
Received: 13 July 2022 | Revised: 18 July 2022 | Accepted: 24 August 2022 | Published online: 5 October 2022

RESEARCH ARTICLE

Block Switching: A
Stochastic Approach for
Deep Learning Security

1

Xiao Wang1, Siyue Wang2,*, Pinyu Chen3, Xue Lin2 and Peter Chin1

Boston University, USA
2Northeastern University, USA
3IBM Research, USA

Abstract: Recent study of adversarial attacks has revealed the vulnerability of modern deep learning models. That is, subtly crafted
perturbations of the input can make a trained network with high accuracy and produce arbitrary incorrect predictions, while maintaining
imperceptible to human vision system. In this paper, we introduce Block Switching (BS), a defense strategy against adversarial attacks
based on stochasticity. BS replaces a block of model layers with multiple parallel channels, and the active channel is randomly assigned
in the run time, hence unpredictable to the adversary. We show empirically that BS leads to a more dispersed input gradient distribution
and superior defense effectiveness compared with other stochastic defenses such as stochastic activation pruning. Compared to other
defenses, BS is also characterized by the following features: (i) BS causes less test accuracy drop; (ii) BS is attack-independent; and (iii)
BS is compatible with other defenses and can be used jointly with others.
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1. Introduction

Powered by rapid improvements of learning algorithms (He
et al., 2016; LeCun, 2015; Krizhevsky et al., 2012; Zhao et al.,
2019), computing platforms (Abadi et al., 2016; Jia et al., 2014),
and hardware implementations (Han et al., 2016; Li et al., 2019),
deep neural networks become the workhorse of more and more
real-world applications, many of which are security critical, such
as self-driving cars (Bojarski et al., 2016) and image recognition
(Parkhi et al., 2015; He et al., 2016; Krizhevsky et al., 2012; Zhao
et al., 2017; Wang et al., 2018c), where malfunctions of these
deep learning models lead to serious loss.

However, the vulnerability of deep neural networks against
adversarial attacks is discovered by Szegedy et al. (2013), who
show that in the context of classification, malicious perturbations
can be crafted and added to the input, leading to arbitrary erroneous
predictions of the target neural network, while the perturbations can
be small in size and scale or even invisible to human eyes.

This phenomenon triggered wide interests of researchers, and a
large number of attacking methods have been developed. Some
typical attack methods include Fast Gradient Sign Method (FGSM)
by Goodfellow et al. (2015), Jacobian-based Saliency Map Attack
by Papernot et al. (2016a), and CW attack by Carlini and Wagner
(2017b). These attacks utilize gradients of a specific object function
with respect to the input and design perturbations accordingly in

order to have a desired output of the network. Among the attacks,
CW attack is known to be the strongest and is often used as a
benchmark for evaluating model robustness.

In the meantime, a rich body of defending methods has been
developed, attempting to improve model robustness in different
aspects. Popular directions include adversarial training (Madry
et al., 2017), detection (Grosse et al., 2017; Metzen et al., 2017),
input rectification (Das et al., 2017; Xie et al., 2017), and
stochastic defense (Dhillon et al., 2018; Wang et al., 2018b;
Wang et al., 2018a; Wang et al., 2019). However, although these
defenses alleviate the vulnerability of deep learning to some
extent, they are either shown to be invalid against counter-
measures of the adversary (Carlini & Wagner, 2017a) or require
additional resources or sacrifices. A significant trade-off of these
methods is between defense effectiveness and test accuracy, where
a stronger defense is often achieved at the cost of worse
performance on clean examples (Wang et al., 2019).

Motivated by designing defense method with less harm on test
accuracy, in this article we introduce Block Switching (BS) as an
effective stochastic defense strategy against adversarial attacks.
BS involves assembling a switching block consisting of a number
of parallel channels. Since the active channel in the run time is
random, it prevents the adversary from exploiting the weakness of
a fixed model structure. On the other hand, with proper training,
the BS model is capable of adapting the switch of active channels
and maintains high accuracy on clean examples. As a result, BS
achieves drastic model variation and thus has strong resistance
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against adversary without noticeable drop in legitimate accuracy.
The nature of BS also enables its usage jointly with other types of
defenses such as adversarial training.

Our experimental results show that a BSmodel with five channels
can reduce the fooling ratio (the percentage of generated adversarial
examples that successfully fool the target model) of CW
attack from 100% to 21.0% on MNIST dataset and to 22.2% on
CIFAR-10 dataset respectively with very minor testing accuracy
loss on legitimate inputs. As a comparison, another recent stochastic
defense stochastic activation pruning (SAP) only reduces the
fooling ratio to 32.1% and 93.3% given the same attack. The
fooling ratio can be further decreased with more parallel channels.

The rest of this article is organized in the followingway: In Section
2,we introduce relatedworks in both attacking and defending sides. The
defense strategy and analysis are given in Section 3. Experimental
results are given in Section 4. And Section 5 concludes this work.

2. Adversarial Attack

FGSM. FGSM (Goodfellow et al., 2015) utilizes the gradient of
the loss function to determine the direction tomodify the pixels. They
are designed to be fast, rather than optimal.

Specifically, adversarial examples are generated as follows:

x0 ¼ x � ɛ � signðrðlossF;tðxÞÞÞ (1)

where ϵ is the magnitude of the added distortion, t is the target label.
Since it only performs a single step of gradient descent, it is a typical
example of “one-shot” attack.

CW.Carlini &Wagner (CW) attack (Carlini &Wagner, 2017b)
generates adversarial examples by solving the following
optimization problem:

minimize DðδÞ þ c � f ðx þ δÞ
subject to x þ δ 2 ½0; 1�n (2)

where c> 0 controls the relative importance between the distortion
term D and loss term f. The loss term f takes the following form:

f ðx þ δÞ ¼ maxðmaxfZðx þ δÞi : i 6¼ tg � Zðx þ δÞt ;�κÞ (3)

where κ controls the confidence in attacks.

3. Method

3.1. Block switching implementation

Training a BS model involves two phases. In the first phase, a
number of sub-models with the same architecture are trained
individually from random weights initialization. With the training
process and data being the same, these models tend to have
similar characteristics in terms of classification accuracy and
robustness, yet different model parameters due to random
initialization and stochasticity in the training process.

After the first round of training, each sub-model is split into two
parts. The lower parts are grouped together and form the parallel
channels of the switching block, while the upper parts are
discarded. The switching block is then connected to a randomly
initialized common upper model as shown in Figure 1. In the run
time, a random channel is selected to be active that processes the
input while all other channel remains inactive, resulting in a
stochastic model that has different behavior at different time.

The whole BS model is then trained for the second round on the
same training dataset in order to regain classification accuracy. In this
phase, the common upper model is forced to adapt inputs given by
different channels so that a legitimate example can be correctly
classified given whichever channel is active. Usually, this phase is
much faster than the first round of training since the parallel
channels are already trained.

3.2. Defense analysis

LetY ¼ eFðxÞ denoted the learnedmapping of a stochasticmodel.
Note thateF is a stochastic function and nowY is a randomvariable. The
defending against adversarial attacks can be revealed in two aspects.

• Stochasticity of Inference: Since Y ¼ eFðxÞ is a random variable,
an adversarial example that fools an instance F1 of the stochastic
model eF sampled at t1 may not be able to F2 sampled at t2.

• Stochasticity of Gradient: Due to the stochasticity of the network,
the gradient of attacker’s objective losswith respect to the input is also
stochastic. That is, the gradient backpropagated to the input is just an
instance sampled from the gradient distribution. And this instance
may not represent the most promising gradient descent direction.

Note that these two aspects are actually correlated. From the
attacker’s point of view, the goal is to find argmax

x
E½AðeFðxÞ;TÞ�

where A(⋅) outputs 1 if the attack is successful and 0 otherwise,
and T is the target class. Therefore, the attacker is benefited from
using stochastic gradients other than gradients from a fixed model
instance, in order to generate adversarial examples that are robust

Figure 1
The steps of assembling a block switching. (a): Sub-models are
trained individually. (b): The lower parts of sub-models are used

to initialize parallel channels of block switching
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to model variation. In another word, this means the adversary cannot
benefit from simply disabling the variation of the stochastic model
and craft perturbations using a fixed model instance.

The above analysis holds for any stochasticmodel but the question
is what makes a good randomization strategy against adversarial
attacks? Intuitively, a good randomization strategy should cause the
input gradients to have wider distributions. In an extreme case, if the
gradient direction is uniformly distributed, performing gradient
descent is no better than random walking, which means the attacker
cannot take any advantage of the target model.

Knowing this, we explain why BS performs better than existing
stochastic strategies such as SAP. In Figure 2, we visualize gradient
distributions under CW attacks to a SAP model and a BS model,
respectively. We observe that the gradient (of the attacker’s object
function w.r.t the input) distribution of the SAP model is
unimodal and concentrated, while the gradient of BS has a
multimodal distribution in a wider range. This distribution
indicates that it is harder to attack BS than SAP which is verified
by our experiment results in Section 4.

Usually, dramatic variations of the stochastic model tend to harm
classification accuracy on clean inputs. That is why in SAP, smaller
activation outputs have more chance to be dropped. The reason that BS
is able to maintain high test accuracy even facing drastic change of the

model is due to the reason that each channel connected to the common
upper model is able to function independently. As long as the common
upper model can learn to adapt different knowledge representations
given by different channels, the stochastic model will not suffer from
significant test accuracy loss.

An interesting question that readers may ask is: why stochasticity
of the model does not impede the second round of training? The fact is
that although the gradients with respect to the input are random
variables, the gradients with respect to model parameters are not.
Since gradients of the inactive channel are just zeros, only weight
parameters in the activate channel will be updated in each training
step. Therefore, although the weights to be updated alternates, the
gradients with respect tomodel parameters are deterministic at any time.

4. Experiments

In this section, we compare the defense effectiveness of regular,
SAP and BS models against FGSM (Goodfellow et al., 2015) and
CW (Akhtar & Mian, 2018) attacks on MNIST (LeCun, 1998)
and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets. FGSM is a
typical “one-shot” method which performs only one gradient
descent step and CW attack is known to be the strongest attack
method so far (Akhtar & Mian, 2018).

Figure 2
We use three images. (a–c): Gradient distributions of CW attack on a SAP model. (d–f): Corresponding gradient distributions on a
block switching. Distributions in the same column belong to the same input dimension. Each distribution is sampled for 100 times
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Both of these two datasets contain separated training and testing
sets. In our experiments, the training sets are used to train the
defending models and the testing sets are used to evaluate
classification performance and generate adversarial examples.

This section is organized in the following way: Details about the
defending models, including the models’ architectures and training
methods, are given in Section 4.1. Defending records against
FGSM and CW attacks are shown in Section 4.2. Study on how
the number of channels in the BS influences its defending
effectiveness and classification accuracy is provided in Section 4.3.

4.1. Model details

4.1.1. Regular models
We use two standard Convolutional Neural Networks (CNNs)

architectures for MNIST and CIFAR-10 datasets, respectively, as
they serve as baseline models repeatedly in previous works (Papernot
et al., 2016b). Both of these two CNNs have four convolutional
layers, two pooling layers, and two fully connected layers, but the
kernel size of convolution filters and layer width is different.

Both models are trained using stochastic gradient descent with
themini batch size of 128. Dropout (Srivastava et al., 2014) is used as
regularization during training.

4.1.2. SAP
SAP can be applied post hoc to a pre-trained model (Dhillon

et al., 2018). Therefore, in order to make the experimental results
more comparable, we use the same trained weights for SAP
model as of the regular model. SAP is added between the first and
second fully connected layers.

4.1.3. Block switching
The switching block in this experiment consists of five channels.

During the first round of training, five regular models are trained as
described above. Each regular model is split into a lower part,
containing all convolutional layers and the first fully connected
layer, and a upper part, containing the second fully connected layer.
The lower parts of regular model are kept, providing parallel
channels of BS while the upper parts are discarded. A upper model,
which is the same as the upper part of regular models except that its
weights are randomly initialized, is added on top of all channels.
The whole BS is then trained on original training set for the second
time. We found that the second round of training is much faster
than the first round. On MNIST dataset, BS is retrained for 1 epoch
and on CIFAR-10 dataset 5 epochs.

The test classification accuracy of all models is summarized in
Table 1. The direct comparisons are between the regular model and
the SAPmodel, since they share the sameweights, and the average of
sub-models is used to construct BS and BS itself. We can conclude
that both SAP and BS are excellent in maintaining testing accuracy.

4.2. Defense against adversarial attacks

We use the fooling ratio, which is the percentage of adversarial
examples generated by a attackmethod that successfully fools a neural
network model to predict the target label and to evaluate the defense
effectiveness of the target model. The lower the fooling ratio is, the
stronger the model is in defending adversarial attacks.

We also record the average L2 norm of the generated adversarial
examples from legitimate input images, since it is only fair to
compare two attacks at similar distortion levels. For attacks like
CW attack that uses a leveraged object function between
distortion and misclassification, a large distortion also indicates
that it is hard for the attacking algorithm to find an adversarial
example in a small region.

4.2.1. Experiments on MNIST dataset
For the sake of reproducibility of our experiments, we report the

hyper-parameter settings we use for FGSM and CW attacks. FGSM
has one hyper-parameter, the attacking strength ϵ as shown in
equation (1). When using ϵ= 0.1, the L2 norm of adversarial
examples roughly matches CW, but the fooling ratio is way too
small. Thus, we also test the case when ϵ= 0.25 in order to
provide a more meaningful comparison, although the L2 norm is
significantly larger. For CW attack, gradient descent is performed
for 100 iterations with step size of 0.1. The number of binary
searching iterations for c in 2 is set to 10.

We use FGSM and CW attacks to generate adversarial
examples targeting the regular model, the SAP model, and BS,
respectively. Experimental results are shown in Table 2.

Although the SAP model demonstrates its extra robustness
against both FGSM and CW than the regular model, BS is
apparently superior and decreases the fooling ratio further.

4.2.2. Experiments on CIFAR-10 dataset
We use ϵ= 0.01 for FGSM in this experiment in order to have

adversarial examples with similar distortion level compared to
examples generated by CW attack. The hyper-parameter setting
for CW attack is the same as above.

Experimental results on CIFAR-10 datasets are shown in
Table 3. And BS significantly decreases fooling ratio of FGSM

Table 1
Testing accuracy of different models on MNIST

and CIFAR-10 datasets

Model Test Acc. on MNIST Test Acc. on CIFAR

Regular 99.04% 78.31 %
SAP 99.02% 78.28 %
Sub-models Avg. 99.02% 78.97%
Switching 98.95% 78.73%

Table 2
Fooling ratio (FR) and distortion of FGSM and CW attacks with

different target models on MNIST dataset

Attack

Regular SAP Switching

FR L2 FR L2 FR L2

FGSM ϵ= 0.1 3.9% 2.73 3.7% 2.73 1.6% 2.73
FGSM ϵ= 0.25 34.0% 6.84 32.8% 6.84 20.3% 6.84
CW 100.0% 2.28 32.1% 2.28 21.0% 2.37

Table 3
Fooling ratio (FR) and distortion of FGSM and C&W attacks

with different target models on CIFAR-10 dataset

Attack

Regular SAP Switching

FR L2 FR L2 FR L2

FGSM ϵ= 0.01 25.0% 0.55 24.8% 0.55 8.1% 0.55
CW 100.0% 0.54 93.3% 0.52 22.2% 0.69
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and CW to 8.1% and 22.2% respectively while the SAP model only
shows minor advantages over the regular model.

4.3. The effect of channel number

To provide an analysis on how the number of channels in a BS
affects its defense effectiveness as well as testing accuracy, we run
CW attack on BS models with different number of channels ranging
from 1 (which is a regular model) to 9.

In Figure 3, we plot the fooling ratio, distortion, and test
accuracy over different channel numbers: in general, the defense
becomes stronger with more channels of BS and the fooling ratio
is lowest, 12.1%, when using nine channels. The fooling ratio
drops rapidly from one channel to four channels while the drop of
fooling ratio decelerates after five channels, which indicates the
effectiveness provided by switching channels starts to saturate.
The increasing distortion of adversarial examples also indicates
that BS with more channels is stronger when defending
adversarial attacks. The trend of testing accuracy, on the other
hand, is almost flat with a very slight descent from 78.31% to
78.17%. This indicates that BS is very effective in defending
adversarial attacks with very minor classification accuracy loss.

5. Conclusions

In this paper, we investigate BS as a defense against adversarial
perturbations. We provide analysis on how the switching scheme
defends adversarial attacks as well as empirical results showing that
a BS model can decrease the fooling ratio of CW attack from 100%
to 12.1% . We also illustrate that stronger defense can be achieved
by usingmore channels at the cost of slight classification accuracy drop.

BS is easy to implement which does not require additional
training data nor information about potential adversary. Also, it
has no extra computational complexity than a regular model in the
inference phase since only one channel is used at a time. In
practice, the parallel channels can be stored distributedly with
periodical updating, which can provide extra protection to the
model that prevents important model information leak.

More importantly, BS demonstrates that it is possible to enhance
model variation yet maintain test accuracy at the same time. And we
hope this paper can inspire more works toward this direction.
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