative and domain-invariant features by
coupling an adversarial objective with a process aimed for
obtaining more compact class distributions.

2. Related Work

A series of works, in recent years, have explored the
effectiveness of deep-neural architectures for mitigating domain
shift and transferring underlying knowledge across domains in
domain adaptation tasks (Hoffman et al., 2014; Oquab et al.,
2014; Yosinski et al., 2014). A different line of work (Zhang
et al., 2018b) has utilized high-order statistical properties, like
maximum-mean discrepancy, to align the data distribution across
domains and successfully eliminate domain discrepancy. Authors
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in Ganin et al. (2016), Li et al. (2019) have utilized adversarial
learning to design a mini-max game for obtaining domain-
invariant features. Unfortunately, they operate on a restrictive uda
environment and does not scale satisfactorily in a pda setup. To
tackle pda tasks, Selective Adversarial Network (SAN) (Cao et al.,
2018a) utilizes multiple adversarial networks to down-weight
private source category samples. Cao et al. (2018b) extend this
concept to formulate class-importance weighting using all target
samples. Importance-Weighted Adversarial Nets (IWAN) (Zhang
et al., 2018a) employ an auxiliary domain discriminator to
determine the membership of a source sample in the target domain.
Example Transfer Network (ETN) (Cao et al., 2019) operates on
similar lines, by exploiting discriminative information as the
transferability quantification for source domain samples. Albeit
surpassing the performance of standard domain adaptation
approaches, poor classification at the initial stages of training of
these models may induce severe errors in private source category
estimations, thereby misleading the classification task.

3. Methodology

3.1. Problem settings

A typical Unsupervised Domain-Adaptation (uda) setup
assumes that the source s and target t samples are drawn from
different probability distributions (Sugiyama et al., 2007). As
witnessed in such an environment, we are furnished with a source
dataset Ds ¼ f< xis; yis >gjDt j

i¼1 of jDsj labeled points, sampled from

a distribution Ps, and an unlabeled dataset Dt ¼ fxjtgjDt j
j¼1 of jDt j

samples, representing target t, drawn from distribution Pt (xsi, xtj ∈Rd

and Ps≠ Pt). Since target class label information is unavailable dur-
ing adaptation, the closed-set variant assumes samples in Ds and Dt

categorized into classes from known label setsCs andCt respectively,
whereCs=Ct.Partial DA (pda) generalizes this characterization and
addresses a realistic scenario by alleviating the constraint of identical
label space assumptions between the two domains (i.e., Ct⊆Cs).

We aim to design a classifier hypothesis h : xt→ yt (h ∈H) that
minimizes the target classification risk under a PDA setup. This is
achieved by leveraging source domain supervision to capture class-
semantic information, along with minimizing misalignment due to
negative transfer from samples < xs, ys> ∈Ds– in label space Cs−Ct,
where Ds̄ ¼ f< xs; ys > j < xs; ys >2 Ds; ys 2 Cs � Ctg.

3.2. Proposed approach

In this section, we present the proposed framework that couples
adversarial learning with a selective voting strategy to mitigate
domain discrepancy, while achieving class-distribution alignment.

3.2.1. Domain-invariant feature extraction with
adversarial learning

The idea of coupling adversarial learning with domain-invariant
feature extraction has been extensively researched in domain
adaptation problems (Cao et al., 2018a; Ganin et al., 2016).
Motivated by the effectiveness of Domain Adversarial Neural
Network (DANN) (Ganin et al., 2016) frameworks, we aim to
achieve domain alignment by formulating a similar two-player
mini-max game to match the source and target feature
distributions. In the proposed setup, the first player Gd(⋅) is
modeled as a domain classifier and is trained to separate xs from xt.
The feature extractor,F(⋅), poses as the second player and is designed
to confuse the domain discriminator at the same time by generating
domain-invariant features. The overall objective of the DANN is

realized by minimizing the following term:

Ladv ¼�
1
jDsj

X
xs2Ds

wys ½log GdðFðxsÞÞ�

� 1
jDt j

X
xt2Dt

½1� log GdðFðxtÞÞ�
(1)

The negative transfer, potentially caused by source samples in Ds–

(Section 3.1), is checked by regulating the contributions of all
source samples. The underlying intuition centers around down-
weighting the proportion of learning from private source samples.
This is achieved by utilizing weights wys reflecting class-importance,
estimated over the target samples (detailed process presented in
Section 3.2.3).

3.2.2. Classification
The feature extractor output is processed by a label classifier

Gy(⋅), trained using the categorical cross-entropy loss Lcl(⋅,⋅)
between the ground-truth labels of source samples and their
predicted classification results. Similar to the domain adversarial
training as presented above, the learning process is regulated by
the class-importance weight (see Section 3.2.3) estimated on
target samples. The overall classification loss function is
represented as:

Lclass ¼
1
jDsj

X
xs2Ds

wysLcl

�
GyðFðxsÞÞ; ys

�
(4)

3.2.3. Target supervision and estimating class-importance
weights through pseudo-labels

For eliminating the negative influence of samples private to s,
we propose a strategy of regulated learning where the model,
adaptively, selects out a subset of the target domain samples that
are share a high degree of similarity to the source domain. In
addition, we enable target domain supervision by incorporating
pseudo-labels, generated from a nonparametric classifier. The
adopted pseudo-labelling strategy is as follows:

• Step 1: For an input sample xs/t inDs/t, we obtain its encoded latent
representation F(xs/t), using the feature extractor F(⋅).

• Step 2: With the encoded representations F(xs) of source entries
< xs, ys> ∈Ds,wecompute thecluster centers{μsc},∀c ∈Cs,where:

µc
s ¼

1
jDc

s j
X
xcs2Dc

s

FðxcsÞ (2)

where Ds
c= {< xs, ys> |< xs, ys> ∈Ds, ys= c} (|⋅| represents

set-cardinality).

• Step 3: A similarity function Φ(⋅) (returns a vector of size |Cs|)
processes each F(xt), xt ∈Dt, that quantifies its closeness to the
representative centers of each source class and is represented as:

ΦðFðxtÞÞ ¼
�
2� JS

�
FðxtÞjjµc

s

�
2

�
c2Cs

(3)

As highlighted above, we utilize Jensen–Shannon divergence,
JS(⋅||⋅), to measure the divergence between the latent-target
vector and representative centers of the source categories in latent
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space. Each divergence entry is normalized to [0,1], with a higher
value signifying greater similarity.
• Step 4: Probability predictions for a target sample xt is computed
using a softmax(⋅) over Φ(F(xt)). that is,

pt ¼ softmax
�
ΦðFðxtÞÞ

�
(4)

ypt  argmax
c

�
softmax

�
ΦðFðxtÞÞ

�	
(5)

where ytp, in equation (5), represents the predicted pseudo-label for
xt, essential for optimizing the inter- and intra-class discrepancies
(refer to Sections 3.2.4 and 3.2.5). pt, as highlighted in equation
(4), represents a vector of softmax probabilities, with kth entry
representing the probability of xt belonging to the kth category in
|Cs| classes.

The confidence probability, maxðptÞ, offers a monitoring
mechanism of how likely the target sample xt is to be mapped with
its nearest cluster center. A low value indicates a significant degree of
confusion existing in the model, while classifying xt to a category in
Cs. Using unreliable target samples with low confidence values for
class-importance weight estimation might sabotage classification by
diverting attention away from the desired objective. To eliminate
such issues, we adopt a voting strategy for computing the class-
importance weight vector W (with |Cs| elements), in which only a
subset of the target samples (those with high confidence predictions)
can participate. The dataset DT , thus constructed with these highly
confident target samples, is mathematically represented as:

DT ¼

�

xt ; y
p
t

� xt 2 Dt ; y
p
t  argmax

c
ðptÞ;max

�
pt

� � T
�

(6)

The threshold parameter, T , is computed over the predicted outputs
of the nonparametric classifier softmax(Φ(⋅)) and represents the
average probability of source domain samples belonging to the
ground-truth class, that is,

T ¼ 1
jDsj

X
xs2Ds

max
�
softmax

�
ΦðFðxsÞÞ

��
(7)

The class-importance weight vector W ¼ ½wc1 ;wc2 ; :::;wck ; :::;wcjCs j
�

is estimated using the equation below:

W  W0

maxðW0Þ ; where W
0 ¼ 1

jDT
t j

X
xt2DT

t

pt (8)

In the proposed setup, given a source instance < xs, ys> ∈Ds, where
ys= ck, the corresponding class weight wys¼ck in W regulates the
degree of learning from instance < xs, ys>, as noted in Sections
3.2.1 and 3.2.2. To ensure convenience in representation, the class
weight wys¼ck is collapsed to wys in prior sections.

3.2.4. Maximizing inter-class separation
Having a sufficiently “well-organized” and “regular” latent

space arrangement is conducive to realizing the goal of achieving
superior classification performance. Therefore, it is essential that
samples with same class label are clustered to their respective
distribution, while data with different class labels are allocated to
distinct class distributions, regardless of their domains. We
reinforce this concept by maximizing the L2-distance between the
mean embeddings of two distinct classes. It is worth noting that

the approach also seeks to maximize the distance between
different classes within the same domain (captured by the first
two terms in equation (9)). This objective is partially realized
using the between-class loss L

bc, as presented below:

Lbc¼ �
"
αð 1
jCsjðjCsj�1Þ

P
c2Cs

P
c02Cs
c0 6¼c

jjµc
s � µc0

s jj2

þ 1
jCT jðjCT j�1Þ

P
c2CT

P
c02CT
c0 6¼c

jjµc
T � µc0

T jj2Þ

þ β

jCT jðjCT j�1Þ
P
c2CT

P
c02CT
c0 6¼c

jjµc
s � µc0

T jj2
# (9)

where || ⋅ ||2 represents L2-norm. In the equation above,CT represents
the label set ofDT (refer to equation (6)), where CT ⊆Cs. We follow
a similar routine as presented in equation (2), for computing the
mean-embedding μs/T c for a class c, over samples in dataset Ds/T ,
respectively. Hyperparameters α and β control the contribution of
cross-domain and within-domain components, in equation (9).

3.2.5. Minimizing within-class separation
As previously stated, in addition to maximizing the distance

between two different clusters, it is essential to group samples of
the same class together, to avoid classification errors on instances
near the decision boundaries. We incorporate this concept into our
framework by minimizing the distance between the embedded
representations of any two samples in the same category, in a
domain-agnostic setup. The within-class loss Lwc, capturing this
formulation, is presented as:

Lwc ¼
1
jCsj

X
c2Cs

"
1

jDcjðjDcj � 1Þ
X
xi2Dc

X
xj2Dc
xj 6¼xi

FðxiÞ � FðxjÞ
2

#
(10)

where dataset Dc= {< x, y> |< x, y> ∈D, y= c ∈Cs}, with
D=Ds ∪DT . In equation (10), we use indices i, j to represent
distinct samples in Dc.

3.2.6. Entropy minimization of target samples
The early stages of a classification process in a domain

adaptation setup witness two major adverse effects: (a) difficulty
in transferring sample information due to large domain shifts and
(b) inducing uncertainty in the classifier. To circumvent such
issues, we adopt the entropy minimization principle during model
training, which is formulated as:

Lem ¼ �
1
jDt j

X
xt2Dt

X
c2Cs

�
GyðFðxtÞÞ

	
c log

��
GyðFðxtÞÞ

	
c
�

(11)

where [Gy(F(xt))]c represents the probability of xt belonging to
class c, as predicted by the classifier Gy(⋅).

3.2.7. Overall objective
To sum up, we propose the overall objective function as:

L ¼ Lclass þ ηLadv þ Lbc þ γLwc þ Lem; (12)

where η and γ are user-defined hyperparameters controlling the
contribution of each loss in model learning.
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4. Experiments

In this section, we perform experiments on two benchmark
datasets (Office-Home (Venkateswara et al., 2017) and Office-31
(Saenko et al., 2010)), to evaluate the efficacy of the proposed
framework. The experiments are conducted in a pda setup, over
multiple tasks for each dataset. Results of these tasks are reported
and analyzed in the following sections.

4.1. Datasets

For overall performance assessment, we utilize standard
datasets for domain adaptation, specifically Office-Home and
Office-31. The Office-31 (Saenko et al., 2010) dataset is grouped
into 31 distinct categories, representing three domains: Amazon
(A), DSLR (D), and Webcam (D). For evaluation task setup, we
replicate the technique adopted by Cao et al. (2018b), where the
dataset representing the target domain contains images from 10
distinct classes. The assessment is conducted on the following
source-target combinations: A→W, A→D, W→A, W→D, D→A
and D→W. The larger Office-Home dataset (Venkateswara et al.,
2017) is grouped into four distinct domains: Artistic (Ar), Clip
Art (Cl), Product (Pr), and Real-world (Rw). Following the Partial
Adversarial Domain Adaptation (PADA) setup (Cao et al.,
2018b), we construct the source and target datasets from 65 and
25 different image classes, respectively. Twelve different
permutations of source-target are used for evaluation purposes,
namely Ar→Cl, Ar→Pr, Ar→Rw, Cl→Ar, Cl→Pr, Cl→Rw,
Pr→Ar, Pr→Cl, Pr→Rw, Rw→Ar, Rw→Cl, and Rw→Pr.

4.2. Implementation details

The feature extractor F(⋅) uses ResNet-50 as backbone network
(He et al., 2016), pretrained on ImageNet dataset (Deng et al., 2009).
Following DANN (Ganin et al., 2016), we introduce a bottleneck
layer of length 256 before the fully connected layers. This layer
generates latent representations, utilized by softmax(Φ(⋅)), Gy(⋅),
and Gd(⋅) and during optimizing between-class separation and
within-class compactness. Similar to PADA (Cao et al., 2018b),
we fine-tune F(⋅) and train Gy(⋅) and Gd(⋅) layers from scratch
(learning rates of new layers set to 10 times of F(⋅)). We use
mini-batch stochastic gradient descent (SGD) with momentum of
0.9 and follow a similar learning rate update strategy, as in
DANN (Ganin et al., 2016). W is initialized to 1 for all classes
and is updated using equation (8) after every 150 epochs. The η is
progressively increased from 0 to 1, as in DANN (Ganin et al.,
2016). Parameters α, β and γ are set to 0.2, 0.9, 0.7, and 0.1, 0.9,
1.7 for Office-31 (Saenko et al., 2010) and Office-home (Venkates-
wara et al., 2017) datasets, respectively.

4.3. Comparison models

The model is evaluated against state-of-the-art models for
closed-set and partial domain adaptation tasks, namely Resnet-50
(He et al., 2016), DANN (Ganin et al., 2016), Adversarial
Discriminative Domain Adaptation (ADDA) network (Tzeng
et al., 2017), IWAN (Zhang et al., 2018a), Deep Residual
Correction Network (DRCN) (Li et al., 2020), SAN (Cao et al.,
2018a), PADA (Cao et al., 2018b), and ETN (Cao et al., 2019).

Table 1
Classification accuracy (%) for partial domain adaptation tasks on Office-Home dataset (backbone: Resnet-50)

Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar

Resnet-50 (He et al., 2016) 46.33 67.51 75.87 59.14 59.94 62.73 58.22
DANN (Ganin et al., 2016) 45.23 68.79 79.21 64.56 60.01 68.29 57.56
ADDA (Tzeng et al., 2017) 45.23 68.79 79.21 64.56 60.01 68.29 57.56
PADA (Cao et al., 2018b) 51.95 67.00 78.74 52.16 53.78 59.03 52.61
DRCN (Li et al., 2020) 54.00 76.40 83.00 62.10 64.50 71.00 70.80
IWAN (Zhang et al., 2018a) 53.94 54.45 78.12 61.31 47.95 63.32 54.17
SAN (Cao et al., 2018a) 44.42 68.68 74.60 67.49 64.99 77.80 59.78
ETN (Cao et al., 2019) 52.02 63.64 77.95 65.66 59.31 73.48 70.49

Proposed model 57.14 75.45 83.32 63.60 67.69 72.76 67.39
W/o Ladv 55.40 74.08 81.47 58.61 63.86 67.64 61.07
W/o Lbc & Lwc 53.25 70.53 77.76 56.24 60.87 64.59 58.48
W/o sv 56.34 74.79 82.07 59.48 64.82 68.42 61.91

Method Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Avg.

Resnet-50 (He et al., 2016) 41.79 74.88 67.40 48.18 74.17 61.35
DANN (Ganin et al., 2016) 38.89 77.45 70.28 45.23 78.32 62.82
ADDA (Tzeng et al., 2017) 38.89 77.45 70.28 45.23 78.32 62.82
PADA (Cao et al., 2018b) 43.22 78.79 73.73 56.60 77.09 62.06
DRCN (Li et al., 2020) 49.80 80.50 77.50 59.10 79.90 69.00
IWAN (Zhang et al., 2018a) 52.02 81.28 76.46 56.75 82.90 63.56
SAN (Cao et al., 2018a) 44.72 80.07 72.18 50.21 78.66 65.30
ETN (Cao et al., 2019) 51.54 84.89 76.25 60.74 80.86 68.07

Proposed model 52.69 83.33 74.24 60.13 81.55 69.94
W/o Ladv 49.11 80.66 72.04 57.65 79.21 66.73
W/o Lbc & Lwc 47.21 77.92 69.16 55.47 76.83 64.02
W/o sv 50.04 81.26 72.68 58.45 80.02 67.52
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5. Results and Analysis

In the results summarized in Tables 1 and 2, the proposed
method achieves comparable accuracy results to the state-of-the-art
models addressing closed-set and partial domain adaptation, on all
the presented tasks (achieving highest accuracy in 5 out of 12 tasks
and in 4 out of 6 tasks on Office-Home and Office-31 datasets,
respectively). It outperforms the existing methods in the overall
average accuracy percentage on both datasets. For further analysis,
we conducted an ablation study on the proposed model by
suppressing its three main components, one at a time:

• Without Ladv: We restrict the learning of domain-invariant
latent representations by masking the adversarial objective
(setting η to 0).

• Without Lbc and Lwc: The model is trained without class
distribution alignment losses (setting α, β, γ to 0).

• Without selective voting (sv): We limit the utilization of highly
confident target samples for computation of class-importance
weights (setting threshold T to 0).

The reduction in classification performance, as witnessed in Tables 1
and 2, after excluding these modules validates their significance in
the classification task. Their utility is buttressed further with the
model yielding best performance scores on a majority of the
adaptation tasks described in Section 4.1.

6. Conclusion

This paper presents a novel framework for partial domain
adaptation tasks, that aims to mitigate domain discrepancy, while
achieving class-distribution alignment in the latent space. The
proposed approach couples adversarial learning with a selective
consensus strategy (using a nonparametric classifier) that prevents a
set of target samples, with low confidence predictions, from
participating in class-importance weight estimation and alignment of
category-level distributions. From the experiments conducted over
two benchmark datasets, it is established that our approach achieves
superior classification results, when compared to state-of-the-art models.
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