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Abstract: Data fusion is a process of accommodating data from discrete sources to generate more relevant information with enhanced
accuracy and compatibility rather than the data gathered and information produced by the identical or particular source. To achieve better
accuracy in the information inferred by the Industrial Internet of Things (IIoT) system, data fusion is an emerging technology that takes data
from different involved devices as input and generates more consistent and accurate information. To safeguard the IIoT data involved in
communication foremost is to ensure the authenticity of the devices to block unauthorized access and thus enhance the data confidentiality
and data integrity as well. Zero-trust security is thus employed in the IIoT infrastructure to meet the security requirements in question.
The proposed approach, Dempster combination rule-aided multi-sensor decision-level-based data fusion (MS-DLDF) in Industrial Internet
of Things (IIoT) over zero-trust security, breaks down the whole concept into phases – initially, the device authenticity is ensured before
entering and accessing the network, next, the device data is then encoded to avoid data theft or breach from any unauthorized device,
and lastly, the data fusion algorithm is executed to gather data from multiple sources as input and reach to more appropriate and relevant
information as compared to the information inferred from a single source. The proposedMS-DLDF concludes with the outstanding results of
the Dempster combination rule with the increased number of sensors in complex networks as compared to the single-source data fusion and
Bayesian estimation data fusion with enhanced accuracy by 6%, minimal computation time by 15%, increased precision rate 6%, reduced
false positive rate by 31%, and the amplified data confidentiality rate by 2%, respectively.

Keywords: data fusion,multi-sensor, zero-trust security, Dempster combination rule, single-source data fusion (SSDF), Bayesian estimation
data fusion (BEDF)

1. Introduction

Smart and effective data retrieving and gathering are the tasks
the Industrial Internet of Things (IIoT) infrastructure performs. IIoT
is an archetype that establishes communication and makes connec-
tions among multiple discrete devices with the aid of the Internet.
Thus, with the involvement of many devices, immense coarse data
is produced via the smart sensors associated with the device. With
the application of digitization, the IIoT infrastructure gained much
popularity by employing smart devices in the network to execute
and manage operations on and by devices to provide better function-
ing. The diverse devices in the network collaborate with each other
to initiate communication. Everything in the IIoT network oper-
ates around the devices without human intervention. The smart IIoT
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infrastructure comprises different intelligent sensors around the net-
work to establish seamless communication among the devices. With
the involvement of numerous smart sensors in the IIoT, the raw data
is collected from multiple datasets held by different devices in the
network to analyze and obtain more accurate, compatible, and rel-
evant information that infers better quality than that of information
acquired from data retrieved from individual device datasets, result-
ing in more effective decision-making to any state with standard and
enhanced services.

Single-source data fusion (SSDF) [1] is a data fusion tech-
nique in which the source data or the evidence is collected from a
single-source device or single sensor as an input. Therefore, with
the availability of single sensor data, the accuracy and decisiveness
of information produced as output is compromised. In Alfrhan et al.
[2], the Bayesian estimation method is taken forward for clustering
and combining the data for generalization.

With the emergence of IIoT, the network thus formed becomes
more prone to cyberattacks and data theft by malicious devices
in the network. The data held by the devices are the credentials
that the industry uses for its functioning over the network.
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The traditional security solutions are now not enough to meet the
current security requirements of the system or the network. Thus,
zero-trust security is the improved and uplifting technology that ful-
fills the security requirements in question. Zero-trust security came
into existence years back in 1994 by Stephen Paul Marsh in his
presented thesis on computer security at the University of Stirling
[3]. The concept of zero-trust security is based on the foundation
of “never trust; always verify”. The system with zero-trust security
assumes that the nodes or devices in the network are not trust-
worthy, either being members of the network or extraneous nodes
seeking permission to access the network [4]. Therefore, zero trust
performs continuous monitoring and authentication of the devices
before granting permission to enter the network to establish com-
munication with the authorized device and the associated resources.
Based on different characteristics, zero-trust security with the aid of
artificial intelligence and other machine learning techniques creates
a device profile to recognize the authentic device depending on its
usual behavior and communication patterns and blocks the devices
from showing unusual behavior. Zero-trust security in the proposed
approach has significant importance in safeguarding the device’s
data because data fusion in IIoT involves an immense number of
private datasets that need to be protected from malicious devices.

Data fusion operates on the phenomenon of a “gathering and
summarizing” approach. There are different data fusion techniques
involved that, with the aid of smart sensors associated with the
devices in the network, extract the relevant data as an input dataset
and after analyzing and examining all the datasets obtain better
and more consistent information [5]. The selection of data from
multiple datasets yields better, and more relevant information than
the information produced from a single dataset infers. The resul-
tant information obtained is from the fused data that is produced
by multiple dataset inputs from distinct sources [6]. The sensors
employed provide the data with advantages and loopholes, which
are considered in decision-making to choose the more accurate
dataset by combining multiple datasets. The IIoT infrastructure
involves sensors, data analysis, decision-making, and communica-
tion techniques to enhance the production of IIoT infrastructure,
resulting in more conclusive, relevant, and prudent information with
reduced power consumption as low-power hunger sensors can also
be employed [7].

One of the challenges addressed in the data fusion method
is that the devices in the IIoT environment held both trivial and
nontrivial raw data required for the IIoT infrastructure’s sound per-
formance. The identification and labeling of the devices with the
quality of data they possess are key considerations to provide sensi-
ble andmore decisive information. The identification of the device’s
data could be performed by calculating the quality of the device data
to provide more relevant information with the aid of fuzzy values.
The fuzzy values thus calculated recognize the device with higher
quality data desired or the productivity of the IIoT system or the
device with the least relevant data that need not be considered in the
acquiring of information from the raw data. The data fusion-based
generated information is directly proportional to the level at which
the raw data is monitored and observed under situations. All the
devices are monitored, and the dataset is then extracted to generate
information that is more accurate as compared to the information
generated from the individual dataset from the single-source device.

The Dempster rule of combination is a method that facilitates
the amalgamation of different sources of proof to achieve trust. In
the combination rule, the trust achieved with the combination of dis-
crete sources is authorized only for the source data that are labeled
as uncertain and held as arbitrary values, provided they are sci-
entifically justified [8]. The Dempster rule generally follows the

method of generalization. Every source is treated as an independent
evidence having some uncertainty and distinct belief; the combina-
tion rule is then applied to generalize a trust function via continual
pooling of evidences. The use of the Dempster combination rule
empowers the system with a generalized configuration to quantify,
represent, and manage variability in the source evidences.

Deep Q-learning is a category of reinforcement learning that
utilizes deep neural networks to produce more optimized and accu-
rate results of the Q-learning [9]. Deep Q-learning is a feasible
approach in dealing with large problems with increased state action
and exponentially the Q-table. With the aid of deep Q-learning
(DQL), the approximation of each state-action pair can be achieved
efficiently. DQL uses neural networks in place of Q-table for a
state-action pair; instead of mapping the state-action values on a
Q-table, DQL creates a pair of action, Q-value pair. In DQL, the
effective handling of large spaces is possible so is the need for an
IIoT network [10].

The proposed paper implements multi-sensor-based decision-
level data fusion (MS-DLDF) because the undertaken category of
data fusion cross-verifies the accuracy of the dataset involved in
the information generation by providing an intermediate data fusion
result as the preprocessed state before concluding the final infor-
mation. The cross-verification phase ensures the quality of the
information before the final decision of the data fusion process. The
proposed paper adopts the multi-sensor data fusion technique for
the IIoT infrastructure to gather and combine the raw data extracted
from discrete sensors. The overall methodology of the adopted
approach works on different phases – (1) device authentication and
identification, (2) identifying the quality of the dataset, and (3) MS-
DLDF. The first step is achieved by examining the communication
pattern and building a profile of the device based on the features
it possesses. For building a profile, the considered feature or the
parameter used is the “smart sensors” associated with every device
in the IIoT network and the communication pattern noted by the pol-
icy administrator during the communication process. After ensuring
the authenticity of the device using the DQL algorithm, the next
is to label the individual device with the quality of the dataset the
particular device contains, and it is performed with the aid of the
fuzzy logic sets delineating the low-quality and less adopted dataset
or the dataset with high quality and acceptance. The fuzzy sets are
built on a five-level scale that implies the quality of the data ranging
from low to high with labels (AS, GS, M, GW, AW), respectively.
Based on the quality of the data desired by the system, the model
then activates the corresponding sensors of the devices needed to
extract the required dataset and then examines and analyzes the
dataset to obtain more sensible and relevant information with the aid
of Decision-Level Data Fusion (DLDF). Multi-sensor data fusion
is employed in this approach with the aim of sensing and collect-
ing data from the IIoT environment where thousands of devices are
interconnected to establish the communication responsible for the
functioning and growth of the IIoT framework.

Despite several modifications in the field of IIoT framework,
the device’s security has always been a major consideration to meet
the enhanced security requirements in more complex networks. The
IIoT infrastructure faces some challenges that are highlighted and
focused in the adopted approach.Multi-sensor data fusionmotivates
more accurate, robust, and decisive information rather than the data
acquired from a single source. By collecting, sensing, and fusing the
data from multiple sensors and then acquiring a generalized infor-
mation, the system producesmore convenient, relevant, and sensible
information when the smart sensors extract information from dis-
crete devices rather than from an individual device. Moreover, the
IIoT infrastructure with thousands of devices contains both trivial

Pdf_Fol io:202



Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

and nontrivial data that need to be classified for the generation of
more sensible information. The adopted approach employed fuzzy
logic sets that evaluate the quality of the data held by the devices to
ensure that the information thus obtained is more decisive andmean-
ingful. The traditional security solutions are now not sufficient to
meet the enhanced security needs in the complex network in the IIoT
framework. To ensure the high-security desires of the IIoT infras-
tructure, the proposed paper outlines the use of zero-trust security
combined with deep learning-based device authentication.

The major contributions of the paper are as follows:

1) Deep learning-based zero-trust security network safeguards the
IIoT devices from the reach of unauthorized access by verifying
the authenticity of the device at the initial stage based on the
device profile.

2) MS-DLDF in the IIoT framework provides more decisive, sen-
sible, and compatible information that is cross-verified at the
intermediate stage with accuracy and relevance depending on the
datasets extracted.

3) Fuzzy sets identify and label the quality of the data an individual
device holds.

4) Quality check of the data classifies the trivial and nontrivial
data, thus improving the quality of the obtained information by
ignoring the nontrivial dataset.

The paper is structuredwith Section 2 providing the literature review
that summarizes the related works based on the underlying approach
with the contribution and the solution to the research gap in ques-
tion. Section 3 explains the methods and materials referred to in the
proposed paper. Next, section 4 elaborates on the overall adopted
approach with all the associated graphs and algorithms. Section 5
provides insight into the experimental setup and the analysis of the
results obtained after evaluating the performance of the underlying
approach on certain parameters. The paper concludeswith Section 6,
disclosing the conclusion and the future scope of the overall study.

2. Literature Review

Digitization or the industrial fourth revolution led to the IIoT
where information is produced from multiple source data extracted
from various devices involved in the network. IIoT infrastructure
intends to develop a system where coordination and association are
enabled between the devices in the network to balance the real-
world scenarios and the networked space. Data fusion performs a
collective analysis of the different data from different sources for
a specific scenario or state. The more monitored and observed raw
data is adopted, the more decisive and sensible information the sys-
tem infers [3]. Data fusion has been experienced widely in IoT
frameworks because of the involvement of an immense number of
discrete devices. IIoT infrastructure constitutes of an immense num-
ber of interconnected devices to establish communication via the
Internet. The individual devices have smart sensors to sense and
extract the required data for relevant information. Nowadays, the
traditional educational system has switched to digitized and smart
educational systems [4]. To facilitate the modernized learning sys-
tem, network-oriented and circumstances-attentive smart devices
have significant importance. In a smart learning environment, the
records of a huge number of students are fetched, combined, and
then analyzed to generate more accurate information. In Khan and
Anwar [5], the approach for data fusion technique in digital learn-
ing and educational data mining is introduced in smart education
to establish communication with the authorized device on a hybrid

infrastructure with the blended paradigm of traditional and digital
paradigms.

The shifting of the traditional paradigm of architectural,
engineering, and manufacturing sectors to the digital platform expe-
riences the availability of data from discrete sources for extracting
and gathering relevant data [6]. In Tsanousa et al. [7], a systematic
review was made to interrogate the integration of IoT and building
information modeling (BIM) to empower data-guided architectural,
engineering, and manufacturing (AEM) management. A two-tier
framework is enabled to examine and delineate the data flow and
categorize the absorption level of data with data clarification and
the objective of employing the data fusion technique. The concate-
nation of BIM and IoT, along with the creation of the digital twins,
provides the solution to the challenges of data fusion in BIM and
IoT, which point out the procedure of retrieving and assembling
the BIM and IoT data, respectively [8]. A four-tier data process
framework is enabled to restrict the source of data from BIM and
IoT-data retrieval, combined presentation, gathered examination,
and employment [9]. The key feature of DLDF that makes it differ-
ent from othermethods of data fusion is that it produces intermediate
results or intermediate information from the extracted dataset and
thus cross-verifies the relevance and the quality of the information
obtained; after getting assured with the information generated, the
final decision is thenmade with the final information that is revealed
as the outturn of the overall process [10].

Based on Fawzy et al. [11], the considerable loopholes in the
data fusion technique were addressed, such as the depiction of
events with minimal or no certainty, the integration of noncompa-
rable knowledge, and the criteria for combining and describing the
discrete source findings. A review was performed to address the
employment of deep learning in IoT security in Meng et al. [12].
Moreover, considering the security aspect of IoT infrastructure, the
examination of the relevance of deep learning in enhancing security
is performed. With the emergence of the fourth industrial revolu-
tion or Industry 4.0, the peer techniques of device authentication are
not enough to meet the increased security requirements of complex
networks. Deep reinforcement learning provides an ambient solu-
tion to efficiently recognize the device when considering complex
networks with thousands of devices [13]. In any network, there is
always a possibility of attack either from intruders or insiders. To
inhibit the attacks, zero-trust security model is a well-formulated
design that doesn’t simply trust the devices based on their locality
but rather asks the devices to authenticate their identity every time
they access the network. IIoT devices comprise of smart sensors
to fetch and combine datasets from discrete sources. Multi-sensor
data fusion has a significant importance in the IIoT networks in
facilitating sound decision-making [14]. InAzam et al. [15], the ben-
efits of multi-sensor data fusion over single-source data fusion are
addressed. The decision-level data fusion in multi-sensor-oriented
systems provides cross-verification and ensures the relevance and
quality of the information produced by generating the intermedi-
ate results from the fetched dataset, and then depending on the
intermediate results, the effective decision-making is achieved to
fuse the data from multiple discrete sources [16]. The shifting of
traditional paradigms to the digital platform has witnessed the incre-
mented involvement of sensors, which need interactive algorithms
that facilitate the efficient fetching and fusion of datasets. Based
on Kong et al. [17], the comparative analysis is made to examine
the behavior and characteristics of the decision confusion produced
by the testimonial-oriented categorization and the single catego-
rization framework. Unlike supervised and unsupervised learning
algorithms, Q-learning is an intelligent learning algorithm that is
performed from the selection of action by the agent for the state
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entered the environment to assigning rewards to the agent based on
its performance [18]. In the work of Al-Hamadani et al. [19], the
applications and algorithms of reinforcement learning in health care
and robotics are summarized. For robotics, the review is performed
on the manipulation of the object and grabbing in industries as well
as in health care. The improved Q-learning for planning the path of
mobile robots is explained in Zhou et al. [20], with performance on
three different complexity levels.

Deep learning is a widely accepted technology and is expe-
rienced in almost every corner of the world. According to Hamda
et al. [21], a deep-quality learning network-driven e-learning or the
distance learning to configure a robust system in order to approxi-
mate the Q-values obtained is explained. An improved Q-learning
algorithm based on approximate state matching in an agricultural
plant protection environment to learn the most optimized policy for
the Unmanned Aerial Vehicle (UAV) in agriculture plant protection
is suggested in El Faouzi and Klein [22]. In Qi et al. [23], deep
learning-based speed profiling for the users of mobile in the 5G
networks is demonstrated with 94.5% of detection in terms of f1
score. The applications and the challenges of reinforcement learning
in the blockchain technology are summarized in the work of
Lee et al. [24].

According to Logananthara et al. [25], various problem-solving
strategies are discussed based on the knowledge-based systems in
various domains with controlled environments. A systematic review
is made by Ding et al. [26] delineating the challenges, applica-
tions, and future trends of secure data fusion in IIoT. In the work
of Chango et al. [27], a review of the employment and applica-
tion of data fusion in learning analytics is discussed, covering the
challenges and current state of the art. In Qin et al. [28], the issues
in data fusion are addressed along with the approach to overcome
the gap in the data fusion technique. The study explains that the
use of ensemble learning in the data fusion technique has outstand-
ing performance in dealing with the challenges addressed in peer
approaches. In digitized-driven architecture, engineering and con-
struction (AEC), how the fusion of data from the Internet of Things
and information systems can achieve data-driven AEC is delineated,
and a two-level conceptual framework interconnecting BIM and IoT
is proposed by Huang et al. [29]. Based on Yue et al. [30], a review is
made on the deep learning application in empowering the IoT. The
review is made on two broad areas- the architecture and methodol-
ogy aspect and the other are the security and privacy provided by
deep learning in IoT. The applications, architecture, and foundation
implementation of zero-trust security are reviewed in He et al. [31].
The core technologies in zero-trust security including the authenti-
cation of identity, evaluation of trust, and controlling the access of
devices in the network are also summarized. From Tong et al. [32],
research is performed on the techniques that facilitate the fusion of
data using multiple sensors addressing the validity and relevancy of
data gathered from different sources. The algorithms for merging
the information are also introduced.

A multi-sensor fusion of information and the algorithms
reacted to the intelligent optimization in the field of mobile robots
are explained by Guo et al. [33]. Based on Gao et al. [34], the appli-
cations and the security measures provided by the zero-trust security
network in empowering power Internet of Things are explained.
A systematic review of the zero-trust security-based security in
cloud computing is performed by Sarkar et al. [35], discussing about
the challenges in cloud computing and the requirements for the zero-
trust network. In the study of Peres et al. [36], a holistic approach
to the view of industrial artificial intelligence in Industry 4.0 is

reviewed. The summary of the research on the techniques used
for identifying and assessing functional and nonfunctional require-
ments, and all other factors for examining smart manufacturing
systems is made by Sharma and Villanyi [37]. According to Singh
[38], the issues of unemployment due to the lack of technological
unawareness in Industry 4.0 are summarized and explained. The
indexing and discussion of the research made on the various deep
learning and machine learning techniques in providing or empower-
ing cybersecurity along with the underlying challenges are provided
by Xin et al. [39]. Based on Sharma et al. [40], the applications,
issues, and future trends of deep learning and machine learning in
various domains are compiled and discussed.

In theworkofBucketal. [41], thecurrentadoption,applications,
and associated challenges in the zero-trust security-based preven-
tion and securitymeasure are reviewed. An ensemble learning-based
analysis and prediction of anomalies with the aid of log processing
is proposed by Wang et al. [42]. The adopted approach outstands in
improving the recall, accuracy, and F1 values in detecting anoma-
lies. According to Pang et al. [43], a review is conducted to delve
into the applications and use of deep learning in anomaly detection.
The survey bifurcates 3 high-level categories and 11 fine-grained
categories of deep learning. A fusion of binary normal/attach classi-
fier and multi-attacks classifier is performed to develop a model for
anomaly detection is conceptualized in AlDahoul et al. [44]. Based
onHu et al. [45], a review on hyperspectral anomaly detection driven
by deep learning approach is portrayed to highlight the advantages
offered by the underlying approach. The profiling of nodes in the
social media platform using the PageRank algorithm is brought up
by Elbaghazaoui et al. [46]. From the research of Safi et al. [47], a
distributive profiling approach is adopted to classify IoT and non-
IoT devices and the network they belong to; moreover, the regular
updating of profiles thus formed. A smart navigation technique for
blind people facilitating smart homes integrating fuzzy logic in IoT
devices isdiscussedbyTayyabaetal. [48] tonavigateandavoidobsta-
cles. In the study of Hosney et al. [49], artificial intelligence-based
zero-trust security architecture is proposed. An enhancedQ-learning
algorithm is discussed by Sun et al. [50], to approximate the match-
ing of state in agricultural plant protection on the datasets uniformly
distributed in UAV parameter and real farm. Based on Ramezanpour
et al. [51], the empowering of 5G/6G network with intelligent zero-
trust security architecture, with the assumptions, complexities, and
significance of machine learning referring to O-RAN is delineated.
The profiling technique with the aid of deep learning for the mobile
users levering 5G cellular networks is suggested by Saffar et al. [52].
The involvement of deep learning automatically generates mobile
speed profiling.

The adopted approach focused on MS-DLDF to retrieve the
information with enhanced compatibility and is more decisive. The
existing single-source data fusion involves the participation of sin-
gle dataset from an individual source that infers less consistent and
decisive information as compared to multi-source data fusion that
involves the dataset from multiple sources. The existing approaches
lacked to focus on the intermediate layer in fusing the results of the
multi-sensor of the participating devices. The adopted approach fills
the gap by implementing the MS-DLDF that analyzes the interme-
diate results to provide more compatible and decisive information.
The peer approaches involve the dataset from single source only that
infers restricted and less decisive information as compared to the
information inferred from the proposed MS-DLDF. The proposed
method amplifies the IIoT environment performance in the context
of accuracy, computation time, precision, false positive rate, and
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data confidentiality rate, which the existing approaches despite the
several improvements failed to highlight.

3. Materials and Methods

3.1. Materials

The experimental evaluation of the proposed method is derived
from the public dataset available in IIoT_data of 59.06 MB in CSV
format having 405,184 records. The supplementary dataset under
consideration is X-IIoTID dataset of 106.71MB containing 820,835
records.

3.2. Methods

The proposed methodology Dempster combination rule-aided
multi-sensor decision-level-based data fusion (MS-DLDF) outper-
forms the existing SSDF [1] and Bayesian estimation data fusion
(BEDF) [2] involved in the simulation. In El Gourari et al. [1], the
single-source data fusion technique is delineated reflecting the lack
of decisiveness of the information generated with the single-source
dataset. BEDF [2] incorporates the data fusion technique that lacks
focus on the security of the data being used for the fusion process.
Therefore, the proposed approach provides an ambient solution for
enhancing the decisiveness and consistency of information with the
aid of MS-DLDF. The MS-DLDF facilitates the generation of inter-
mediate results that provide the insight into the final information
the adopted datasets will produce. To ensure the authenticity of the
device and ignore all the malicious devices to enter the IIoT net-
work, deep Q-learning-based device verification and authentication
are empowered. The adopted approach stands strong by categoriz-
ing the devices with trivial and nontrivial data via transfer fuzzy
learning.

4. Proposed Methodology

MS-DLDF is an uplifting concept that gathers and com-
bines datasets from discrete independent sources for obtaining
information that comparatively infers more reliable and adequate
information with improved quality than that obtained from individ-
ual datasets. The appropriate analysis is made on all the extracted
datasets from multiple smart sensors associated with each device.
The overall adopted approach MS-DLDF comprises three core con-
cepts – initially, the trustworthiness of the device entering the
network needs to be assured to guarantee the security of the device
data, and hence, transparent communication between the authen-
tic devices is established. To ensure the authenticity of the devices
in the network, deep Q-learning-driven identification and recogni-
tion of the devices are performed based on the actions performed
by the agent. Following this, in order to achieve the information
with assured decisiveness and accuracy, the dataset from different
devices should be relevant, complete, and correct. To fix the con-
cern of source data validity and correctness, the fuzzy set is created
to identify the data quality as per its relevance in effective decision-
making for achieving accurate and consistent information. The last
phase performs sensing of the dataset from multiple sensors and
initiates the data fusion applying decision-level data fusion from
multiple sensors for cross-verification of the information before the
final outcome. The overall system model delineating the proposed
approach is illustrated in Figure 1.

Figure 1 above demonstrates the summarized architecture of
the proposed model explaining the workflow of the methodology.
The initial stage in the adopted approach SDP-MS-DLDF is to

Figure 1
The overview of the proposed architecture MS-DLDF

verify the authenticity of the device by employing deep learning
for intelligent authentication of the devices based on the sensor-
oriented device profile. The deep Q-learning is employed to verify
the device before allowing access. The agent chooses the most accu-
rate action from the set of actions to refrain the legitimate and
malicious devices. After verifying the authenticity of the device, the
data held with the device is categorized based on its quality for the
trivial and nontrivial raw data with the aid of transfer fuzzy learn-
ing. The quality of the source data is categorized via fuzzy logic
into five categories: complete strong, prevalent strong, moderate,
prevalent weak, and complete weak denoted as CS, PS, M, PW, and
CW, respectively. Based on the quality of the data obtained from
the preprocessing stage, the adopted datasets are then exposed to
the explainable MS-DLDF model to analyze and combine the most
relevant datasets obtained via multiple sensors and then perform
decision-level data fusion to combine the datasets from discrete
sources and acquire the most relevant, compatible, sensible, and
decisive information as compared to the information obtained from
the individual source dataset. The intermediate results are obtained
from the multiple source data to assess the quality and decisive-
ness of the information being produced. The solution to the security
requirements in the complex networks under question is provided
in the proposed approach by enabling zero-trust security in IIoT
networks integrating with a deep learning algorithm to intelligently
recognize and verify the authenticity of the device in practice.

4.1. Deep Q-learning-based device recognition and
authentication (DQL-DA)

Q-learning is an emerging technology that effectively gener-
ates sound decisions with an intelligent agent’s aid. The agent is
employed in the operating environment, and for every required state,
it enters the environment and performs a set of actions to reach an
appropriate and most relevant action for the current state in the pro-
cess. Q-learning is integrated with the deep learning algorithm in
order to support optimized decision-making in selecting the most
accurate and appropriate action for the considered state in the envi-
ronment. The zero-trust security involves continuous monitoring
and verification of the devices entering the IIoT network. The con-
tinual verification of all the devices entering the network makes the
devices dry up and adversely affects the production and efficiency of
the IIoT framework. Also, the devices need to be verified to ensure
the authenticity of the device to safeguard the network from any
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Figure 2
The DQL-DA enabled IIoT framework in zero-trust network

unauthorized access and protect the devices from being targeted by
a malicious device that results in disrupted data confidentiality and
originality.

The first phase DQL-DA of the overall proposed system, that
is, the device authentication, is represented in Figure 2 below.

The above Figure 2 explains the blueprint of the device authen-
tication phase of the proposed approach. The state or event enters the
environment, which is then passed to the agent, which is activated
on receiving the state for which action is needed. Reinforcement
learning works on three dimensions: state, action, and reward. RL is
a type of learning that autonomously learns its action from the pre-
vious action and thus improves its learning and exponentially the
results being produced. In reinforcement learning-aided decision-
making, the state here is represented as the device that enters the
network to access the services provided, while the environment is
the IIoT network. After receiving the device to be authenticated,
the agent gets initialized to perform certain actions to reach the
most appropriate and optimized action. The agent then performs the
set of actions to achieve the final action Aa and Ab, which implies
allowing access to the device or blocking the device, respectively.
The final action the agent takes is then transferred to the environ-
ment to generate a reward for the performance of the action of the
agent for its accuracy and pertinence. The integration of deep learn-
ing enables optimized decision-making in choosing the action by
the agent for a particular state. When the action taken by the agent
falls in the Aa category, the authenticity of the device is verified at
the initial stage, and the device is allowed to access the network.
On the other hand, when the decision of the agent is Ab, then the
device authenticity is not verified, and the device access is blocked.
The delineated process comes with a solution to safeguard the IIoT
network from any unauthorized access with enhanced data confi-
dentiality and integrity. The Q-learning algorithm is mathematically
stated by the Bellman equation that manifests the most appropriate
and accessible actions by the agent aiming to achieve the maxi-
mum reward. Equation (1) below explains the Bellman optimality
equation:

Qvalue (S,A) = Rwd (S,A) + 𝛿 max
A

Qvalue (S′,A) (1)

Equation (1) delineates that the generated Qvalue is based on
the state S from the environment, the most optimized action A an
agent performs, and in turn, the environment passes the reward
Rwd depending on the agent’s performance concatenated with
the maximum Qvalue that is attainable from the succeeding state(S′). Moreover, a discount factor, 𝛿, commands the benefaction
or the role of rewards eventually. The Qvalue generation is an
iterative process, and every current Qvalue again depends on the
new Qvalue of the next state. The architectural overview of the deep
Q-learning-based device authentication scheme is represented in
Figure 3 below.

The above-illustrated Figure 3 demonstrates the conceptual
framework of the adopted DQL-DA. The overall architecture com-
prises two parts: ‘Part 1’ represents the ‘Environment,’ which
includes all IIoT devices with smart sensors. The environment
receives the state, enabling the agent to prompt the devices to per-
form specific actions. The state in the environment is transferred
to “Part 2”, which activates the agent to perform a set of actions
based on the policies, and then the set of all the actions is exposed to
the deep Q-learning framework to achieve a more optimized action
that facilitates efficient decision-making in allowing or denying the
access to the devices entering the environment of the IIoT infras-
tructure. As a result, the agent generates the action Aa or Ab, which
denotes the acceptance of the device for accessing the network
and blocking the device by denying access to the device, respec-
tively. The action taken is then passed to the environment again, and
then the environment based on the accuracy and optimality of the
action taken by the agent assigns a reward to the agent. The rewards
assigned to the agent are shown in Equation (2):

Rwdt = {1 i f A = Aa

0 i f A = Ab−1 elseways

(2)

Equation (2) explains the scenario of reward assignment based
on the actions performed by the agent. If the agent accepts the
device, the agent is assigned by reward of “1”, if denies access
to the device, the reward assigned is “0”, and in the state where
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Figure 3
The architectural overview of the deep Q-learning-based device authentication scheme

the exact decision-making is in doubt, the reward assigned to the
agent is “-1”. The overall concept hence provides the most opti-
mal action to the required state for verifying the authenticity of the
device to safeguard the IIoT infrastructure from malicious activi-
ties. The algorithm below explains the step-by-step working of the
above-demonstrated DQL-DA:

Algorithm 1: Deep-Q-learning-based device recognition and
authentication

Input: Device D = {D1, D2, D3 ... ... ..Dx}, Raw device data
= RD = {RD1, RD2, RD3 ... ... ...RDy} , state S, set of actions
A, agent Ag, environment E, time t, policy administrator module
PAm, reward Rwdt

Output: Optimized device authentication

1) Assign and initialize the value of x, y, and t, where x = y
2) Initialize the policy administrator module of zero-trust

security network
3) Begin
4) For every St ariving in time t and RDi ∈ D, do
5) Activate agent Ag for St
6) Read the communication pattern of Di and store in Ci

// Matching and decision-making for device authentication via
DQL-DA

7) For every Ci ∈ Di, do
8) Calculate At
9) If Ci = PAm

10) Then At = Aa, authenticity is confirmed, and the device
is allowed to access the network

11) Transfer At → E to calculate Rwdt and Qvalue (St,At)
using Equation (1):

Qvalue (S t,At) = Rwd (St,At) + 𝛿 maxA Qvalue (S′ t,At )

12) End if
13) Else
14) If Ci ≠ PAm
15) Then At = Ab, authenticity is not confirmed, and the

device is blocked with denied access
16) Transfer At → E to calculate Rwdt and Qvalue (St,At)

using Equation (1):

Qvalue(S t,At) = Rwd (St,At) + 𝛿 maxA Qvalue (S′t ,At)
17) End if
18) End for
19) End for
20) End

The algorithm (1) delineates the working scenario of the deep
Q-learning-based device authentication based on the communica-
tion pattern of individual devices, and the policy administrator
module that controls the access criteria a device should follow based
on the policy to access the zero-rust security enables IIoT frame-
work. The foremost step is to initialize the values of the devices
in the network denoted by D = {D1, D2, D3 ... ... ..Dx and the set
of actions A and time t. The zero-trust security network comprises
of three modules: the policy engine module, policy administrator
module, and policy enforcement area module. The policy adminis-
trator is the one who sets policy and provides it to the policy engine
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Figure 4
The conceptual framework of DC-FL-based classification of trivial and nontrivial raw data

module to ensure the security of the undertaken infrastructure. The
policy administrator here reads the communication pattern of the
devices and forms a policy based on that to recognize the unusual
behavior of the device. For every device Di, the state S and agent
Ag are activated at a particular time. The communication pattern
Ci of the device is viewed by the policy administrator and based
on that, an authentication policy is created PAm. Next, for every
recorded communication pattern belonging to a device, the action is
performed from the action set, and the cross-verification of commu-
nication pattern and policy is made. If communication pattern and
policy are matched, the action being calculated results in Aa, and
then the action is passed to environment E to calculate and assign
reward Rwdt to the agent. And the device is permitted to access the
network. Contrary, if the comparison is not equal, the action value is
calculated as Ab, and the device access is denied. Lastly, the Qvalue
is calculated using Equation (1).

4.2. Device data categorization via fuzzy learning
(DC-FL)

Fuzzy logic is the learning algorithm that is applied to improve
the learning and knowledge of the system based on the decision val-
ues that may not lie between only the true and false. The decisive
nature of the system is hence enhanced to depict the results that
are not bounded between just two values but have different values
on the measuring scale. In the proposed methodology, the state of
the art is to refine the raw data and categorize it based on the qual-
ity it possesses to produce more accurate, compatible, and relevant
information. The adopted fuzzy learning approach gives the inter-
mediate results in between that denote fragmentary true and false
values for the problem in question rather than that produced by the
Boolean system that generates only pure true and pure false values
as a solution. The overall fuzzy learning-based system comprises
four components, namely, rule base, fuzzification, inference engine,
and defuzzification. The conceptual framework of DC-FL-based

classification of trivial and nontrivial raw data is represented in
Figure 4.

Figure 4 illustrated above explains the functioning of fuzzy
logic learning in obtaining the fuzzy sets or fuzzy values in order
to categorize the device’s raw data as trivial or nontrivial. The
IIoT infrastructure with thousands of devices but not devices in the
network contains relevant efficient data to generate sensible and
decisive information. The proposed paper provided the solution to
the aforementioned loophole by enabling fuzzy learning that based
on the quality of the data possessed by the individual device, which
calculates the fuzzy set. The values are marked on a five-number
scale measuring the strongest quality to the weakest quality denot-
ing the crisp values 1 to 5, and the fuzzy values are represented as
CS, PS, M, PW, and CW that infer “Complete Strong”, “Prevalent
Strong”, “Moderate”, “Prevalent Weak”, and “Complete Weak”,
respectively. The foremost step in fuzzy learning is the initialization
of the “rule base” that comprises the protocols and the If-Then state-
ment that commands the decision-making based on the provided
criteria. Next, in the input stage, the device data is exposed to a fuzzi-
fier that converts the classical set of numbers into fuzzy set values
based on the degree of quality represented by the classical value set.
This process of converting the classical value set into the fuzzy set
is known as “fuzzification”. The fuzzy set generated is exposed to
the intermediate stage, that is, the “inference engine”, which assigns
the corresponding degree of quality based on the present fuzzy set
value depending on the rules set by the “rule base”. The matching is
performed in a way that the classical value set represents the degree
{CS, PS, M, PW, CW}. The fuzzy set is mathematically represented
as follows in Equation (3):

Fset = {CS, PS, M, PW, CW} (3)

The last stage is “defuzzification”, where the fuzzy set values
attained by the inference engine are employed to the defuzzifier
into the classical value set. The output stage comes with a classi-
fication of trivial and nontrivial raw data not only with two-edge
degree representing true and false but comes with many shades of
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gray in between. The proposed DC-FL-based classification facil-
itates more accurate and relevant information obtained from the
best-suited dataset ignoring all the irrelevant and weak datasets. The
quality of the data in the proposed paper is based on the accuracy of
the raw data a particular device holds. The accuracy of the data is
mathematically stated as in Equation (4):

Accuracy (A) = Tpositive + Tnegative

Tpositive + Tnegative + Fpositive + Fnegative
(4)

Equation (4) measures the accuracy of the data based on which the
quality of the data held by an individual device. The accuracy of
data is calculated by adding all the truly positive events and the truly
negative events and then dividing the value from the sum obtained
by adding truly positive, truly negative, falsely positive, and falsely
negative events.

Algorithm 2: Device data categorization via fuzzy learning

Input: Device D = {D1, D2, D3 ... ... ..Dx}, Raw device data =
RD = {RD1, RD2, RD3 ... ... ...RDy} ,Rlbase, classical value set
Clset

Output: Robust device raw data classification

1) Initialize Rlbase
2) Begin
3) For every RDi ∈ D, do

// Perform fuzzification

4) Convert Clset = Fset
5) Activate Clset
6) For every Clsetn∀ n ∈ Clset, do
7) Formulate fuzzy value set Fset
8) Calculate the quality of data based on the accuracy using

Equation (2):

Accuracy (A) = Tpositive + Tnegative

Tpositive + Tnegative + Fpositive + Fnegative

9) Activate Rlbase to initiate if-then decision-making
10) If 2 > A ≥ 1,
11) Then, the fuzzy value is {CS}, that is, “Complete

Strong”
12) If 1 > A > 0,
13) Then, the fuzzy value is {PS}, that is, “Prevalent Strong”
14) If A = 0,
15) Then, the fuzzy value is {M}, that is, “Moderate”
16) If 0 > A ≥ −1,
17) Then, the fuzzy value is {PW}, that is, “PrevalentWeak”
18) If −1 > A ≥ −2,
19) Then, the fuzzy value is {CW}, that is, “Complete

Weak”
20) End if

// Interface Engine

21) Transfer the fuzzy set to assign the corresponding degree
to the values.

// Perform defuzzification

22) Convert Fset = Clset
23) End for
24) End for
25) End

The formulated algorithm (2) delineates the step-by-step work-
ing of the DC-FL with the aim of categorizing the raw data based on
its accuracy so as to identify the trivial and nontrivial dataset. The
accuracy of the device’s raw data is calculated, and then it is checked
across a set of rules formulated by the rule base module. If the range
of accuracy lies between 2 > A ≥ 1, then the strongest quality of
data is claimed, and for the lowest or the most nontrivial dataset,
the accuracy range should lie between −1 > A ≥ −2. Employ-
ing fuzzy logic facilitates not only the corner values or the Boolean
system values as true and false but also determines the degree of
the quality considering multiple values in between, thus providing
an ambient solution to the efficient and relevant data selection for
obtaining sensible and compatible information.

4.3. Multi-sensor-based decision-level data fusion
(MS-DLDF) in IIoT over zero-trust security
network

The IIoT infrastructure is built around thousands of devices,
and the individual device contains a smart sensor that senses and
ensures the availability of the desired dataset from the device. Smart
sensor plays a pivotal role in fetching the requested dataset from the
desired device. Data fusion as delineated above merges the raw data
from multiple sources to produce a more meaningful and consistent
information obtained from multiple sensors rather than the infor-
mation inferred from the individual source. In the IIoT framework,
by the adopted approach, the data should be gathered from vari-
ous participating devices to the best of the knowledge. Multi-sensor
data fusion is a framework configurated to acquire source data from
multiple discrete sources to analyze and generalize the multi-source
data. A multi-sensor data fusion model constructs a complicated
environment that acquires data from multiple sensors to produce
mode-appropriate and decisive information. With multi-sensor data
fusion, the information or the results that can’t be inferred from a
single sensor is accurately achieved. In multi-sensor systems, the
examination of positioning, tracking of source data, and identifica-
tion are performed to fuse data from multiple discrete sources. The
classification of the multi-sensor data fusion is based on the data
fusion methods, level of abstraction in data fusion, and spatiotem-
poral vector of data fusion. Data fusion has three levels, namely,
observation level, feature level, and decision level. Decision-level
data fusion performs intermediate analysis of the dataset extracted
and double-checks the quality of data by producing intermediate
results before reaching the resultant fusion. The architectural model
for MS-DLDF is demonstrated below in Figure 5.

The above-represented Figure 5 delineates the conceptual
workflow of the adopted MS-DLDF in IIoT over zero-trust security
network. The IIoT devices have an immense of devices, and every
individual device contains smart sensors that sense and fetch data
required for information generation, and further communication in
the network hence is called multi-sensor. Every individual device
contains the raw data that are extracted with the aid of sensors. The
raw data is then employed for the classification of the trivial and
nontrivial dataset via DC-FL-based classification of trivial and non-
trivial raw data. After the selection of the relevant raw data, the
intermediate data analysis is made on the dataset to produce interme-
diate results to cross-verify the relevance of the dataset in practice.
The workflow produces the result as the fusion of the datasets
from the intermediate results, producing more sensible and decisive
information. The overall mathematical formulation of MS-DLDF
is explained in the following equations via Dempster data fusion
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Figure 5
The architecture of multi-sensor-based decision-level data fusion (MS-DLDF) in IIoT over zero-trust security network

algorithm. The foremost is to formulate the set of exclusionary
entities stated in Equation (5):

E = Ώ = {𝜔1, 𝜔2, . . . ..𝜔x} (5)

Equation (5) depicts the entire set of events or the device dataset
involved in decision-making. E is the entire set of participat-
ing devices represented by Ώ and constitutes of multiple values{𝜔1, 𝜔2, . . . ..𝜔x}, where x is the number of devices involved. After
formulating the set, the next is to obtain a power set of the Dempster
combination concept as stated in Equation (6):

2Ώ = {∅, {𝜔1} , {𝜔2} , . . . . . . {𝜔1, 𝜔x} . . . , Ώ (6)

The above-illustrated Equation (6) explains the power set, where ∅
denotes the empty set. The set created goes to the limit x, which
represents the number of total events and devices involved in the
simulation. Here, in the proposed approach, the number of devices
in the network, say, three, then Ώ = {p, q, r}. The power set thus
formed is 2Ώ = 23 = {∅, p, q, r, {p, q} , {p, r} , {q, r} ,Ώ}

The values in the set have an equal proportion to that of Ώ
and are represented as 2Ώ = 2x. The basic probability assign-
ment is a function that usually follows two values as represented in
Equation (7):

M ∶ 2Ώ → [0, 1] (7)

In Equation (7), the mass function is explained as the assigning of a
power set with the binary values 0 and 1. The dataset retrieved from

the devices’ multiple sensors involved in the process of generating
information and the conditions of mapping 0 and 1 to mass function
are mathematically stated in Equations (8) and (9):

M (∅) = 0 (8)

∑M (𝜔) = 1 ∀𝜔 ∈ 2Ώ (9)

In Equations (8) and (9), M is known as the “Basic Probability
Assignment”. Ώ represents the set of number of events or entities.
If mass function M > 0, then the belief and plausibility functions are
calculated.

After acquiring the dataset, the next is to combine the dataset
for the information generation. The combination rule of Dempster
data fusion for combining, say, two devices’ raw data, is as stated
below in Equations (10) and (11):

M12 (P) = ∑Q∩R=P {M1 (Q) .M2 (R)}
1 − k

(10)

when A≠ ∅ and M (∅ ) = 0

k = ∑
Q∩R=∅ {M1 (Q) .M2 (R)} (11)

Equations (10) and (11) demonstrate the combining rule for the two
datasets involved in decision-making. “k” represents the degree of
collision between the adopted source dataset. The divisor 1− k per-
forms as a regularization factor that supports assemblage by entirely
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disregarding the disputing raw data. The combination rule of Demp-
ster follows commutative and associative law as stated in Equations
(12) and (13), respectively:

M1 ⊕ M2 = M2 ⊕ M1 (12)

Equation (12) explains the association between the basic proba-
bility assignment values of the devices from which the data is to
be retrieved. The symbol ⊕ (addition) used describes the cumula-
tive law of the combination rule of Dempster, which means that
the information obtained from the fusion of two distinct sources
remains the same when the datasets are swapped or their input
sequence is changed. The information obtained from combining M1
andM2, likewise, the information acquired when the input sequence
of dataset from multiple sensors is changed, say, M2 and M1. The
results show both the cumulative and associative properties. Next is
to calculate the “Trust” to ensure that the device belongs to the gen-
erated power set of the involved events. Themathematical statement
of the trust value evaluated is shown in Equation (13):

T (P) = ∑
Q⊆P

{M (Q)} (13)

In Equation (13), T (P) evaluates the faith that the device is a par-
ticipant of the power set of the constituting devices in the network
such that P ⊂ Ώ.
Algorithm 3: MS-DLDF in IIoT over zero-trust security
network

Input: Devices D = {D1, D2, D3 ... ... ..Dx}, entire set Ώ ={𝜔1, 𝜔2, ... .. 𝜔x}
Output: More sensible and decisive information

1) Begin
2) For all the incorporating devices, do
3) Formulate an “Entire set (E)” using Equation (5)

E = Ώ = {𝜔1, 𝜔2, . . . ..𝜔x}
4) For the formulated set E = Ώ, do
5) Generate a “power set (2Ώ) using Equation (6)

2Ώ = {∅, {𝜔1} , {𝜔2} , . . . . . . {𝜔1, 𝜔x} . . . , Ώ
6) Calculate “Basic Probability Assignment” using

Equations (6), (7), and (8)

M ∶ 2Ώ → [0, 1]
M (∅) = 0

∑M (𝜔) ∀𝜔 ∈ 2Ώ
7) For every device in set E = Ώ, do
8) Evaluate the Dempster combination value (suppose for

two devices from which the dataset is to be retrieved)
using Equation (10):

M12 (P) = ∑Q∩R=P {M1 (Q) . M2 (R)}
1 − k

9) For every Mxix j (Dname), do
10) Calculate the “Trust function (T)” using Equation (13)

T (Dnamei) = ∑
Dname j⊆Dnamei

{M (Dname j)}
[where Dnamei

is the first device and Dname j
is the second

device from the entire set of participating devices]

11) If T (Dnamei) → [0, 1] ,
12) Then Dnamei

∈ Ώ, hence belief is confirmed and fusion
is processed

13) Else, the device is not from the participating set or the
participant of the network

14) End if
15) End for
16) End for
17) End for
18) End for
19) End

The delineated algorithm (3) explains the step-by-step exe-
cution of the Dempster combination rule. The foremost step is to
formulate the entire set E, which constitutes of all the participat-
ing devices in the IIoT network. Based on the entire set, power set
2Ώ is produced with all the combinations of involved devices. After
forming the power set, the mass function (M), also called out as
“Basic Probability Assignment”, is calculated for the empty set and
the values or devices representing the entire set with the surety that
all the devices belong to the power set generated. Probability assign-
ment has two conditions depending on which the values 0 and 1 are
mapped. For every device that belongs to the entire set, the Demp-
ster combination rule is applied for the selected devices. Say, for
two discrete source datasets, themass function is calculated. The last
step is to ensure the faith that the selected device is a member of the
entire set from which the dataset is to be extracted and is achieved
by calculating the trust function for each participating device. If the
trust value calculated lies between the range [0,1], then the device
is a member of the network or the set formed, and then only the
data fusion is initiated; otherwise, the device is refrained, and the
process is to be restarted. By calculating trust value, the security is
also ensured by ignoring all the devices that are not a member of the
source set or the entire set.

Algorithm 4: MS-DLDF via Dempster combination rule for
enhanced data security and information decisiveness

Input: Device D = {D1, D2, D3 ... ... ..Dx}, raw device data
= RD = {RD1, RD2, RD3 ... ... ...RDy} , state S, set of actions
A, agent Ag, environment E, time t, policy administrator module
PAm, reward Rwdt, Rlbase, classical value set Clset, entire set Ώ ={𝜔1, 𝜔2, . . . ..𝜔x}
Output: MS-DLDF for more relevant and consistent information
ignoring all nonrelevant dataset

1) Assign and initialize the value of x, y, and t, where x = y
2) Initialize the policy administrator module of zero-trust

security network
3) Begin
4) For every St arriving in time t and RDi ∈ D, do
5) Activate agent Ag for St
6) Read the communication pattern of Di and store in Ci

// Matching and decision-making for device authentication via
DQL-DA

7) For every Ci ∈ Di, do
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8) Calculate At
9) If Ci = PAm
10) Then At = Aa, authenticity is confirmed and the device

is allowed to access the network
11) Transfer At → E to calculate Rwdt and Qvalue (St,At)

using Equation (1):

Qvalue (S t,At) = Rwd (St,At) + 𝛿 max
A

Qvalue (S′ t,At)
12) End if and go to step 17
13) Else
14) If Ci ≠ PAm
15) Then At = Ab, authenticity is not confirmed, and the

device is blocked with denied access
16) Transfer At → E to calculate Rwdt and Qvalue (St,At)

using Equation (1):

Qvalue (S t,At) = Rwd (St,At) + 𝛿 max
A

Qvalue (S′ t,At)
17) For every At, do
18) Initialize Rlbase
19) For every RDi ∈ D, do

// Perform fuzzification

20) Convert Clset = Fset
21) Activate Clset
22) For every Clsetn∀ n ∈ Clset, do
23) Formulate fuzzy value set Fset
24) Calculate quality of data based on the accuracy using

Equation (2):

Accuracy (A) = Tpositive + Tnegative

Tpositive + Tnegative + Fpositive + Fnegative

25) Activate Rlbase to initiate if-then decision-making
26) If 2 > A ≥ 1, then, the fuzzy value is {CS}, that is,

“Complete Strong”
27) If 1 > A > 0, then, the fuzzy value is {PS}, that is,

“Prevalent Strong”
28) If A = 0, then, the fuzzy value is {M}, that is,

“Moderate”
29) If 0 > A ≥ −1, then, the fuzzy value is {PW}, that is,

“Prevalent Weak”
30) If −1 > A ≥ −2, then, the fuzzy value is {CW}, that is,

“Complete Weak”
31) End if

// Interface Engine

32) Transfer the fuzzy set to assign the corresponding degree
to the values.

// Perform defuzzification

33) Convert Fset = Clset
34) For all the incorporating devices, do
35) Formulate an “Entire set (E)” using Equation (5)

E = Ώ = {𝜔1, 𝜔2, . . . ..𝜔x}
36) For the formulated set E = Ώ, do
37) Generate a “power set (2Ώ)” using Equation (6)

2Ώ = {∅, {𝜔1} , {𝜔2} , . . . . . . {𝜔1, 𝜔x} . . . , Ώ
38) Calculate “Basic Probability Assignment” using

Equations (7) and (8)

M (∅) = 0

∑M (𝜔) ∀𝜔 ∈ 2Ώ
39) For every device in set E = Ώ, do
40) Evaluate the Dempster combination value (suppose for

two devices from which the dataset is to be retrieved)
using Equation (9), and calculate the “Trust function
(T)” using Equation (10):

M12 (P) = ∑Q∩R=P {M1 (Q) . M2 (R)}
1 − k

T (Dnamei) = ∑
Dname j⊆Dnamei

{M (Dname j)}
[where Dnamei

is the first device and Dname j
is the second

device from the entire set of participating devices]

41) If T (Dnamei) → [0, 1] ,
42) ThenDnamei

∈ Ώ, hence belief is confirmed, and fusion
is processed

43) Else, the device is not from the participating set or the
participant of the network

44) End if
45) End for
46) End for
47) End for
48) End for
49) End for
50) End for
51) End for
52) End

5. Experimentation, Results, and Analysis

5.1. Experimental setup

The experimentation of the proposed approach is delineated
in this section on the parameter information consistency and
overall precision of MS-DLDF as compared to SSDF. The per-
formance evaluation is performed as the comparative analysis of
the MS-DLDF via Dempster combination rule with zero-trust secu-
rity in IIoT network with the single sensor inferred knowledge.
The datasets involved in the simulation are evaluated using the
python programming using IoTSim-Edge Simulator. The dataset
involved in the experiments is from IIoT_data of 59.06 MB in CSV
format having 405,184 records. The other dataset under consider-
ation is the X-IIoTID dataset of 106.71 MB containing 820,835
records. The comparative analysis is performed on the parameters
such as accuracy of information, resource utilization, and power
consumption.
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5.2. Result analysis

The underlying section of the paper delineates the results
obtained from the experiments on the proposed MS-DLDF and the
existing SSDF. The performance evaluation and result analysis are
made on the following parameters:

1) Accuracy rate
2) Computation time
3) Precision
4) False positive rate
5) Data confidentiality rate

The tabular and graphical comparative analysis of the
performance of MS-DLDF and existing SSDF is illustrated below.

5.2.1. Accuracy rate (𝑨𝒄𝒄𝑹)
Accuracy is referred to as the quality of the information

produced by the most relevant dataset with trivial raw data. The per-
formance analysis of the accuracy of information produced by the
proposed MS-DLDF and the existing SSDF is evaluated and com-
pared using the mathematical statement given below in Equation
(14):

AccR = Tpt + Tnt

Tpt + Tnt + Fpt + Fnt
∗ 100 (14)

In Equation (14), the accuracy rate (AccR) is measured as the ratio of
all the truly positive events and all the events that are purely negative
to the summation of all true positive, true negative, falsely positive,
and falsely negative events. The table below represents the compar-
ative analysis of the accuracy offered by the proposed MS-DLDF
and the existing SSDF and BEDF.

Table 1 and Figure 6 above explain the comparison of the
existing single-source or single sensor data fusion and BEDF to the
proposed MS-DLDF. The samples involved in simulation ranges
from 10,000 to 100,000. The x-axis denotes the samples, and the
y-axis represents the accuracy rate in %. The proposed MS-DLDF
approach achieves the highest accuracy when compared to the peer
approaches SSDF [1] and BEDF [2]. The accuracy achieved by the

Table 1
Comparison results of accuracy rate

Sample SSDF [1]

Bayesian estima-
tion data fusion
(BEDF) [2]

MS-DLDF
(proposed)

10,000 90.68 90.99 91.68
20,000 89.78 91 92.78
30,000 86.89 88.78 92.89
40,000 83.77 87.66 93.77
50,000 84.89 89.12 94.89
60,000 85.4 90.56 95.49
70,000 86.01 92 96.01
80,000 92.32 93.43 95
90,000 90.12 91.71 94.12
100,000 92.88 93 93.88

adopted MS-DLDF is enhanced by 7% and 4% as compared to the
existing SSDF and BEDF, respectively.

5.2.2. Computation time
The next parameter under consideration is the time of informa-

tion generation from the adopted MS-DLDF and the existing SSDF
[1] and BEDF [2]. Computation time is referred to as the time taken
by the network to generate a relevant information from the asso-
ciated dataset. The computation time is mathematical stated as in
Equation (15):

CT = N ∗ [RDT
i ] (15)

The above-stated Equation (15) demonstrates the evaluation of the
computational time CT by computing the product of number of
devices involved in the fusion process N to the individual time
taken by the raw data of the associated device RDT

i . Table 2 and
Figure 7 below represent the comparison of the computation time
taken by the existing two approaches SSDF [1] and BEDF [2] and
the proposed MS-DLDF.

Figure 6
Sample devices versus accuracy rate
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Figure 7
Sample devices vs computation time

Table 2
Comparison results of computation time

Sample SSDF [1]

Bayesian estima-
tion data fusion
(BEDF) [2]

MS-DLDF
(proposed)

10,000 3.05 2.98 2.53
20,000 3.34 3.26 2.65
30,000 3.76 3.52 3.02
40,000 4.12 4.04 3.59
50,000 4.34 4.18 3.73
60,000 4.67 4.24 3.79
70,000 4.92 4.63 4.18
80,000 5.12 4.89 4.24
90,000 5.54 5.22 4.37
100,000 5.72 5.48 4.96

Table 2 and Figure 7 above demonstrate the comparative anal-
ysis of the computation time on the sample with 10,000 to 100,000
devices for simulation. The x-axis of the graph represents the sam-
ple involved in the simulation, and the y-axis denotes the responses
of the computational time in ms. From the simulation results, the
proposed approachMS-DLDF has comparatively reduced computa-
tional time as compared to the peer approaches SSDF [1] and BEDF
[2]. The MS-DLDF noted better computational time by 17% and
13%, respectively.

5.2.3. Precision
The precision is another parameter under consideration that is

referred to as an attribute that concisely determines how much the
assumed trivial datasets are actually trivial in making the informa-
tion more decisive and relevant. The precision is mathematically
stated as in Equation (16):

Pr = Tpt

Tpt + Fnt
(16)

Equation (16) above explains the calculation of the precision for
the proposed MS-DLDF and existing SSDF [1] and BEDF [2]. The
precision Pr is measured as the ratio of all the true positive events
to the sum of the true positive and the false negative events in
the simulation process. Table 3 and Figure 8 below demonstrate
the comparative analysis of MS-DLDF, SSDF [1], and BEDF [2],
respectively.

Table 3
Comparison results of precision

Sample SSDF [1]

Bayesian estima-
tion data fusion
(BEDF) [2]

MS-DLDF
(proposed)

10,000 92.71 94.44 95.27
20,000 91.81 94.45 96.37
30,000 88.92 92.23 96.48
40,000 85.8 91.11 97.36
50,000 86.92 92.57 98.48
60,000 87.43 94.01 99.08
70,000 88.04 95.45 99.6
80,000 94.35 96.88 98.59
90,000 92.15 95.16 97.71
100,000 94.91 96.45 97.47

In the above-mentioned Table 3 and Figure 8, the precision
rate for the proposed approach and the existing data fusion tech-
niques are evaluated. In the graph, the x-axis represents the sample
ranging from 10,000 to 100,000 used for simulation, and the y-axis
demonstrates the results of the precision rate. The simulation results
marked the effective and increased precision rate of the adoptedMS-
DLDF as compared to existing SSDF [1] and BEDF [2]. Moreover,
the performance outcome of the MS-DLDF has enhanced preci-
sion rate by 8% and 4% as compared to SSDF [1] and BEDF [2],
respectively.

5.2.4. False positive rate (FPrate)
The false positive rate is measured as the ratio of false entities

or the malicious devices that are identified as the true entities or
the authentic devices (true devices) to the total number of actual
malicious devices. Themathematical statement for the false positive
rate is given in Equation (17):

FPrate = Fpositive

Fpositive + Tnegative
(17)

In Equation (17), the false positive rateFPrate is evaluated by taking
the proportion of the malicious devices that are treated as the nor-
mal or authorized devices Fpositive to the total number of the actual
devices that are infected or anomalous Tnegative. The comparative
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Figure 8
Sample devices versus precision

Table 4
Comparison results of false positive rate

Sample SSDF [1]

Bayesian estima-
tion data fusion
(BEDF) [2]

MS-DLDF
(proposed)

10,000 4.31 2.5 3.12
20,000 3.91 3.49 2.72
30,000 3.4 2.98 2.21
40,000 3.08 2.66 1.89
50,000 2.83 2.41 1.64
60,000 2.55 2.13 1.36
70,000 2.44 2.02 1.25
80,000 1.73 1.31 1.23
90,000 1.64 1.22 1.09
100,000 1.56 1.14 0.99

analysis of the FPrate possessed by the proposed MS-DLDF and
existing SSDF and BEDF is illustrated in Table 4 and Figure 9.

In Table 4 and Figure 9, the comparison is demonstrated in the
context of a false positive rate between the proposed method and the
existing two methods, SSDF [1] and BEDF [2], respectively. The

x-axis of the graph represents the sample range involved in simula-
tion from 1000 to 100,000 and the y-axis refers to the false positive
rate of the three methods. As a result, the proposedMS-DLDF offers
reduced false positive rates as compared to the peer SSDF [1] by
36% and BEDF [2] by 25%, respectively.

5.2.5. Data confidentiality rate 𝑫𝑪𝒓𝒂𝒕𝒆
Data confidentiality refers to the privacy of the data; that is,

the receptor receives the same data that is sent by the sender.
The data confidentiality rate (DCrate) is obtained as the amount
of data received by the valid receiver in the network. The data
confidentiality rate is mathematically stated in Equation (18):

DCrate = x∑
i=1

Did

Di
(18)

The data confidentiality rate DCrate is calculated using Equation
(18) as the proportion of data received by the valid receptor Did
to the total number of devices involved in simulation Di. Data
confidentiality rate is obtained in percentage. The comparison in
performance of data confidentiality rate is delineated in Table 5 and
Figure 10.

In Table 5 and Figure 10, the performance analysis of the data
confidentiality rate possessed by the three undertaken approaches
is evaluated and compared. The simulation involves devices rang-

Figure 9
Sample devices versus false positive rate
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Figure 10
Sample devices versus data confidentiality rate

Table 5
Comparison results of data confidentiality rate

Sample SSDF [1]

Bayesian estima-
tion data fusion
(BEDF) [2]

MS-DLDF
(proposed)

10,000 91.51 92.74 93.68
20,000 90.53 92.76 93.7
30,000 89.34 90.57 91.51
40,000 88.39 89.62 90.56
50,000 88.66 89.89 90.83
60,000 87.09 88.32 89.26
70,000 87.54 88.77 89.71
80,000 86.96 88.19 89.13
90,000 86.26 87.49 88.43
100,000 86.53 87.76 88.09

ing from 10,000 to 100,000, with the x-axis representing the
simulation devices and the y-axis denoting the data confiden-
tiality rate in percentage. The analysis depicts that the proposed
MS-DLDF has amplified data confidentiality rate as compared
to existing approaches SSDF [1] and BEDF [2] by 3% and 1%,
respectively.

The proposed novel approach, MS-DLDF, provides more
decisive and consistent information when compared to the peer
approaches, SSDF [1] and BEDF [2], respectively. MS-DLDF out-
performs the existing approaches on the accuracy rate by 7% and
4% as compared to existing SSDF and BEDF, respectively, compu-
tation time by 17% and 13%, precision by 8% and 4%, false positive
rate by 36% and 25%, and the data confidentiality rate by 3% and
1%, respectively.

6. Conclusion and Future Scope

Data fusion techniques have gained much popularity but are
widelyused inmultisensoryenvironments tocombineandaccommo-
date datasets or inputs fromvarious sources. IIoT environment builds
on devices and integrates different devices to function together. The
information inferred by the multi-sensor data fusion is more deci-
sive and relevant as compared to the single-source data fusion. The
proposed approach implements the Dempster combination rule, and
the comparative analysis is made by the peer approaches, SSDF [1]
and Bayesian estimation [2], in terms of accuracy with the increased

number of devices and sensors in the more complex network. The
proposed methodology ensures the classification of the trivial and
nontrivial data aswell, while also enabling deep reinforcement learn-
ing for more optimal decision-making based on the fuzzy values
evaluated. The objective of the paper is to effectively fetch the sensor
data and to produce more consistent and sensible data. In the pro-
posed paper, the parametric-based data fusion is compared to analyze
the accuracy in terms of an increased number of multi-sensors in a
complicated network. The proposed approach will be witnessed as a
sound data fusion onmultiple sensors irrespective of the domainwith
the increase in the more complicated networks comprising of huge
number of devices and raw data with increment in the accuracy rate
by 6%, reduced computation time by 15%, and enhanced precision
rate by 6%, respectively, as compared to SSDF [1] and BEDF [2] to
produce themost relevant, accurate, andsensible informationascom-
pared to the information inferred by the single-source data fusion.
With the shifting paradigm of industries, businesses, education, etc.,
to the digital platform, the fetching, fusing, and facilitating of infor-
mation are becoming more considerable. Therefore, the proposed
MS-DLDF provides more consistent and appropriate information in
any complicated network and environment in practice with assured
data security. Nevertheless, of the contributions offered by the pro-
posed approach, the limitations of the underlying method are when
the source evidence data or the belief function possesses incomplete
chunks of information. Moreover, the computational complexity of
the Dempster combination rule in complicated environments needs
to be addressed.
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