
Received: 13 July 2022 | Revised: 18 July 2022 | Accepted: 24 August 2022 | Published online: 28 October 2022

RESEARCH ARTICLE

Fake Node Attacks on
Graph Convolutional
Networks

1

Xiaoyun Wang1,* , Minhao Cheng1, Joe Eaton2 , Cho-Jui Hsieh1 and S. Felix Wu1

University of California, USA

Abstract: In this paper, we study the robustness of graph convolutional networks (GCNs). Previous works have shown that GCNs are
vulnerable to adversarial perturbation on adjacency or feature matrices of existing nodes; however, such attacks are usually unrealistic in
real applications. For instance, in social network applications, the attacker will need to hack into either the client or server to change
existing links or features. In this paper, we propose a new type of “fake node attacks” to attack GCNs by adding malicious fake nodes.
This is much more realistic than previous attacks; in social network applications, the attacker only needs to register a set of fake
accounts and link to existing ones. To conduct fake node attacks, a greedy algorithm is proposed to generate edges of malicious nodes
and their corresponding features aiming to minimize the classification accuracy on the target nodes. In addition, we introduce a
discriminator to classify malicious nodes from real nodes and propose a Greedy-generative adversarial network attack to simultaneously
update the discriminator and the attacker, to make malicious nodes indistinguishable from the real ones. Our non-targeted attack
decreases the accuracy of GCN down to 0.03, and our targeted attack reaches a success rate of 78% on a group of 100 nodes and 90%

2NVIDIA, USA

on average for attacking a single target node.

Keywords: neural networks, adversarial attacks, graph convolutional networks

1. Introduction

Graph data have been widely used in many real-world
applications, such as social networks (Facebook and Twitter),
biological networks (protein or gene interactions), as well as
attribute graphs (PubMed and Arxiv) (Grover & Leskovec, 2016;
Rhee et al., 2017; Ying et al., 2018). Node classification is one of
the most important tasks on graphs—given a graph with labels
associated with a subset of nodes, predict the labels for the rest of
the nodes. For this node classification task, deep learning models
on graphs, such as graph convolutional networks (GCNs), have
achieved state-of-the-art performance (Kipf & Welling, 2016).
Moreover, GCNs have wide applications in cyber security, where
they can learn close-to-correct node labeling semi-autonomously.
This reduces the load on security experts and helps to manage
networks that add or remove nodes dynamically, such as WiFi
networks in universities and web services in companies.

The power of GCN relies on the graph convolution operation,
which constructs each node’s embedding based on its neighbors’
embeddings. However, this also leads to the concern about the
robustness—Is it possible to perturb the links and embeddings of
a small subset of nodes to affect the GCN’s behavior on other

nodes? To answer this question, Dai et al. (2018) and Zügner
et al. (2018) develop algorithms to attack GCNs, showing that by
altering a small amount of edges and features, the classification
accuracy of a GCN can be reduced to chance level. However,
changing edges or features associated with existing nodes is
usually impractical. For example, in social network applications,
an attacker has to login to the users’ accounts to change existing
connections and features, and gaining login access is almost
impossible. In comparison, adding fake nodes that correspond to
fake accounts or users can be much easier in practice. But the key
question is that can we interfere with the classification results of
existing nodes by adding fake nodes to the network? We answer
this question affirmative by introducing novel algorithms to
design fake nodes that successfully reduce GCN’s performance on
existing nodes.

To design the adjacency and feature matrices associated with
fake nodes, we have to address two challenges. First, the edges
and features are usually discrete 0/1 variables. Although there
have been many algorithms proposed for attacking image
classifiers, such as Fast Gradient Sign Method (FGSM), C&W,
and PGD attacks (Carlini & Wagner, 2017; Goodfellow et al.,
2014; Madry et al., 2017), they all assume continuous input space
and cannot be directly applied to problems with discrete input
space. Second, it is not easy to make the fake nodes “look” like
the real ones. There are two aspects for realness of fake nodes,

*Corresponding author: Xiaoyun Wang, University of California, USA. Email:
xiywang@ucdavis.edu

Journal of Computational and Cognitive Engineering
2022, Vol. 1(4) 165–173

DOI: 10.47852/bonviewJCCE2202321

© The Author(s) 2022. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

165

https://orcid.org/0000-0001-8148-9060
mailto:xiywang@ucdavis.edu
https://doi.org/10.47852/bonviewJCCE2202321
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

(i) in graph structure and (ii) in features. For example, if we add a fake
node that connects to all existing nodes, the system can easily detect
and disable such a fake node, and if a fake node features are all 1s or
very large or small values in continuous cases, the system can also
easily detect it. In this paper, we propose two algorithms, Greedy
attack and Greedy-generative adversarial network (GAN) attack,
to address these two challenges. Our contributions can be
summarized below:

• To the best of our knowledge, this is the first paper studying how to
add fake nodes to attack GCNs. We do not need to manipulate
existing nodes’ adjacency and feature matrices.

• We propose a Greedy attack algorithm to address the discrete input
space problem in designing fake nodes’ adjacency and feature
matrices.

• We introduce a discriminator to classify fake nodes from real nodes
and propose a Greedy-GAN algorithm to simultaneously optimize
the discriminator and the attacker. Despite a slightly lower success
rate, this approach can make fake nodes harder to detect.

• We conduct experiments on several real datasets. For non-targeted
attacks, we are able to degrade the classifier’s accuracy to less than
10% on both Cora and Citeseer datasets, and for the targeted
attacks, we can achieve a > 70% success rate when attacking
either a single node or a group of nodes.

2. Related Work

2.1. Adversarial attacks

Adversarial examples for computer vision have been studied
extensively. Goodfellow et al. (2014) discovered that deep neural
networks are vulnerable to adversarial attacks—a carefully
designed small perturbation can easily fool a neural network.
Several algorithms have been proposed to generate adversarial
examples for image classification tasks, including FGSM
(Goodfellow et al., 2014), Iterative Fast Gradient Sign Method
(IFGSM) (Kurakin et al., 2016), C&W attack (Carlini & Wagner,
2017), and PGD attack (Madry et al., 2017). In the black-box
setting, it has also been reported that an attack algorithm can have
high success rate using finite difference techniques (Chen et al.
2017; Cheng et al., 2018), and several algorithms are recently
proposed to reduce query numbers (Ilyas et al., 2018; Suya et al.,
2017). Transfer attack (Papernot et al., 2016) and ensemble attack
(Tramèr et al., 2017) can also be applied to black-box setting, with
lower successful rate but less number of queries. Besides attacking
image classification, CNN-related attacks have also been explored.
A typical usage is attacking semantic segmentation and object
detection (Arnab et al. 2017; Cheng et al., 2018; Eykholt et al.
2017; Lu et al. 2017; Metzen et al. 2017; Xie et al. 2017). Image
captioning (Chen et al., 2017) and visual QA (Xu et al., 2017)
could also be attacked.

Most of the above-mentioned works are focusing on problems
with continuous input space (such as images). When the input space
is discrete, attacks become discrete optimization problems and are
much harder to solve. This happens in most natural language
processing applications. For text classification problem, FGSM is
firstly applied by Papernot et al. (2016). The follow-up works
include deleting important words (Li et al., 2016), replacing or
inserting words with typos and synonyms (Liang et al., 2017;
Samanta & Mehta, 2017). For black-box setting, Gao et al. (2018)
develop score functions to find out the words to modify. Jia and
Liang (2017) add misleading sentences to fool the reading
comprehension system. Zhao et al. (2017) use GAN to generate

natural adversarial examples. Ebrahimi et al. (2017) and Cheng
et al. (2018) attack machine translation system Seq2Seq by
changing words in text.

2.2. Graph convolutional neural networks

Graph convolutional networks (GCNs) have been widely used
for node classification and other graph-based applications. The main
idea of GCN is to aggregate associated information from a node and
its neighbors using some aggregation functions. They train the
aggregation steps and the final prediction layer end-to-end to
achieve better performance than traditional approaches. There are
several variations of GCNs proposed recently (Chen et al., 2018;
Defferrard et al., 2016; Hamilton et al., 2017; Kipf & Welling,
2016; Pham et al., 2016; Ying et al., 2018).

The wide applicability of GCNs motivates recent studies about
their robustness. Dai et al. (2018) and Zügner et al. (2018) recently
proposed algorithms to attack GCNs by changing existing nodes’
links and features. Zügner et al. (2018) developed an FGSM-
based method that optimizes a surrogate model to choose the
edges and features that should be manipulated. Dai et al. (2018)
proposed several attacking approaches including gradient ascent,
genetic algorithm, and reinforcement learning. They employed a
gradient ascent method to change the graph structure in the white-
box setting. However, their settings are different from ours in the
following aspects: (1) Our methods have different constraint
than the previous works. They considered altering edges or features
of existing nodes while we develop algorithms to add fake nodes to
interfere the performance of GCN. In their scenarios, keeping graph
structure perturbations unnoticeable is important. While in our
adding fake nodes scenario, only keeping structure perturbations
unnoticeable is far from enough. Keeping fake nodes features
realness is very important, if a fake nodes features are very unreal,
the system can also easily detect it and disable this fake node. (2)
They attacked nodes one-by-one while our algorithms can find a
small perturbation to attack a group of nodes.

3. Preliminary

We consider the node classification problem using GCN. Given
an adjacency matrix A∈ Rn × n, feature matrix X∈ Rn × d, and a subset
of labeled nodes, the goal is to predict the labels of all the nodes in the
graph. We use n to denote the number of nodes, P to denote the
number of labels, and d to denote the dimension of features (each
row of X corresponds to features of a node). There are several
variations of GCNs, but we consider one of the most common
approaches introduced in Kipf and Welling (2016). Starting from
H0= X, GCN uses the following rule to iteratively aggregate
features from neighbors:

Hðkþ1Þ ¼ σðÂHðkÞWðkÞÞ; (1)

where Â is the normalized adjacency matrix and σ is the activation
function. There are two common ways for normalizing A. The
original GCN paper applied symmetric normalization, which
sets Ã= A+ I (adding 1 to all the diagonal entries) and then
normalizes it by Â ¼ D̃�1

2ÃD̃�1
2 where D ̃ is a diagonal matrix with

D̃i;i ¼
P

jÃij. Another choice for Â is to normalize the adjacency

matrix by rows, leading to Â=D ̃−1Ã, which is referred to as
row-wise normalization.

We set σ(x)=ReLU(x)=max (0, x), which is the most common
choice in practice. For a GCN with K layers, after getting the
top-layer feature H(K), a fully connected layer with softmax loss is

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

166

used for classification. Note that two types of normalization have
been used in GCN.

A commonly used application is to apply two-layer GCN to
semi-supervised node classification on graphs (Kipf & Welling,
2016). The model could be simplified as:

Z ¼ softmaxðÂσðÂXWð0ÞÞWð1ÞÞ
:¼ softmaxðf ðX;AÞÞ: (2)

Note that each row of f(X, A)∈ Rn × P is the logit output for a node
over P labels, and the softmax is taken on each row of the matrix.

For simplicity, we will assume our target network is structured
as (2), but in general, our algorithm can be used to attack GCNs with
more layers.

4. Attack Algorithms

In this section, we will describe our “fake node” attacks. We
will describe both a non-targeted attack, which aims to lower the
accuracy of all existing nodes uniformly, and a targeted attack,
which attempts to force the GCN to give the desired label to
nodes. Instead of manipulating the feature and adjacency matrices
of existing nodes, we insert m fake nodes with corresponding fake
features into the graph. After that, the adjacency matrix is

A0 ¼ A BT

B C

� �
and the feature matrix becomes: X0 ¼ X

Xfake

� �
.

Note that A is the original adjacency matrix and X is the original fea-
ture matrix. Starting from B= 0, C= I, our goal is to design
B;C;Xfake to achieve the desired objective (e.g., lower the classifica-
tion accuracy on existing nodes).

4.1. Non-targeted attack

The goal of the non-targeted attacks is to lower the classification
accuracy on all the existing nodes by designing features and links of
fake nodes. We use the accuracy of GCN to measure the
effectiveness of attacks. We will present two different algorithms
to attack GCNs: A greedy attack that updates links and features
one by one, and Greedy-GAN attack that uses a discriminator to
generate unnoticeable features of fake nodes.

4.1.1. Greedy attack
We define the objective function of the attack as

JðA0;X0Þ ¼
X
i2S

max
�½f ðX0;A0Þ�i;:�� ½f ðX0;A0Þ�i;yi

� �
; (3)

where yi is the correct label of node i; S is a group of m target nodes
S= {v1, : : : , vm}. In this objective function, if the largest logit of
node i is not the correct label yi, it will encounter a positive score;
otherwise, the score will be zero. We then try to solve the
following optimization problem to form the fake nodes:

arg max
B;C;Xfake

JðA0;X0Þ s:t: kBk0 þ kCk0 þ kXfakek0 � T; (4)

where ∥ ⋅ ∥0 denotes the number of nonzero elements in the matrix.
Also, we assume B;C;Xfake can only be 0/1 matrices. Unlike images,
graphs have discrete values in the adjacency matrix, and in many
applications, the feature matrix comes from indicators of different
categories. For some attribute graphs, feature matrices are generated
using word count; in practice, feature matrices are from categorical
features, and thus they are often discrete.

Therefore, gradient-based techniques such as FGSM and PGD
cannot be directly applied. Instead, we propose a greedy approach—
starting from B;Xfake all being zeros, and C being identity matrix I,
we add one feature and one edge at each step. To add a feature, we
find the maximal element inrXfake

JðA0;X0Þ and turn it into nonzero.
Similarly, we find the maximal element in ∇B, CJ(A 0,X 0) and add the
entry to the adjacency matrix. The Greedy attack is presented in
Algorithm 1.

In the algorithm, when adding links and features, we make sure
that there is no such a link or feature before adding. Also, although in
Algorithm 1 we conduct one feature update and one edge update at
each iteration, in practice we can adjust the frequency according to
the data distribution. For example, if the original adjacency matrix
has twice the nonzero elements as the feature matrix, we can
update two elements in the adjacency matrix and one element in
the feature matrix at every iteration.

4.1.2. Greedy-GAN attack
Unlike changing existing graph methods (Dai et al., 2018;

Zügner et al., 2018), adding fake nodes on graphs is faced with
different “unnoticeable” definitions, and it has different constraints
from the existing works on node features. Making edges
perturbation unnoticeable is needed, but it is far from enough for
adding fake nodes setting. For example, if add nodes’ features are
very different from the existing nodes, it will be detected by data
cleaning easily. Facing such a different constraint and ensuring
fake nodes’ features are realistic become crucial. Next, we will
present the attack based on the idea of GAN.

The main idea is to add a discriminator to generate fake features
that are similar to the original ones. To achieve this goal, we first
design a neural network with two fully connected layers plus a
softmax layer as the discriminator, which can be written as

DðX0Þ ¼ softmaxðσðX0Wð0ÞÞWð1ÞÞ; (5)

where softmaxworks on each row of the output matrix. Each element
in D(X 0) indicates whether the discriminator classifies the node as
real or fake.

We aim to generate fake nodes with features similar to the real
ones to fool the discriminator. Since the output of the discriminator is
binary, we use binary cross entropy loss defined by L(p,y)=
− (y log(p)+(1−y)log(1−p)), where y is a binary indicator of the
groundtruth (real or fake nodes), and p is the predicted probability
by our discriminator. Then, we solve the following optimization
problem:

Algorithm 1
Greedy attack

Input: Adjacency matrix A; feature matrix X; A classifier f with
loss function J; number of iterations T.
Output: Modified graph and features G 0 = (A 0,X 0) after adding
fake nodes.
for: t= 0 to T− 1 do

Let e* = (u*,v*) arg max∇B,C J(A 0,X 0)
GB,C

(t+1)←GB,C
(t)+ e*

Let f � ¼ ðu�; i�Þ argmaxrXfake
JðA0;X0Þ

Gðtþ1ÞXfake
 GðtÞXfake

þ f �

return: G(t)

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

167

arg max
B;C;Xfake

min
D
ðJðA0;X0Þ þ c � LðDðX0Þ;YÞ|ffl{zffl}

Q

Þ; (6)

where Y is the groundtruth (real/fake) indicator for nodes and c is the
parameter determined by the weight of the discriminator and the
GCN performance. For example, if c is large, the objective
function is dominated by the discriminator, so the node features
generated will be very close to real ones but with a lower attack
success rate. We will discuss more in Section 5.7.

We adopt the GAN-like framework to train both features/
adjacency matrices and discriminator parameters iteratively. In
experiments, at each epoch we conduct 100 greedy updates for
B;C;Xfake and then 10 iterations of D updates. The Greedy-GAN
algorithm is presented in Algorithm 2. Greedy-GAN supports both
adding and dropping links and features. In the algorithm, we add
or drop elements according to the absolute gradient of elements,
and the one with larger absolute value will be chosen.

The time complexity of Greedy and Greedy-GAN per iteration
for updating edges of fake nodes costs O(|V|*k+k2), where k is the
number of added fake nodes; updating features of fake nodes
costs Oðk � NfeaturesÞ, Nfeatures is the number of features each node.

4.2. Targeted attack

Next, we extend the proposed algorithms to conduct targeted
attacks. Given an adjacency matrix and a feature matrix, the goal is
to make nodes classified as the desired class by adding fake nodes.
Assume our goal is to attack a subset of nodes S and yi* is the
target label for node i, the attack objective function can be defined as:

JðA0;X0Þ ¼
X
i2S
½ f ðX0;A0Þ�i;y�i �max

�
½ f ðX0;A0Þ�i;:

�� �
; (7)

In this objective function, if the largest logit of node i is the target
label yi*, the objective function value will be 0; otherwise, the

value is negative. Similar to the non-targeted attacks, we would
like to find B, C, and Xfake using Greedy attack to solve the optimi-
zation problem (4) and Greedy-GAN attack to solve the optimization
problem (6).

In our experiments, we consider two cases: attacking a group of
randomly sampled nodes (S= {vi, : : : , vm}) and attacking one node
(only one element in S). For attacking a group of nodes, the labels of
the fake nodes are given in two ways: (1) uniform distribution, which
is the same as in the non-targeted attack setting and (2) using the
target labels yi*. For attacking a single target node, we add three
fake nodes with the target label.

5. Experimental Results

We use Cora (2708 nodes, 5429 edges, 1433 features) and
Citeseer (3312 nodes, 4732 edges, 3703 features) attribute graphs
as benchmarks. In all the experiments, we split the data into 10%
for training, 20% for validation, and 70% for testing. For non-
targeted attacks, the results are evaluated by GCN classification
accuracy (the lower the better), while for targeted attacks the
results are evaluated by the attack success rates (the higher the
better). Also, we conduct two kinds of experiments: attacking a
single node and attacking a group of nodes. For attacking a single
node, we add three fake nodes; for attacking a group of 100 nodes,
we add 2.5% nodes as the fake nodes. To show unnoticeable
perturbations on graph structures, we use not only 95% confidence
interval of nodes degrees distribution but also number of connected
components of the graphs. To show our features are like the real ones,
we use F1 score of a classifier.

We include the following algorithms into comparisons:

• Greedy and Greedy-GAN: our proposed algorithm that attacks
GCN by adding fake nodes.

• GradArgmax (Dai et al., 2018): white box GCN attack by only
changing links of graphs.1

• Nettack (Zügner et al., 2018): state-of-the-art data poisoning GCN
attack by changing existing nodes’ attributes and links.

• Random: randomly generating features of fake nodes, and
randomly adding links between fake nodes and real ones. We
add this method as a baseline.

5.1. Non-targeted attack

We compare the effectiveness of our methods with random and
GradArgmax algorithms (Dai et al., 2018).

For attacking a single node, three fake nodes with an average
five edges are added. Table 1 shows that Greedy method achieves
lower accuracy than GradArgmax method in both types of
normalization. In our experiments, the number of added links is
small; thus, the fake nodes’ degrees are all fell in 95% confidence
interval of power-law distribution. To further illustrate that our
method perturbs the graph very slightly, we use number of
connected components which is a stronger criterion than node
degree distributions. After adding fake nodes and edges, the
number of connected components only changes within 3% for
both datasets. Also to be noted that we did not perform Greedy-
GAN attack for one node, because the numbers of real and fake
nodes are so unbalanced and the discriminator will over-fit to the
added three nodes.

Algorithm 2
Greedy-GAN attack

Input: Adjacency matrix A; feature matrix X; A classifier f with
loss function J; Discriminator D with loss function L; number
of outer iterations Touter , and inner iterations Tinner .

Output: Modified graph G 0 = (A 0,X 0) after adding fake nodes.
for: t1= 0 to Touter � 1 do

for: t2= 0 to Tinner � 1 do
Let e�add ¼ ðu�add; v�addÞ argmaxrB;CQ

e�drop ¼ ðu�drop; v�dropÞ argminrB;CQ

if jrB;CQe�add
j > jrB;CQe�drop

j:
GB;C GB;C þ e�add

else:
GB;C GB;C � e�drop

Let f �add ¼ ðu�add; i�addÞ argmaxrXfake
Q

f �drop ¼ ðu�drop; i�dropÞ argminrXfake
Q

if jrXfake
Qf �add
j > jrXfake

Qf �drop
j:

GXfake
 GXfake

þ f �add
else:

GXfake
 GXfake

� f �drop
end for
update discriminator by u times.

end for
return: G

1 The original GradArgmax does not work for adding fake nodes, but we modify
them to do so by (1) initializing fake nodes with random features and (2) adding the
constraints to their optimization to restrict them to modify only those links.

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

168

Next we consider attacking a group of nodes together rather
than a single node. In the experiment, we randomly sampled 100
nodes as our attack target and added 2.5% labeled fake nodes
with average 10 links per fake node. The results in Table 2 show
that our Greedy and Greedy-GAN methods perform better than
GradArgmax. Moreover, even directly compared with the results
from the Nettack paper (Zügner et al., 2018), which changing
edges and features on existing nodes simultaneously, our methods
could reach comparable result in Tables 1 and 2.

For theGreedy-GANmethod,we choose the parameter c= 0.1 in
Equation(6), in the way that it is more focusing on attacking than
generating real features. We notice that there are some cases that
Greedy-GAN performances better than Greedy algorithm in terms
of accuracy of GCN, which is a little bit against people intuition.
Intuitively, Greedy should always be better than Greedy-GAN,
since Greedy-GAN limits the feature spaces. We observe that
Greedy method is easier to stuck in local optimum during the
optimization procedure (e.g., keep adding/dropping the same edge),
while Greedy-GAN has more smoothed optimization curve,
because of the added discrimination loss. We will discuss more
about how different c influences efficiency of attacking in Section 5.7.

To check whether the attacks change the graph structure
significantly, we check the number of connected components.
Number of connected components is a widely used parameter in
graph theory when describing graphs structures. It is a stronger
criterion than node degree distributions.

We observed that GradArgmax attack produces a larger number
of components, while both of our methods stay relatively unchanged.
Furthermore, we train a classifier using randomly generated nodes
and then feed it with fake features generated by Greedy and
Greedy-GAN algorithms. The f1 scores of the classifier indicate
that it is much harder to differentiate the features of a node
between real and fake under attacks by Greedy-GAN, as
compared to Greedy. This means that Greedy-GAN attack,
although sometimes having lower success rate, can produce fake
nodes that are harder to be detected.

5.2. Targeted attack

The targeted attack tries to fool the GCN to classify specific
nodes to target classes. We perform two different experiments for
targeted attacks: (1) attack only a single node and (2) attack a
group of 100 nodes on test data. In our experiments, we use the
same setting as non-targeted attack for the number of fake nodes
and edges.

When attacking only a single node, we add three fake nodes
with target labels. Table 3 shows that the success rate of our
algorithm is around 80% on different target labels. The addition
of three nodes produced no noticeable change in label distributions.

We also conduct targeted attacks on groups of nodes. In
Figures 1 and 2, we notice that attacking nodes to certain target
classes are more difficult than others. For example, in Figure 2,
targeted attack has a lower success rate with a target class 0 (249
nodes) from Citeseer dataset (3312 nodes in 6 classes). Success
rate of targeted attack is positively correlated with the percentage
of that class in the groundtruth. The reason might be that if there
are less nodes belonging to a class, the attacked nodes only have
weak linkage to that class, and the classification is more
influenced by nodes in other classes. This makes it harder to turn
the predicted label to class with few nodes. For fake nodes labels,
we do experiments on both randomly and targeted labels.
Targeted labeling generally gives better result. Table 4 shows
targeted attacks success rate for Greedy and Greedy-GAN
algorithms using targeted labeling.

5.3. Data poisoning

In industry, GCN is normally applied to longitudinal data. Due
to the time-consuming process of training a new network, networks
are periodically retrained instead. We thus consider the scenario
where the GCN is retrained under the dataset with fake nodes.
This is also known as the data poisoning scenario, while the
previous discussed case (without retraining) is called test time attack.

Table 5 presents the accuracy after non-targeted data poisoning.
The GCN is retrained with learning rate 0.01, 50 epochs after the data
have been modified. The results show that both attacking and
poisoning can effectively reduce the accuracy of GCN, and the
symmetric normalization is more robust under poisoning attacks
overall.

For specific node data poisoning, since only three fake nodes
are added, we did not change existing edges in the training
dataset; thus, the "good" nodes and edges in the training dataset
are still dominating. While for a group of nodes it works quite
well, we could reach as low as 0.01 accuracy which is as good as

Table 1
Accuracy for non-targeted attacks on a single nodewith different

normalization in Section 3. The last two rows are average
number of connected components for each attacking case

Dataset Cora Citeseer

Normalization Row-wise Symmetric Row-wise Symmetric

Greedy 0.09 0.08 0.11 0.09
GradArgmax 0.10 0.56 0.15 0.55
CC of graph 78 78 438 438
Avg CC of
Greedy

77.01 76.96 435.11 434.67

Avg CC of
GradArgmax

77.14 76.55 435.72 428.62

Table 2
Accuracy of GCN before and after non-targeted attacks for

attacking random 100 nodes in each graph. Each graph added
2.5% fake nodes. Each fake nodes is with on average 10 fake
links. Note that the final two rows are F1 score of a classifier—
lower values indicate added fake nodes are harder to be detected

Dataset Cora Citeseer

Normalization Row-wise Symmetric Row-wise Symmetric

Clean 0.84 0.81 0.76 0.73
Random 0.77 0.79 0.68 0.69
GradArgmax 0.53 0.61 0.55 0.47
Greedy 0.08 0.03 0.03 0.04
Greedy-GAN 0.05 0.09 0.07 0.03
CC of
GradArgmax

74 118 439 457

CC of Greedy 71 72 418 401
CC of Greedy-
GAN

72 70 419 420

F1 score for
Greedy

0.73 0.67 0.64 0.77

F1 score for
Greedy-GAN

0.35 0.47 0.43 0.65

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

169

Table 3
Success rate of targeted attacks on a single node for different targeted classes using Greedy attack

Dataset Normalization

Class index

0 1 2 3 4 5 6

Cora Row-wise 0.90 0.87 0.74 0.78 0.81 0.89 0.80
Cora Symmetric 0.90 0.86 0.75 0.80 0.87 0.86 0.81
Citeseer Row-wise 0.80 0.81 0.80 0.83 0.75 0.80
Citeseer Symmetric 0.83 0.80 0.79 0.83 0.73 0.81

Figure 1
Row normalized Cora dataset. Right axis: Success rate of targeted attacking a group of 100 nodes with randomly and targeted

labeling methods; left axis: Groundtruth and before attacking label distributions, with seven different classes

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6
Class Index

C
la

ss
 R

at
io

Success R
ate

type

before_attack

groundtruth

randomly_labeled

targeted_labeled

Figure 2
Row normalized Citeseer dataset. Right axis: Success rate of targeted attacking a group of 100 nodes with randomly and targeted

labeling methods; left axis: Groundtruth and before attacking label distributions, with six different classes

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 1 2 3 4 5

Class Index

C
la

ss
 R

at
io

Success R
ate

typeyp
before_attack

groundtruth

randomly_labeled

targeted_labeled

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

170

the original Nettack (Zügner et al., 2018) by changing features and
edges directly and retraining the network until converge, and our
result on Citeseer is even better.

5.4. Degree of nodes

Previouswork (Zügner et al., 2018) found that nodeswith smaller
degrees are more vulnerable in data poisoning. Our experiments
confirm that attacking a group of nodes and single node also
follows that rule. Table 6 presents typical nodes accuracy by
degree. When adding extra links between fake nodes and real
nodes, higher degree nodes are more resistant to the impact of fake
nodes. And this works for both attacking and poisoning.

5.5. Row-wise vs. symmetric normalization

Although row-wise or symmetric normalization could achieve
similar performance in classification, we found their robustnesses
vary. For row-wise normalization, when adding a new edge ei, j on
graph, the two elements in adjacency matrix Ai, j and Aj, i change
from 0 to 1. Therefore, we could get the corresponding two
elements in the normalized matrix Â changing from 0 to Âi, j

(t+1)

= 1/(dii+1) and Aj, i
(t+1)= 1/(djj+1). Also, other nonzero elements

Âi, .
(t), Âj, .

(t) change to

Âðtþ1Þi;: ¼ dðtÞii =ðdðtÞii þ 1ÞÂðtÞi;:
Âðtþ1Þj;: ¼ dðtÞjj =ðdðtÞjj þ 1ÞÂðtÞj;:

For symmetric normalization, origin elements Âi, j
(t) and

Âj, i
(t) in the original normalized matrix change from 0 to

1/
ffi
ðdðtÞii þ 1ÞðdðtÞjj þ 1Þ

q
while other nonzero elements Âi, .

(t), Âj, .
(t)

change to

Âðtþ1Þi;: ¼ Âðtþ1Þ:;i ¼
ffiffiffiffiffiffiffi
dðtÞii

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðtÞii þ 1

q
ÂðtÞi;:

Âðtþ1Þj;: ¼ Âðtþ1Þ:;j ¼
ffiffiffiffiffiffiffi
dðtÞjj

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðtÞjj þ 1

q
ÂðtÞj;:

To sum up, on one hand, the magnitude of change is greater in row
normalized elements than in symmetric normalized elements. On the
other hand, when adding or dropping an edge in the graph, only 2
rows are affected in the row normalized adjacency matrix.
However for symmetric case, it affects both 2 rows and 2 columns.

Therefore, we find that when adding smaller amount of edges,
number of affected rows/columns is dominated so that symmetric
normalized GCN is more vulnerable. When adding larger amount of
edges, the magnitude of change in elements plays a more important
role so that the row normalized GCN is more vulnerable. For
example, in Table 1, the average number of edges per fake node is
5, and accuracy of symmetric normalized GCN is smaller than row
normalized one. While in Table 7 symmetric normalized GCN is
more robust in all of the methods, where we add 5% fake nodes to
attack the whole test dataset of graph (70% nodes of graph) by
adding 10,000 fake edges (around 60–75 edges per fake node). For
attacking a group of 100 nodes, the average number of edges per
fake nodes is 10, which causes those two effects contribute equally.
Therefore, there are no significant differences in terms of robustness.

5.6. Number of fake nodes

In this part, we explore how the number of fake nodes
influences the efficiency of attacking. We attack a group of 100
nodes with different number of fake nodes. Figure 3 shows how
the number of fake nodes influences the classification accuracy.
We use use 1%, 1.5%, 2 %, 2.5%, and 3% of fake nodes and
assign random labels to the fake nodes. As expected, more fake
nodes yield more effective attacks. We notice that the number of
added edges between fake nodes and real nodes also plays an
important role. The blue line in Figure 3 ranges from 2% to 6%
adding same total amount edges (as same as the experiment in
Sections 5.1 and 5.2), with different number of fake nodes. This
indicates even with very small amount of fake nodes, we can
attack the accuracy of GCN to very low, for example, if we have
only 1% fake nodes, with average degree of fake node 25, in

Table 4
Success rate for targeted attacks on the 100 nodes on graph

Dataset Cora Citeseer

Normalization Row-wise Symmetric Row-wise Symmetric

Greedy 0.69 0.66 0.75 0.68
Greedy-GAN 0.76 0.53 0.78 0.65

Table 5
Accuracy after poisoning GCN

Dataset Cora Citeseer

Normalization Row-wise Symmetric Row-wise Symmetric

Nettack 100
nodes

0.01 0.04 0.04 0.07

Greedy one node 0.08 0.09 0.14 0.20
Greedy 100
nodes

0.06 0.04 0.01 0.08

Greedy-GAN
100 nodes

0.01 0.11 0.03 0.03

Table 6
A typical case for nodes with different degrees, under Greedy
non-targeted attack and poisoning; Citeseer dataset with row

normalization, seed= 42

Nodes degree (0,5] (5,10] (10,20] (20, ∞)
Total

accuracy

Clean 0.78 0.83 1.0 1.0 0.80
Greedy attacking 0.037 0.25 0.50 1.0 0.10
Greedy poisoning 0.025 0.417 0.667 1.0 0.12
Greedy-GAN
attacking

0.037 0.25 0.67 1.0 0.11

Greedy-GAN
poisoning

0.074 0.33 0.67 1.0 0.15

Table 7
An extreme case of adding 5% fake nodes and 10,000 edges for

non-targeted attacking the whole test dataset (70% nodes)

Dataset Cora Citeseer

Normalization Row-wise Symmetric Row-wise Symmetric

Clean 0.84 0.81 0.76 0.75
Random 0.34 0.42 0.49 0.51
Greedy 0.11 0.15 0.02 0.16
Greedy-GAN 0.11 0.25 0.07 0.17

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

171

Figure 3, the accuracy is down to 0.06. On the other hand, if we fixed
the average degree of fake nodes as 10 (also the same as Sections 5.1
and 5.2 average degree of fake nodes setting), the accuracy varies
from 0.14 to 0.01 with the number of fake nodes increasing from
1% to 3%.

5.7. Different c in Greedy-GAN

We study how different c in Algorithm 2 influences the attack
efficiency. In Section 4.1, we claimed that if c is large, the objective
function is dominated by the discriminator, so the node features
generated will be very close to real ones but with a lower attack
successful rate (higher accuracy). If c is greater than 1, we say
realness of the nodes is more important, if c is smaller than 1, then
the system is more on attacking. In Figure 4, c varies from very small
value 0.001 to very large value 1000 increasing by 10 times each
time; there is a positive correlation between c and accuracy of GCN.
We notice that when c is smaller or equal to 10, the accuracy varies
from 0.04 to 0.08, which means even if the system is more on the
realness of the fake nodes features (c > 1), we could get efficient
attacking using Greedy-GAN. Greedy-GAN algorithm could maintain
the realness of fake nodes without losing attacking efficiency. Unless
c is extremely large, say 1000, the accuracy is 0.33, which is not as
efficient as the result in Table 2 in terms of attacking.

5.8. Attacking large-scale graphs

When training large-scale graphs, original GCN will not work
due to memory bottleneck. Thus, algorithms based on neighborhood
sampling come to relieve this issue (Chen et al., 2018; Hamilton
et al., 2017). Because there is a neighborhood sampling function
in these algorithms, directly adding or deleting edges on the
original graphs method becomes less effective than on GCN. The
reason is when training GraphSAGE (or other large-scale
graph neural networks), the sampled neighborhood could be
viewed as dropping edges during training, Dai et al. (2018) show
that use dropping edges while training is a cheap method to
increase the robustness of GCN. As a result, attacking GraphSAGE

(or other large-scale graph neural networks) is more difficult than
attacking GCN.

In this section, we use a GCN aggregator for GraphSAGE for
nodes prediction. We use Reddits dataset (232,965 nodes,
11,606,919 edges,41 classes and 602 features) as a benchmark.
For labeling rate, we use the same setting as GraphSAGE
(Hamilton et al., 2017) paper. When considering the attacking
single node scenario, for changing edges directly on the existing
graphs, the accuracy of GraphSAGE drops from 0.98 to 0.95. For
adding fake nodes, the accuracy drops to 0.07. Reddits dataset has
continuous feature space; thus, it would be more vulnerable for
fake nodes attacks than the discrete feature space datasets (Cora
and Citeseer). Adding fake nodes is easily to introduce new
features to the target-attacked node in continuous features space;
thus, it will lead to accuracy dropping.

6. Conclusion

In this paper, we develop two algorithms, Greedy and Greedy-
GAN, to attack GCNs by adding fake nodes and without changing
any existing edge or feature. Our experimental results show that
both algorithms can successfully attack GCNs. To make the attack
unnoticeable, we added a discriminator using the Greedy-GAN
algorithm to generate features of fake nodes. Furthermore, we
explored parameter sensitivities on the degree of nodes; different
normalization methods to evaluate the effectiveness of our attacks;
different number of fake nodes, and the tradeoff between the
realness of features and attacking efficiency. Moreover, we scaled
up our attacks to large-scale graph data that use GraphSAGE
(Hamilton et al., 2017).

In the future, we would like to explore the defense against
adversarial attacks on GCNs as well as on large-scale networks
such as GraphSAGE (Hamilton et al., 2017).

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Figure 3
Accuracy varies with different number of fake nodes and
different number of added edges, using symmetric Citeseer

dataset; red line: Fixed average degree of fake nodes as 10; blue
line: Fixed total number of added edges

0.05

0.10

1.0 1.5 2.0 2.5 3.0 3.5
Fake Node Percentage

A
cc

ur
ar

y

fixed avg number of edges per node

fixed total number of edges added

Figure 4
Row normalized Cora dataset: Accuracy with difficult c in

Algorithm 2

0.1

0.2

0.3

1e−02 1e+00 1e+02
C

A
cc

ur
ar

y

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

172

References

Arnab, A., Miksik, O., & Torr, P. H. S. (2017). On the robustness of
semantic segmentation models to adversarial attacks. CoRR,
abs/1711.09856.

Carlini, N., & Wagner, D. A. (2017, May 22–26). Towards
evaluating the robustness of neural networks. In 2017 IEEE
symposium on security and privacy, SP 2017, San Jose, CA,
USA (pp. 39–57).

Chen, H., Zhang, H., Chen, P.-Y., Yi, J., & Hsieh, C.-J. (2017).
Show-and-fool: Crafting adversarial examples for neural
image captioning. CoRR, abs/1712.02051.

Chen, J., Ma, T., & Xiao, C. (2018). Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
CoRR, abs/1801.10247.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., & Hsieh, C.-J. (2017,
November 3). ZOO: Zeroth order optimization based black-
box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM
workshop on artificial intelligence and security, AISec@
CCS 2017, Dallas, TX, USA (pp. 15–26).

Cheng,M., Le, T., Chen, P.-Y.,Yi, J., Zhang,H.,&Hsieh, C.-J (2018).
Query-efficient hard-label black-box attack: An optimization-
based approach. arXiv preprint arXiv: 1807.04457.

Cheng, M., Yi, J., Zhang, H., Chen, P.-Y., & Hsieh, C.-J. (2018).
Seq2sick: Evaluating the robustness of sequence-to-sequence
models with adversarial examples. CoRR, abs/1803.01128.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., & Song, L.
(2018, July 10–15). Adversarial attack on graph structured data.
In J.Dy,&A.Krause (Eds.),Proceedings of the 35th international
conference on machine learning, volume 80. Proceedings of
Machine Learning Research, Stockholmsmässan, Stockholm,
Sweden (pp. 1123–1132). PMLR.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016, December
5–10). Convolutional neural networks on graphs with fast
localized spectral filtering. In Advances in neural information
processing systems 29: Annual conference on neural information
processing systems 2016, Barcelona, Spain (pp. 3837–3845).

Ebrahimi, J., Rao, A., Lowd, D., & Dou, D. (2017). Hotflip: White-
box adversarial examples for NLP. CoRR, abs/1712.06751.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Song, D., Kohno, T.,
: : :Tramèr, F. (2017). Note on attacking object detectors with
adversarial stickers. CoRR, abs/1712.08062.

Gao, J., Lanchantin, J., Soffa,M. L., &Qi, Y. (2018,May 24). Black-
boxgeneration of adversarial text sequences to evade deep learning
classifiers. In 2018 IEEE Security and Privacy Workshops, SP
Workshops 2018, San Francisco, CA, USA (pp. 50–56).

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and
harnessing adversarial examples. CoRR, abs/1412.6572.

Grover, A., & Leskovec, J. (2016, August 13–17). node2vec: Scalable
feature learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and
data mining, San Francisco, CA, USA (pp. 855–864).

Hamilton, W. L., Ying, R., & Leskovec, J. (2017, June). Inductive
representation learning on large graphs. ArXiv e-prints.

Ilyas, A., Engstrom, L., Athalye, A., & Lin, J. (2018, April). Black-
box adversarial attacks with limited queries and information.
ArXiv e-prints.

Jia, R., & Liang, P. (2017, September 9–11). Adversarial examples
for evaluating reading comprehension systems. In Proceedings
of the 2017 conference on empirical methods in natural
language processing, EMNLP 2017, Copenhagen, Denmark
(pp. 2021–2031).

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification
with graph convolutional networks. CoRR, abs/1609.02907.

Kurakin, A., Goodfellow, I., & Bengio, S. (2016, November).
Adversarial machine learning at scale. ArXiv e-prints.

Li, J., Monroe, W., & Jurafsky, D. (2016). Understanding neural
networks through representation erasure. CoRR, abs/1612.
08220.

Liang, B., Li, H., Su,M., Bian, P., Li, X., & Shi,W. (2017). Deep text
classification can be fooled. CoRR, abs/1704.08006.

Lu, J., Sibai, H., & Fabry, E. (2017). Adversarial examples that fool
detectors. CoRR, abs/1712.02494.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A.
(2017). Towards deep learning models resistant to
adversarial attacks. CoRR, abs/1706.06083.

Metzen, J. H., Kumar, M. C., Brox, T., & Fischer, V. (2017, October
22–29). Universal adversarial perturbations against semantic
image segmentation. In IEEE international conference on
computer vision, ICCV 2017, Venice, Italy (pp. 2774–2783).

Papernot, N., McDaniel, P. D., & Goodfellow, I. J. (2016).
Transferability in machine learning: from phenomena to
black-box attacks using adversarial samples. CoRR, abs/
1605.07277.

Papernot, N., McDaniel, P. D., Swami, A., & Harang, R. E. (2016,
November 1–3). Crafting adversarial input sequences for
recurrent neural networks. In 2016 IEEE military
communications conference, MILCOM 2016, Baltimore,
MD, USA (pp. 49–54).

Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2016,
September). Column networks for collective classification.
ArXiv e-prints.

Rhee, S., Seo, S., & Kim, S. (2017, November). Hybrid approach of
relation network and localized graph convolutional filtering for
breast cancer subtype classification. ArXiv e-prints.

Samanta, S., & Mehta, S. (2017). Towards crafting text adversarial
samples. CoRR, abs/1707.02812.

Suya, F., Tian, Y., Evans, D., & Papotti, P. (2017). Query-limited
black-box attacks to classifiers. CoRR, abs/1712.08713.

Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., &McDaniel, P. D.
(2017). Ensemble adversarial training: Attacks and defenses.
CoRR, abs/1705.07204.

Xie, C.,Wang, J., Zhang, Z., Zhou, Y., Xie, L., &Yuille, A. L. (2017,
October 22–29). Adversarial examples for semantic
segmentation and object detection. In IEEE international
conference on computer vision, ICCV 2017, Venice, Italy
(pp. 1378–1387).

Xu, X., Chen, X., Liu, C., Rohrbach, A., Darell, T., & Song, D.
(2017). Can you fool AI with adversarial examples on a
visual turing test? CoRR, abs/1709.08693.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., &
Leskovec, J. (2018, August 19–23). Graph convolutional
neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, KDD
2018, London, UK (pp. 974–983).

Zhao, Z., Dua, D., & Singh, S. (2017). Generating natural adversarial
examples. CoRR, abs/1710.11342.

Zügner, D., Akbarnejad,A.,&Günnemann, S. (2018,May).Adversarial
attacks on neural networks for graph data. ArXiv e-prints.

How to Cite:Wang, X., Cheng, M., Eaton, J., Hsieh, C.-J., & Wu, S. F. (2022). Fake
Node Attacks on Graph Convolutional Networks. Journal of Computational and
Cognitive Engineering 1(4), 165–173, https://doi.org/10.47852/bonviewJCCE2202321

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 4 2022

173

https://doi.org/10.47852/bonviewJCCE2202321

	Fake Node Attacks on Graph Convolutional Networks
	1. Introduction
	2. Related Work
	2.1. Adversarial attacks
	2.2. Graph convolutional neural networks

	3. Preliminary
	4. Attack Algorithms
	4.1. Non-targeted attack
	4.1.1. Greedy attack
	4.1.2. Greedy-GAN attack

	4.2. Targeted attack

	5. Experimental Results
	5.1. Non-targeted attack
	5.2. Targeted attack
	5.3. Data poisoning
	5.4. Degree of nodes
	5.5. Row-wise vs. symmetric normalization
	5.6. Number of fake nodes
	5.7. Different c in Greedy-GAN
	5.8. Attacking large-scale graphs

	6. Conclusion
	References

