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Abstract: Recent advances in deep learning techniques such as convolutional neural networks, recurrent neural network, and generative
adversarial networks have achieved breakthroughs in many fields or in many real-world applications. For the problem of semantic image
inpainting, the task of reconstructing meaningful missing pixels also demonstrates that deep neural networks can play an effective role.
While more effective than conventional approaches, deep learning models demand high storage capacity, since the many layers and
parameters involved in neural network construction incur great space complexity and the end-to-end system incorporating these
inpainting modules need to reserve a significant storage to save the model alone. Additionally, neural network training often requires
large datasets consisting of high dimensional images, thereby requiring intensive computational resources such as the GPU. Furthermore,
one problem that we may need to consider is that the inpainting quality of the images may vary considerably across different contexts
because the foundational training data where the inpainting model is trained on differ in size and diversity. To address these problems,
we present an inpainting strategy called comparative sample augmentation, which enhances the quality of the training set by filtering
irrelevant images and constructing additional images using information about the surrounding regions of the target image and this
strategy managed to augment the datasets. Experiments on multiple datasets demonstrate that our method extends the applicability of
deep inpainting models to training sets with varying levels of diversity, while enhancing the inpainting quality as measured by
qualitative and quantitative metrics for a large range of class of deep models, with little need for model-specific consideration.
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1. Introduction

In the field of modern computer vision research, various
applications such as computational photography and image
restoration (Yu et al., 2018) have been increasingly important and
popular. Image inpainting, in particular, has been an example of
image restoration. Although there has been substantial progress
in image inpainting, up to now, there are still great challenges in
achieving the objective due to the inherent difficulty in
synthesizing missing pixels that are visually and semantically
consistent with surrounding pixels. For example, if there is an
image where a boat is located in the middle of the ocean and our
objective is to ‘remove’ the presence of the boat in such an
image, there is no guarantee that the resulting picture will be
idealistically consistent to the oceanic surroundings due to noises
in the data. This issue will become especially apparent when the
amount of available training data is limited, a common scenario in
real-time applications where diverse images are hard to obtain. To
overcome the barriers in inpainting challenges, hard coding is

often involved to reflect human expert intervention. Such method
invariably incurs huge expenses to retrieve enough data, creating
a barrier for any potential progress in tasks such as image
restoration.

To reduce the cost of human involvement, previous research has
sought to design automated methods for inpainting. Current
solutions to the inpainting problem mainly belong to two groups:
traditional patch-based learning methods and deep learning-based
methods. Traditional methods directly utilize background
information by assuming that information of missing patches can
be detected by checking the features and textures in background
regions (Barnes et al., 2009). However, these methods often lead
to poor performances when they are used to reconstruct complex
non-repeating structure that requires capturing high-level
semantics for two reasons. The major reason is that traditional
methods of computation of surrounding parts of the missing
region is similar based. In other words, traditional methods do not
capture the inherent semantic/scenic features while processing
digitizing the image, but instead rely on naive similarity value
formula, which can be misleading for pixel-based inferences
because outlier erratic pixels often lie around the area needing
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inpainting. Moreover, missing regions in the inpainting tasks will be
very irregular. Unlike many other image-related tasks, the inpainting
problems often involve very peculiar shapes and orientation. Such
reality means that it is difficult to implement an algorithm that can
run the patch-based algorithm in just one pass; even when
multiple passes are run, the resulting images may still be distorted
due to intrinsic challenges. Furthermore, the existing work
emphasizes on finding a similar image from a database to replace
the missing region. This method may have two problems. The
first problem is that the similarity search could raise other issues
since the similarity score could be different with different metrics.
Second, if the database contains limited number of candidates, the
performance of ranking and retrieval could be relatively poor due
to the differences in underlying semantics. With the problems thus
described above, patch-based algorithms are applicable for the
problem only when one can observe a strong pattern of missing
region and when these patterns are easily generalized through
simple mathematical descriptions.

Deep learning-based methods, on the other hand, use
representations of latent space of existing pixels and transform
inpainting into a conditional pixel generation problem (van den
Oord et al., 2016; Yu et al., 2018). These methods typically will
apply a deep learning model, especially the generative adversarial
networks (GANs) as a backbone and generate a pattern of the
missing region. A GAN network (Arjovsky et al., 2017), which
contains a discriminate networks and generative networks, will
learn the representations of the missing region and the
surrounding areas of the missing pixels. The latent space can be
learnt by training the networks and the parameters can be stored
after training. Then we can produce the missing region by
generating the missing part to fill in.

While such methods are promising and current development
methods do show a potential, they would work only when there is
ample training data. For instance, Yu et al. (2018)’s networks
have demonstrated a very strong result to show that the
representations of surrounding parts can be generated as an
attention to the generative model, which boosts the result. Also
globally and locally consistent image completion (GLCIC) (Iizuka
et al., 2017) also has demonstrated that loss function can control
the learning of the missing parts.

While these approaches did produce images of significantly
higher quality in most cases, there are still many notable problems
that need to be addressed. First of all, as we mentioned, deep
learning-based model generally requires a large amount of highly
varied training data for model training, a requirement of which
makes it impossible to apply these strategies when the set of
available training data is limited. The problem will be extremely
obvious when the dataset is not quite common. Additionally,
some datasets are extremely difficulty to be collected, which may
significantly drop the performance of deep learning-based method.
Recent research (Goodfellow et al., 2015) also suggests that the
performances of neural networks vary considerably in a variety of
tasks when input images contain adversarial noise that potentially
affects the latent space, showing that countering adversarial
examples is a key in boosting deep learning models.

Finally, training time and training load of deep learning model
are also a real work issue that we cannot escape. A typically deep
learning-based model requires an expensive GPU with more than
3 hours’ training. If the dataset is even larger, even more
computational resources will be required, and the expenses
incurred would dramatically limit access to deep learning methods
to a small portion of research community who can afford enough
RAM to support the computation. Therefore, it is imperative to

reduce the size and training time and inference time of the model
of inpainting tasks, so that these models can be practical.

To address these issues, we propose a simple strategy that can
easily be adopted in existing generative frameworks without model-
specific considerations and extend deep neural network strategies in
the case of varying amounts of training data. The contributions of this
paper can be summarized as follows:

• We present an effective strategy of selecting relevant samples by
constructing a similarity measure based on color attributes of the
target image and the training dataset, selecting the Kmost relevant
images.

• Our algorithm also considers local image quality by adding images
created by adding white noise to the target image.

• We conduct experiments using generative inpainting and
demonstrate that our method achieves improved inpainting
results when the available training data are limited.

2. Related Work

Image inpainting has been a difficult problem since the year of
2010. Patch-based algorithm (Bugeau et al., 2010) has been proposed
to solve this problem. In the early stage, finding a similar pattern from
surrounding textures is the main idea to solve this problem. This
method requires a large database and it is very difficult to control
the defects especially the database lacks of enough image to adapt
to the original image. It is also unavoidable that the edge of the
patch could be as smooth as possible.

With the increasing development of machine learning, learning-
based image inpainting is becoming more popular. The prior
researches on problem of learning-based image inpainting can be
classified into two groups: work that either directly incorporates
features to be learned within the image to be inpainted, and
approaches that use learning methods in relation to other possibly
available training images to extract representation of latent space.
Traditional approaches usually involve algorithms to directly
handle information from the background to the missing pixels
(Yu et al., 2018). These methods borrow surrounding textures and
achieve satisfactory performance when the inpainting area largely
contains repetitive features, but they fail at more complex
inpainting images such as human faces and natural scenery.
Additionally, methods which extensively handle patch similarity
(Simakov et al., 2008) tend to be computationally expensive,
making them less applicable to cases where the training data and
computational resources are both limited.

Generative neural networks (GAN) have been a very useful way
to implement the task of inpainting due to the natural of model.
Over the course of recent years, GAN has evolved from a very
experimental idea with simple structure to an extremely complicated
structure allowing for industrial applications. Goodfellow et al.
(2014) have raised the first generation of GAN, which brings up
the concept of adversarial training of two models or networks
simultaneously. The two networks are generative model and
discriminator model, respectively. While Goodfellow’s work did not
incorporate the development of deep neural network, it illustrates a
mechanism that optimizes both networks using the framework of
adversarial training (Qian et al., 2022). The parameters could be
retrieved by finding optimal solution of minimax value of the loss
function.

To further optimize the performances of GAN, Radford et al.
(2015) proposed DCGAN, which can be treated as a GAN with
better deep neural networks design. The working mechanism is
same as the original GAN and the optimization function is still
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pixel based. The generative model is similar to a decoder in a
variational autoencoder (Kingma & Welling, 2013) and the output
of generative model will be input of a convolutional neural
network (CNN)-based discriminator (Krizhevsky et al., 2012).
Both of the two networks with deep convolutional layers can be
optimized in the same way as Goodfellow et al. (2014). However,
the larger number of weight parameters and training can be
relatively computational expensive. In the following years, many
other work of GAN has been produced in the same framework,
but the difference is on the backbone of the deep neural network.
ResNetGAN (Wang et al., 2017) is an example of evolved GANs
from DCGAN. The difference is that the backbone of both of the
generative model and adversarial models is replaced with Resnet
model (He et al., 2015), which is beneficial from a skip mechanism.

In addition to the computation problem, the issue of mode
collapse has been gradually observed by some researchers and
engineers (Thanh-Tung et al., 2018) who follow the same
research. Mode collapse means that the variety of output images
is becoming much less than training data. The reason of model
collapse is that the loss function of GAN is pixel based which
means the calculation of the ground truth and predictions are
from Euclidean distance between them. In this case, many types
of images will never be produced from generative model
because the optimizer will be stuck into some specific local
minima even with adequate training data. In this case, a new
expression of generative neural network can be a solution for
this problem. WGAN (Arjovsky et al., 2017) tried to solve the
problem by replacing the original loss function from pixel-based
comparison with a calculation of Wasserstein distance
(Stéphanovitch et al., 2022) between the predicted image and
ground truth image. The benefit of applying Wasserstein
distance is that the loss of predictor and real image are based on
a difference of pixel distribution. In this case, two major
problems of original loss functions can be avoided. First of all,
pixel-based loss function will be very fragile to the coordination
change of some important features. For example, the predictions
will be very different if we just make an image with up-side-
down effect. Second, different features could generate the
similar loss value if it is calculated by a pixel-based loss
function. In the famous MINIST dataset’s experiment, many 9
are lost from predictors just because 6 and 9 are quite close.
However, the Wasserstein function can avoid this problem.

There are additional GAN structures that are evolved with
WGAN. WGAN-GP (Gulrajani et al., 2017) has been approved to
avoid vanish gradients. Big-GAN, however, has pushed the
performance of GAN into a new peak (Brock et al., 2018).
Orthogonal regularization is used in Big-GAN’s generator,
making it amenable to a simple “truncation trick” (Brock et al.,
2018). This GAN-based model can generate accurate images with
high resolution. Also it has shown the robustness even when the
training data are complex. However, it is often the case that model
training is computationally intensive, preventing this model from
being deployed for extensive applications.

Deep learning-based model sometimes needs to adapt to the
task. The major issue is that the raw GAN model can only
produce the whole image as a candidate so in this case, we can
only replace a whole image to complete a task of inpainting.
Partial filling is necessary to make image inpainting and some
GAN structure has been proposed to deal with this problem. The
proposed methods have proved that they can solve the problem
from these two perspectives: first, the GAN model can generate a
pattern that fits the whole image, and the second is that the
generated part is also smooth on the boundary to fit the missing part.

GLCIC (Iizuka et al., 2017) is a method that fits both of the
global environment and the local missing part. The trick of the
model is that the authors have add another output of discriminator
network. During the training of GLCIC model, there would be
two outputs of discriminator. One output will be a comparison
between the whole predicted image and the original training
image. Another half part of the discriminator is to compute
another loss for the missing part of original image and the filled
part. The model can balance the loss between globally and
locally, which can help generate an inpainting with smooth make up.

Yu et al. (2018) also have observed that the surrounding texture
of the missing region is very important to generate the missing part of
the image. In his work, he had explicitly utilized surrounding image
features as references during the training of his deep neural network
to make the better predictions. To implement this, the features of
surrounding images need to be extracted so that the features could
be captured and then fed forward to the generator network that
generates the filled image.

On the other hand, deep learning-based methods using CNNs
and GANs encode high-level and low-level features via an encoder-
decoder network and proceed by using constructing objective
optimizers which take consistency factors into consideration
(Iizuka et al., 2017b). Such design indeed enables the model to
generate more diverse content in structured images, but effective
training for satisfactory performances of these models requires
access to huge amounts of varied labeled data often unavailable in
real-time applications.

It is still an issue that deep learning-based methods are very
computational intensive. It can be observed in Yu et al. (2018)
and Iizuka et al. (2017b) that training generative inpainting
models requires high computational resources and training time up
to weeks and months due to the high complexity of the current
network structures. Some backbones can cost even more time.
It is recorded that a training with Big-GAN (Brock et al., 2018)
may cost even 2 months with 8 GPUs. It would be catastrophe if
we need to rebuild or tune the model after the whole training
cycle. It is also a headache if researchers cannot afford the
expensive equipment.

3. Comparative Sample Augmentation

In this section, we propose our data augmentation method of
comparative sample augmentation, which consists of two separate
parts: a comparative augmenting filter which selects the most
relevant samples from the training dataset, and an augmentation
step, which adds noise masks to the original image to produce
additional training images. Images chosen by these two procedures
are then combined to form the dataset for subsequent neural network
training. The first part of our algorithm takes global information
about the training set into consideration, while the second part
focuses on local features within the target image. All steps in our
algorithm are easy to implement and can be adapted to a variety
of generative adversarial models.

3.1. Comparative augmenting filter

One notable problem in many traditional inpainting methods
(Barnes et al., 2009; Simakov et al., 2008) is the under-
representation of contextual information present in similar images.
Previous deep learning methods (Iizuka et al., 2017b; Yu et al.,
2018) take background pixels into consideration, but the training
time of weeks or months can make adoption impractical.
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To counter such problems, we introduce a comparative
augmenting filter on the training dataset before inpainting.
Motivated by the l1 reconstruction loss described in (Yu et al.,
2018), we first define a distance between two discrete
distributions P and Q as:

dðP;QÞ ¼ P � Qk k1
2maxð Pk k1; Qk k1Þ

This distance normalizes to [0,1] and becomes 0 if and only if
P=Q almost surely. Here we consider the distributions of RGB
pixels in the two images. Given the training dataset and the image
to be inpainted, we compute the distances between the color
distribution of our image and those of other images and select the
K closest images with respect to the distance. This strategy
collects the most relevant images as measured by color and helps
inpainting by filtering out other irrelevant images whose
contrasting color may adversely effect inpainting results when the
inpainting model uses global information to learn possible choices
of missing images.

3.2. Noise augmentation

In addition to considerations on global information and
consistency, we also bolster the robustness of the deep inpainting
model by adding random noise to the target image. Our
motivation is that the deep neural networks, due to the
dependence on the training data, may omit useful latent features
during training and yield unsatisfactory outputs for the given tasks
when the input contains perturbations. Goodfellow et al. (2015),
for instance, noted that neural networks may assign incorrect
labels to images in classification tasks when noise is added to
images. This can be attributed to the lack of adversarial instances
and noise perturbations within the training dataset. Since most of
the GANs are implemented with similar deep neural networks,
such limitations of deep neural networks may translate to
unsatisfactory generated images. Therefore, to achieve satisfactory
inpainting results, models need to take random perturbations into
consideration during training.

To address such concerns, we propose the idea of self-
enrichment of the training dataset. We add 64 × 64-sized masks ri
to the original 64 × 64-sized inpainting images I in RGB form in
our datasets. Each randommask ri consists of pixel-level noise, each
drawn from a normal distribution with mean 0 and fixed variance.
This procedure produces a batch of images I

�
i ¼ I� ri, which reveals

local contextual clues specific to the inpainting image I itself.
Together with the previously chosen training images that reflect
information about global similarity, the noise-added images comple-
ment the training outcome by providing additional information about
the local contextual details involved in inpainting.

Once the two steps are finished, we proceed to train the GAN
model using the selected and augmented data. Notice that such
augmentation is independent from the choice of loss function used
in generative models and can be easily implemented across
different GAN architectures. Here we use the modified WGAN-
GP objective (Yu et al., 2018) for training.

4. Experiments

We construct datasets of varied size and content from the
commonly used CIFAR-10, CelebA, and Places image datasets to
test our method on inpainting tasks with large and small numbers
of available training data. To test the cases with complete

datasets, we select the “Ocean,” “Orchard,” and “Pier” folders
from the Places dataset, resulting in 15,000 images. To test the
applicability of our method to cases of smaller, incomplete,
datasets, we randomly sample 5,000 diverse images from the
CIFAR-10 and CelebA datasets, forming the datasets reduced-
CIFAR and reduced-CelebA, respectively. The number of images
we use for training is less than 10% of all images in CIFAR-10
and less than 1% of all images in CelebA, respectively. For our
inpainting task in both cases, we randomly select an image as the
inpainting target by masking it with a black square in its center.

We experiment on the state-of-the-art WGAN-GP generative
model, since it is the building block for high resolution generative
frameworks in recent research (Iizuka et al., 2017b; Yu et al.,
2018). Notice that the procedures in our algorithm do not rely on
the specific details of generative models, and that our strategy can
easily be used for any current generative inpainting architectures.

4.1. Qualitative evaluations

We present examples of generated images with and without
comparative sample augmentation, all using the state-of-the-art
WGAN-GP (Gulrajani et al., 2017). Figures 1 and 2 suggest that
our sample augmentation strategy better captures prominent
features of inpainted images such as eyes, nose, and mouth, while
avoiding distortion that occurs in the unaugmented GAN when
the training data contain highly diverse structured patterns.
Figures 3 and 4 show inpainted examples with and without
comparative sample augmentation from datasets with varying
degrees of diversity. From these images, we can observe the
relative improvements of inpainting quality, even for a naive
inpainting network with only a single WGAN-GP building block.

4.2. Quantitative evaluation

Measuring the effectiveness of inpainting strategies remains a
challenging task, since multiple solutions are plausible given the

Figure 1
Training samples with augmentation
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background of a target image. Commonmetrics for generative model
evaluation such as inception score (Gurumurthy et al., 2017) and
Frechet inception distance (Heusel et al., 2017) do not apply in
our case since they measure the diversity across different images
rather than the semantic coherence and authenticity of the
inpainting results with respect to the background. Thus, we follow
usual practices (Iizuka et al., 2017b; Yu et al., 2018) to report the
mean l1, l2, total variation (TV) error, as well as the peak-signal-
noise-ratio (PSNR) in Tables 1–4, evaluated on the respective test
sets. The l1, l2, and TV errors measure the potential information
loss incurred by our reconstruction, whereas PSNR indicates the

Figure 2
Inpainting without augmentation

Figure 3
Inpainting results on complete datasets. The augmentation method helps converge to a semantically plausible

reconstruction, while inpainting without augmentation results in noticeable artifacts

Figure 4
Inpainting results on incomplete datasets. The inpainting result using the proposed augmentation method shows better
convergence of color distributions and structure than without augmentation. Note that these results were obtained

using a simple network architecture with a training time of 20 minutes on a laptop

Table 1
l1 reconstruction error

Datasets
Without augmentation

(%)
With augmentation

(%)

Ocean 11.6 9
Pier 12.2 11.2
Orchard 13.5 12.1
Reduced-Celeba 12.2 10.9
Reduced-CIFAR-10 12.2 12.2
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information to noise ratio our reconstruction produces. Thus, higher
PSNR and lower l1,l2, TV errors imply better performance.

4.3. Computational resources and cost

For all our experiments, we used a laptop equipped with an Intel
Core 7700K CPU and an Nvidia GTX 1080 GPU. It was noted in
previous research (Iizuka et al., 2017b; Yu et al. 2018) that
inpainting GANs are computationally expensive to train, with the
shortest reported training time being 2 weeks while having
uncertainty on performances over smaller datasets. Our GAN with
augmentation structure, on the other hand, requires less than
20 minutes of training time and obtains satisfactory results even
for image sets with limited sizes and diversity factors.

5. Conclusion and Future Work

In sum, we introduce in this paper the strategy of comparative
sample augmentation for deep generative inpainting models.
Extracting the relevant images with color distances and then adding
noise augmentation to promote the robustness of the resulting
dataset before using the dataset for deep learning methods, our
method not only avoids the distortion of images incurred by naive
mathematical comparisons but also utilizes the developments in
deep learning which allows for latent feature representation that
leads to better image generation. We show by experiments on
benchmark datasets that our method extends the deep learning-
based inpainting methods to the datasets with varying levels of
diversity and sizes, without any need for model-specific adjustments.

There are several potential avenues for future work. Since much
recent work on generative inpainting (Iizuka et al., 2017b; Yu et al.,
2018) incorporates multiple repetitive structures of generative
models, we plan to take into consideration interactions between
GAN units in inpainting models. Additionally, we will also consider
other aspects such as gradient matching and feature encoders into
the first part of our augmentation method to better approximate the
distance between the inpainting image and the training images.
Moreover, as suggested by Cubuk et al. (2018), better control of
image augmentation in the second part of our method could be
achieved using advancements in reinforcement learning. We also
aim to explore interactions between our method and other generative
paradigms such as Kingma & Welling (2013) and its variants.

One direction is that we can apply and develop the model to solve
model compression problem. Current model compression can reduce
the size of a deep learning model for around 90%. In this case, it is
possible to train a complicated network but with small parameter
size, which will further optimize the computational resources needed
towards our task. Furthermore, the speed of the inference of the deep
learning model can also be increased. Some possible methods
include binarization (Hubara et al., 2016), quantization (Hubara
et al., 2018), and model distilling, all of which can be applied to our
model of inpainting so as to allow for training on devices with less
computational resources. Finally, complicated GAN structures which
have been shown to be effective, for instance the Big-GAN (Brock
et al., 2018), can also be applied to our framework, so that one can
anticipate a substantial improvement on the level of resolution in the
images that are generated by our framework.
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