Received: 22 April 2024 | Revised: 13 June 2024 | Accepted: 30 June 2024 | Published online: 10 July 2024

Journal of Computational and Cognitive Engineering
2024, Vol. 00(00) 1-17
DOI: 10.47852/bonviewJCCE42023180

HSHEP: An Optimization-Based Code Smell %
Refactoring Sequencing Technique

RESEARCH ARTICLE

Ritika Maini'" @, Navdeep Kaur' © and Amandeep Kaur?

! Department of Computer Science, Sri Guru Granth Sahib World University, India
2Department of Computer Engineering, NIT Kurukshetra, India

Abstract: The process of refactoring enhances software quality by modifying its design composition while preserving its core framework.
However, addressing code smells without appropriate prioritization can be ineffective. Code smells significantly increase maintenance costs
and obstruct system evolution. Refactoring sequencing techniques mitigate these issues by improving a system’s internal structure without
altering its external behavior. In large-scale systems, the sheer number of code smells can be overwhelming, and not all can be automatically
resolved. Hence, prioritizing code smells based on criteria such as risk and importance is essential. This paper introduces a novel hybrid
approach utilizing the hybrid spotted hyena and emperor penguin (HSHEP) optimization-based algorithm. This approach aims to optimize
the sequence of code smell bugs by incorporating maintainer opinions and requirements, thereby maximizing the resolution of critical
code smells. Unlike existing technologies, the HSHEP algorithm combines the strengths of two optimization strategies, offering a unique
and innovative solution to refactoring challenges. To validate the effectiveness of the proposed method, it was applied to various large-
scale open-source systems, analyzing five different types of code smells. Results demonstrated a significant improvement in maintenance
efficiency and system evolution, confirming the superior performance and practical applicability of the HSHEP-based approach.

Keywords: software refactoring, code smell, sequencing, optimization, Spotted Hyena Optimizer (SHO), Emperor Penguin Optimizer

(EPO)

1. Introduction

During development life cycle of a software, maintenance of
software holds a crucial position. However, maintaining software
has become increasingly challenging due to evolving requirements.
Programmers continuously modify the source code to adapt to these
changes and enhance software features. Consequently, a significant
portion, approximately eighty percent, of project costs is allocated to
maintenance activities. Identifying code smells plays a vital role in
reducing maintenance costs [1]. Smells of code seem natural flaws
during programming describe bad software architecture and make
it harder to maintain. They draw attention to problems in software
application design. When code smells are present, the programming
code is not easily understandable and may result in more changes
and errors. A programmer’s comprehension of the computer code is
improved by identifying and eliminating code smells at the source of
the code. Not all code smells can be automatically addressed, espe-
cially in large-scale systems. Determining the refactoring processes
for the discovered code smells might be difficult. Maintenance and
evolution of large-scale systems account for approximately 87%
of the total software costs [2]. These costs are attributed to tasks
like adding new functionalities, bug corrections, and code modi-
fications to enhance quality. However, these continuous changes
can lead the software far away from its distinctive design and

*Corresponding author: Ritika Maini, Department of Computer Science, Sri
Guru Granth Sahib World University, India. Email: 2101901 @sggswu.edu.in

architecture, introducing code-smells, which are bad design effects
[3]. Code-smells have an adverse effect on quality characteristics
like adaptability and durability and are often unintentionally brought
in by software developers during very first development as the out-
come of poor design choices or maintenance decisions. Coding is
to enhance an application’s overall performance so that it runs,
remains active for longer, and is visible. It provides no indication
as to whether the application will run or not; it may still produce a
result; it may take longer to process the code and raise the possi-
bility of errors and defaults during the coding process. As the name
suggests, code smells are observable or quickly apparent, but they
also indicate a more serious issue [4]. The best part is that it gets
easier to find, but it also presents an interesting challenge—classes
with data but no behavior, for example. It is easy to collect coded
scents with the use of equipment. Each character that indicates a
more significant issue within the code base is called a code smell.
Rather than being flaws or defects, code smells are a violation of
application development standards that degrade the software. Code
smells have the potential to slow down processing, raise the possi-
bility of errors and failures, and make the program more prone to
future issues, but they do not give precise details about how the soft-
ware functions. In order to eliminate code smells in such systems,
it becomes vital to order the refactoring processes according to the
maintainer’s preferences. Coding, as many of us know, takes a lot
of time and requires several programmers. Throughout the coding
process, the code will be reviewed, modified, and perhaps increased
or lowered [5, 6]. This means that programmers work under a lot
of pressure, and long or redundant code may occasionally result.

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/

licenses/by/4.0/).

01

http://10.47852/bonviewJCCE42023180
https://orcid.org/0009-0007-9149-426X
https://orcid.org/0000-0003-4583-1687
mailto:2101901@sggswu.edu.in
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

Code odors are caused by such laborious coding processes. Thus,
this flaw in coding that makes it difficult to grasp and unreliable
results in terrible programming that takes a lot of time and space.
Refactoring is required to eliminate this programming degradation.
Refactoring is the technique of changing a part of application struc-
ture rather than its nature. Refactoring is a methodical process of
reconstructing a framework of existing program while maintaining
inner organization and exterior behavior. The term refactoring is
coined by Johnson and Opdyke in 1993 [7]. Even though the soft-
ware industry has undergone many changes, the requirement for
software refactoring remained. Refactoring strong impact on soft-
ware quality causes it to become a hot topic of study. Software
restructuring and software quality have been the subject of sig-
nificant amounts of research. Refactoring frequently also makes it
easier to spot issues and bad code. This has an advantageous result
in software’s parameters. Software applications include many cod-
ings and so the programmers and those highly skilled coders develop
very big codes. As the programming run in different hands and
through different techniques, there are more chances of errors and
not an easy task. In case the issue has progressed a long way, code
refactoring can be delayed. As refactoring is nothing but updating or
changing the unnecessary coding. Code refactoring includes a num-
ber of methods to minimize code length and execution time, and
an optimized code is received with the working of original classes,
methods, and functions used in the starting of the program [8]. This
refactoring is less costly than starting from new program coding.
The major help is in iterations and increments where the software
is divided into a number of parts and their coding can be easily
changed. Refactoring cannot alter the class, functions, or classes of
programme or software system. Undisrupted code, on either hand,
might miss design code, as well as clears and maintains code quality,
resulting in a programme that is easy to understand and compre-
hend, as well as error free. As a result, it reduces software bugs,
but it is also about seeing the code base as just a living system
that requires frequent maintaining of code to be strong. This article
presents a hybrid approach to prioritize the refactoring techniques
for the detected code smells. There are systems that have code
smells, which leads to an increase in cost to maintain the product
and there are more challenges to alter as well as emerge. Refactoring
initiates the architecture of a program by modifying the underlying
model irrespective of changing the extrinsic action, in order to elimi-
nate code smells. Large-scale systems have a higher number of code
smells to correct, and only some of them can be resolved. As aresult,
the list of code-smells needs to be sequenced depending on many
factors, including the danger and significance of classes [9]. How-
ever, the majority of the refactoring techniques in use according to
the same importance for fixing code smells. Refactoring sequenc-
ing, a widely used technique, is employed to address code-smells
and improve its structure while retaining overall functionality and
actions. This process involves two primary steps: (1) Detecting por-
tions of code that require improvement, such as code-smells, and
(2) identifying suitable refactoring sequencing techniques to achieve
the desired improvements. The initial approach involves applying
a novel optimization algorithm namely Hybrid Spotted Hyena and
Emperor Penguin optimizer (HSHEP). This hybridized algorithm
commonly aims to combine the strengths of both approaches. Once
the results from the initial spotted hyena optimizer (SHO) algorithm
are obtained, we run the hybridized algorithm to demonstrate the
advantages of combining with EPO algorithm. This optimization-
based code smell refactoring sequencing technique could help to
ensure that code refactoring is completed efficiently and effectively,

02

reducing the risk of introducing new bugs or affecting the code’s
functionality.

RQ1: Which optimal refactoring technique should be proposed
on code smell?

RQ2: Which refactoring sequence should be taken in order to
increase code maintainability?

RQ3: To what degree can the suggested approach (HSHEP)
effectively address and correct code-smells?

RQ4: Does the hybridization of two algorithms (HSHEP) lead to
any improvement in quality of software?

The rest of this paper is structured as follows: Section 2
elaborates the study of previous work. Section 3 explains a
proposed hybrid algorithm. In Section 4, the proposed method is
applied to software refactoring technique for sequencing to remove
the code smells. Computational complexity and results are given
in Sections 5 and 6, respectively. Finally, conclusion is given in
Section 7.

2. Literature Review

In the software engineering community, refactoring prioriti-
zation and analysis have not received much attention compared to
smell refactoring processes. This is not due to the problem’s lack
of usefulness, but rather because of the inherent challenges linked
to hybrid optimization challenges. In this section, the focus is on
reviewing and highlighting alternatives for smell refactoring estab-
lishing a priority as shown in Table 1.

Kalhor et al. [10] proposed a high priority on antipattern iden-
tification, and several methods have been put forth to achieve
this goal. There have been published articles of review thus far
to categorize and contrast these methods. Nevertheless, a thor-
ough investigation employing assessment criteria has not contrasted
various antipattern identification techniques across all program
abstraction levels. All the techniques that have been previously
described are categorized in this article, followed by a discussion of
their benefits and drawbacks. Ultimately, a comprehensive compar-
ison of evaluation measures for every category is given.

Jain and Saha [11] propose two machine learning classifiers
to find stinky methods and classes: k-nearest neighbor (kNN) and
support vector machine (SVM). This explains its adaptability, SVM
excels when used with datasets of modest to moderate size, data
spaces of having higher dimensions, along with kernel methods
for nonlinear data. The current study avoids this difficult problem
and does away with manual intervention by using the power of
meta-heuristic algorithms to determine the ideal values for machine
learning classifier hyperparameters. It offers a unique method for
code smell detection by combining machine learning classifiers
with swarm-based methods. This cross-domain combination offers a
fresh approach to the age-old problems of precise code smell detec-
tion and ideal hyperparameter setup.

Noei et al. [12] introduced MLRefScanner, a prototype tool
created expressly to find refactoring commits in ML Python project
histories. MLRefScanner uses machine learning techniques and
algorithms to increase the coverage of refactoring operation identi-
fication in Python code and improve the capabilities of identifying
refactorings unique to ML. A deeper understanding of the breadth
and evolution of the ML codebase is made possible by MLRef-
Scanner, which enables practitioners and researchers to track and
evaluate refactoring actions in the software development history of
ML Python libraries and frameworks with high precision and recall.

Iss. 00 2024

Vol. 00

Ineering

Journal of Computational and Cognitive Eng

(panuiuo))

"JUSIOIIJO00 UOTIE[AII0) S uewIeddg Sursn paurexe a1om sgunjuer
oy, "[rowrs uSIsa(T sse[) poo) oy} d)eI 03 pasn A3y} BLINLIO Ay} Jnoqe pauonsonb axom siodojoasp
91} ‘UOn)IPpE U] "SWISAS 0IBMIFOS 20In0s-Ud0 IN0J-AIUoM] JO SUOISIOA JOUNISIP 0M] JO STOMITIEI]

o) oprsur onbruyoe) 9y Jo uonjENEAd [oLIIdWo Ue PJONPUOD SWIES) WIA)SAS 9IeMJOS SWes oY) ‘yoeodde
woly s1odojaaap 11adxs ‘Appuenbasqng -(1xa1u0)) 19dojorsq ‘Aysus([[ows uSIso(‘uoreuLIOju] Pposeq-eLILIORNW [¥1] TR 30
[€OLIOISIH) BLISILIO 921} JO SUISIOW pue dINXIW B UO Paseq [[dWS U3Iso(sse[) PoD) I0J PAIopISu0d Lraids [[ows ugIsap sse[o yoys
9q pInoys s12dojoAdp pue [eronId pawnsse Aoy Tenonted uj ‘uoneznIIoNd [[oWS udIsa(Jo POy ‘uoneznuond [jows uSisaQq POD JO uoneZNLIOLJ 7202 -qereyyy S
"ooueuuIew Weidoid o) paje[al oS pue sasuadxd SuLLINOUI JO POOYI|
-O[I] 9} SIOMO[[IIyM ‘sa1321eNs FULI0)0BIAT UM SIOI[JU0I pue sjJo-apes) Suissasse puads jsnux
$10d0[oASD JI0JJ0 PUE QW) O} SUSSSI] JIOMOUIEIJ o) ‘ejep [eorndwa Jo asn oy ySnoxy], -opms
€ SE JOB 0) POPUSIUL ST JTOMIWILI] Y} ‘SWOISAS 9IeMIJOS JO sonqrije Aijenb [euIojur oY) ooULyud
03 sa139jens 3uriojoejar jerrdordde asooyo s1odojaasp aremyjos djoy 03 1opio uf ‘spuowLIddxo ‘sonbruyo9) Suriojoejor
9} J0J UISOYO OS[. QIOM SOZIS JUQIQHJIP JO SAIPNJS 9sed dAI] "$59901d Juatdo[oAdp y1omawer) Ay J10J QUWIAYOS UOIJEOIJIS QoUBUUIRIA
Jo sa3eys Arewnid 1oy oy pastIduiod UOKONISUOD JI0OMIWRL) [ENJOR) PUE ‘SISA[EUR dSEIN [N -se[o ay) pue (AOONO) 2I1eM)JOS JUSIIIH 0]
& ‘Apmys [eyuowIadxa ue ‘uonednsaaur A10jerofdxs uy ‘sainquiie Ajjenb euriur SW)SAS arem u31sa pAIudLIO JI0MIWEI,] UOTJBII} [e1] TR0
-)30s Suraoxdui Jo 1803 oy yym Apnys siyy ur pajuasaxd st AFojopoyjow uoredIjIsse[o SuLI0joejaI v -100[qQ 103 [9pON Afend) -1sse[) SuL10308Joy V €207 poyeSouwy ¥
sed o) ur sonbruyoo) Surures] suryoew 93pa-3urIno Aq pISSIW 1M Jet]) S)se) JuLI0Jo.JaI Spul}
K[9ATI09JJ0 JOUUBISIOYTIA ‘[[€991 €30} UI 9SBAIOUI 0()9 & MOYS PUL JOUULISIOY TIA O]qUISSAI 0}
pasn 9q Aew {00} UO1)030p JuLI03OL}AI 9s1021d pue 9)ep-03-dn 30w oY) JOYAJ "SPOYIOW UOT)O)IP yoeoiddy
SurI030.)a1 11B-91])-J0-218)S AU} S}eaq anbIuyod) Ino ‘oLreusss spoford-paxiw oy ur sa109s | JoysSiy paseg-Sururea|
%St PUB DNV 1YY 2,87 (18931 YT %76 ‘UoIstoaid 1oySIy o, [z JO 95RIOAR UR [PIAY "SHUL sumyoey v :sp00loig
-wod SUrI0J0JoI AJBNUSISIIIP O} PIAIJO SI JOS 9INJLJ [BWIUIW B PUB 0468 "DV %8 PUL [[eodx uo&J Surures|
2,78 ‘uoIs1001d 916 surepe IoUUBdSIOY I "SOLIEUSOS SUI)Sa) [BIOAAS SSOIOE AJ[euonouny s, Jouued “Suryojewr uroped QUIYOBIA UI SHWWO)) [z1]
-SJOUTIN d1epIfeA am pue ‘suonesrjdde uoyAd TN 661 Sossedwooud YoIeasal dAISuUayaIdwod sy, LSV pue UOISIOAUOD 3p0)) Suri0joejoy Sunodreq 20T ‘Te 39 190N €
"UOT}09)3P [[OWS 9p0d Furjewoine pue souewriofrad Jo1jisse[o Suraoiduwr osye o[iym wajqord Fureou "uor399)p
-13u9 21eM1JOS SULLINOAI B 0) JOMSUR PI[OS B SOPIA0Id UOr)eISIUT YIo0WsS SIY], "SISIISSB[O Furured| [[oWS 9p0J JOJ SWIYILL
suryoew 2zrundo 03 SpoyIoW paseq-uLiems Juisn Jo SOUINJJUI JUBDIIUSIS) WLIJUOD dOUBDIIIU -03[e UATI[[JuI WIeMS
-31s [eonsIIe)s JO $ISIT, "Sse[D) IR PUB Por) dIe AJIJUSPI O} }SAASED Sk Jey) SIOPO O} ‘SIDLISSL[O Aq paziundo s1oy1s
poziumdo yppy Auojo)) 99g [e1oynIy pue ‘Jop\ Ad1n JezrumndQ wremg dieg opnjout sunyjLo3e ‘(NNDD) 10qu31oN -se[o Surures| suryoew
JuaSI[ojur-urrems Suruioyiod-1soq oy [, "SWYHLIOT @ SUTUILI] SUIYORW JO SOLOW doueuIoj1ad oy Jso1eoN-Y pue (INAS) Jo oouewrojrod Fur [11]eyes
9SBOIOUI 0} SPOYJOW PASBq-ULIBMS dA[oM) YySnoay) s1jowerediodAy Suiziundo uo sasnooj s1om sy, auryoew 103994 Hoddng -redwoo pue Surroxduy 202 pue uref 4
‘soyoeordde pasn Apeare ooueyud pue ‘puayardwod ‘oredwod 0y eyep SIy} asn ued
SIOUOIBISIY "UMOYS oI A1059)ed YIBD J0J sanjea oAnejfenb sommow oy) pue o1doy siyy uo pajrodar
U99q 9ABY| JeY) SOLIOUI UONENBAD JU[) UO dUOP SI SISA[RUE U ‘U 1))y "pakojdwo spoyouwr o) ‘uonoajep urepednue
pue ‘s10d0[oAdp JO SANIIqE O} UO 9OUBI[I Y} ‘UONILIISqR JO 913D 9 :UOIBOIJISSE[O PAISaFIns 'S[00], U0139939(J a1emjos Aq sanuny
II9Y) UT JUNOOOE OJUT UQYE)} OJE SI0JOB) 991U], "PAIAJJO SI SOINSLOW UONEN]EAd UO PIskq SILI050)ed oy} ueped nuy ‘KIrenpoN-0O -1oddo Suriojoejor [o1] TR
I1e Jo uostredwiod YSNoIOy} ' "SYOBMEIP PUEB S}IJOUI] U} JO UOISSNOSIP © Aq PIMO[[0F ‘Q[o1TE SIY L ‘sanbruyoa], Surisni) JO MIIADI OTJBWIRISAS $202 Joyey] I
Apmg 2y Jo asoding anbruyoay,/[00], op 1odeg Tedx dweN ON IS
sioyny

MIIA AINJRINI]

1 31q8L

03

Iss. 00 2024

Vol. 00

Ineering

Journal of Computational and Cognitive Eng

‘Apnjs ased Juri0joejoy Jo
9y} UI SUONOE FULI0}OBJOI PI0JAI A[9JeIndoe 03 $S9001d & pa)sa33ns Ay} ‘SJUSWILIOD AJAINS 1Y) JO uondoorog 1odojoraq
1ed se [eunsnpur oy} SUIpIeFal SOLIDA0ISIP JI9Y) SULIDPISUO)) "UONBIUIWNIOP J1dY} pue sadA) Jurioy Surpueisiopup) 1opog
-0BJOI U0aM1q SarouedaIosip A[1ed Aue 91edIpul ued ‘S10)0219p FULIOIOBAI IIM PAUIqUIOD UYM ‘pUR avsS) spremo], :uondopy [oZ]
[o1easar [eonrdwo JUQIQHIp JOJ Uonepunoy SUons e st UONOUNy Ued [9pot pue AWOUoXe) V'S YL Sur10joeoy pAUIFV-J[oS Suriojoejay] Jo 91l 1202 Iew QY 1
"AoBINOJE 18213 $)1 SOJEISUOWP WIILIOF[. dY} JO UOTeN[eAd
[eoundwd uy "pasn are uonisodwodsp [euonOUNy YIM [BIP Je) sossa001d Suriojoejor Auew ‘smej
Surpury 10y "swerderp sse[d T Julsn paLIdjul ST uonIsodwodop [euonouny Yjm sweIgerp ayy 3urio0joejol [opowt
S[oqe[Jel) UONOUNJ € JO SaNJeA JLIJOW) YIM PIjejouue josejep Suiuren y "edpl paysassns oy aremyjos 03 yoeoidde [61]
QA 0) Pasn dJe [opoul J10m)au [ernau doop e pue anbruyos) Jurures pasiatadns aandepe uy [opouwr TIAN Paseq-TIN Surues| suryoew y 7207 [e 10 nypIS 01l
‘uonepIeA [eyuswIadxs
£q pojensuowop se ‘FuLIO}OBJOI JO 30 A} SIOMO] YoM ‘SULI0}ORJaI JNOqe SUOISIOAP 10139q el
s1osn d[oy ueo [00} oY [, ‘YoIedsar JoLid uo paseq 00} UOHEPUSTUIOII SULI0JOLOI dTEMJOS B 9)8aId
om ‘Sunjew-uoIsIoap arnjonnsal sowwerdold djoy o3 19pIo uf “syurod uoISIOAp Y} [[€ J9A0D A[[nJ W9)SAS uonepuaw
JOUUED S[00} PUE SIIFO[OPOYIAW PIPUIWIOII) JO [[e 10 d1enbape jou a1e suonnjos pasodoid (WoIsAS UOIIBPUAWIOIY RUGREN B GRAEN | [81]
oY) [[& JOIIL Jey) uedW $s2001d SuLI0)oRJOI 91BMJOS AY) U PIAJOAUT S)ulod UOISIOIP snojownu oy, SulI0joBJOY 2IeMP0S) SIS Iemyos 1oy adAroj01d v 0202 ‘[e 10 oeD 6
soua[[ey) pue
‘uonednsoaur Jurddew SIS SIy} JONPUOO 03 pasn odeospueT yoreasay
spoyiow oy Inoqe pay[e} 193e] Aoy], *01npaooid Sur0}oejor 91EMIJOS oY) JO MOTAIOAO UR JOUIIONS JAren) aremyos
& PAIdJo A9y 9s11 “Ajifenb a1emijos Uuo sanIAnde Juriojoejal Jo joedur oy) Jurpredar ornjeId| douanyjuy 3uL10)oRJY [1]
Treorndwa 3unsixs Yy syuasaid pue ‘sajenjeAd ‘saedo] ey Apnys urddewr onewa)sAs y3noioy) B 9po) pajusLI) y3urg
syodai 1oded siyy ‘saguajeys uado [eruejod AJIIUSPI PUL I 9} JO 2)B)S JUILIND I} SULJOP 03 JOPIO UJ NON ‘SOOI 4 “ASOON -102[qQ seop MmO 20T pue ey 8
(SH-VINDOIN) A521ens
‘soInseawt uonn[oAd uoneidepe Xiyewr unpLIoS[e uonnjoAd
Suroeds pue ‘03e10A00 ‘QunjoAaIddAY ‘OuI} UONNOIXI JO SULIO) UT PAINSEOW e SjudwoAoIduwr Q0uBLIBA0D (QIN) 2AT aandepe paseq-xXinew
oy, “Ayqiqeurejurew pue Ajjenb aremijos ur sured 3s03ea1d oy ur 3nsai1 jey) sdays Suriojoejar oy -o0a[qonnu o) paf[ed QOURLIBAOD € FuIsn [91] TR 30
AJJUOPI 0} 9[qe Sem JOULIOJ A} ‘S|[OS USISOP PI)0)AP [[& 1991100 U.D 1 A[IYA "T[-VDSN 19A0 unpuos[e (OOIN) uon SuriojoejalI [[oWIS yesseN
Koewaidns s, unprioS[e SF-VIAND puoq 9[3uIs QA U} 03 3s9)e sa109s dourwtofrad paysiqnd oy -eziundo aAndalqonny [opoW JO UOIBZNLIOLIJ 7202 -qaves L
S[[ows 9pod
‘suzopedijue Yy pajedo] Sy [9powr p)sa3Ins Ay} {paIopIsuod sSuly) [y ssa901d uonenjesd QIeM1JOS JO SULI0)ORJOI
o jo red se swei3old eae(JounsIp XIs ul punoj are—AjeIousd aanenoads pue ‘9pod m3aydeds oMU pUE UONEdIIUIPI
‘sse[o x9[dwoo ‘AAUS 2InJedJ ‘SSB[O BIBP ‘SSB[O PODH—S[[WS 9POd JOUNSIP XIS ‘suropednue [eInjonns uersakeq v ‘INDJ) onewojne 10 yoeoidde [s1] TR0
93en3ue] pajuaLio-103[qo Surknuapr 1oy yoeoxdde eoydess onsijiqeqoid e syuasard 1aded siyy, [opowr [eorydersd onsijiqeqoid paseq-onsifiqeqold v 7707 uesseqnqy 9
Apmg a1 Jo asoding anbruyoay,/[00], ap 1odeg k) JweN ON IS
sioyny
(ponuyuo))
1 91qBL

04

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

Almogahed et al. [13] rely on the strategy that helps reduce and
streamline maintenance costs and processes is refactoring. Refactor-
ing approaches’ impact on quality criteria, however, shows uneven
and contradictory results. As a result, software developers have chal-
lenges in successfully improving software quality. Furthermore, the
lack of a complete framework makes it more difficult for developers
to make decisions about which refactoring approaches are appropri-
ate and in line with particular design goals. Given these factors, the
purpose of this study is to present a novel paradigm for categorizing
refactoring methods according to how much of an impact they have
on internal quality criteria.

Alkharabsheh et al. [14] offered a multiple-criteria
merged technique for prioritizing design smells, with a focus on
a God Class Designs Smell. They empirically tweak and evaluate
the method using a dataset of 24 open-source applications. The
empirical judgment seeks to compare the highest-ranked God
Class acquired using their proposed technique to the opinions of
developers working on each project. The evaluation results indicate
that the plan requires additional improvement. They recommend
comparing initiatives where respondents’ responses match the plan
against projects where no link is seen. By doing so, they can refine
and enhance the effectiveness of the prioritization approach.

AbuHassan et al. [15] present a novel framework that uti-
lizes graphical models with probabilistic probabilities to detect and
refactor antipatterns in software systems. The framework entails
producing a graphical model by retrieving class attributes from its
source code. In the final stage, a Bayesian network gets trained to
detect antipatterns based on the properties of surrounding classes.
To assess the effectiveness of our technique, they trained the idea
on six distinct counterfeit patterns and applied it to six separate Java
projects. The results demonstrate that the suggested model detects
these antipatterns with an average precision of 85.16 percent and an
average recall of 79%. Overall, the study highlights the importance
of effectively prioritizing design smells and suggests avenues for
future improvements based on empirical evaluation and feedback
from developers.

Saheb-Nassagh et al. [16] used a multiobjective optimization
(MOO) optimization method the multi-objective (MO) autocorrela-
tion strategy for adapting and evaluating to prioritize model smell
refactoring (MO-CMA-ES). To mitigate the negative consequences
of design smells, its derivation is based on reworking unifying mod-
eling language (UML) diagrams that represent classes. To balance
refactoring, they utilize two competing goals: efficiency and the
ability to be maintained. They begin by establishing a fresh solution
depiction that ensures smell removal and removes the denial con-
straint. Additionally, they suggest a customized mapping strategy
for accurately encoding actual values with different renderings.

The study by Kaur and Singh [17] aims to improve the qual-
ity of programming, and hence, the final product delivered by the
programmer should yield optimal results. The article is introduced
to address how object-oriented code modification affects software
quality attributes. The plan is to choose 142 primary research that
were published up until the end of 2017 through a series of stage
inspection methods. The results reveal that studies conducted in
academic settings tended to show a greater beneficial influence on
software quality of refactoring compared to those carried out in
industrial settings. Overall, refactoring activities had varying effects
on different quality attributes, causing improvements or degrada-
tion in most cases, with the exception of cohesiveness, complexities,
inheritance, fault-proneness, and consumption of energy.

Gao et al. [18] created and tested an experimental instrument
for a technology refactoring recommendation system. Users inter-
act with the tool to realize their refactoring intentions, and the tool

provides them with an optimized software refactoring scheme. The
tool has been proven to be effective, particularly for inexperienced
and non-English speaking users.

Sidhu et al. [19] proposed design flaws technique would then
prevent the vicious spiral of tiny refactoring processes as well as
one’s pipelined adverse effects. The notion of function decompo-
sition is shown as an anomalous architectural goal and a primary
source of object-oriented software design odors. They argue that sig-
nificant design augmentation can be achieved within a brief quality
assurance procedure by refactoring operations targeted at indicators
of operational segmentation instead of atomic smells. Their idea was
implemented by using a deep network that can recognize the cur-
rent approach in object-oriented software UML models. Using big
data techniques, the strategy described here first gains understand-
ing of intricate and multidimensional application design aspects, and
then it uses that understanding to generalize nuanced interactions
between the architectural elements.

AlOmar [20] proposed the main findings that the vast majority
of PSs experimentally test their approaches, and a few debugging
some varieties were examined more frequently than others, also
multiple approaches toward behavior preservation have been put
forward in the literature, together with the ideas and tactics that
guarantee program accuracy while handling refactoring tasks, the
suggested automatic analyses, the stick shift assessment technique,
and the great majority of PSs empirically access their methods. The
current work evaluates the correctness of the transformation and
determines whether these methods lead to a safe and dependable
refactoring.

3. Contribution

In this paper, first we introduce a novel hybrid optimiza-
tion algorithm, the HSHEP, specifically designed to address the
prioritization of code smell refactoring. This innovative approach
combines the strengths of two distinct optimization strategies, set-
ting it apart from existing technologies and providing a unique
solution to refactoring challenges. Second, the paper outlines a
method to incorporate maintainer opinions and requirements into
the optimization process, ensuring that the most critical code smells
are prioritized effectively. Finally, the practical applicability and
effectiveness of the HSHEP algorithm are validated through its
application to various large-scale open-source systems, demonstrat-
ing significant improvements in maintenance efficiency and system
evolution across five different types of code smells.

4. Hybridization of Algorithm

An algorithm that combines two or more different algorithms
to solve the same problem is known as a hybrid algorithm. It may
select one approach based on a feature of the data, or it may alter-
nate between the algorithms during the algorithm. Usually, this is
done to integrate each of the desired properties, making the whole
algorithm superior than its individual parts. A “hybrid algorithm”
is a mixture of algorithms that solve the same problem but differ
in other aspects, most notably performance. It does not mean mix-
ing various algorithms to tackle a separate problem, although many
algorithms may be thought of as combinations of smaller parts.

HSHEP optimizer-based algorithm in software refactoring can
improve the effectiveness of the optimization process, combining
the advantages of both algorithms. The goal is to address code smells
by iteratively applying refactorings to the code, seeking a better
solution while avoiding getting trapped in local optima.

05

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

4.1. Spotted Hyena Optimizer Shl = Shi — V.Pi (7
Spotted hyenas [21] can become familiar with the site of prey _

and encircle them. To mathematically depict the movements of spot- Ui = Shi + Shl+1 + ... + Shi+7Y ®)

ted Hyenas, the finest search agent, representing the optimum, is the
one aware of the prey’s location. Other search firms build a network
of reliable companions aligned with the pathway of the best search
agent. They maintain the best ways obtained thus far to update their
current position in pursuit of their objective.

There are four steps considering the working of SHO:

4.1.1. The encircling prey process

It involves the coordinated movement and positioning of mul-
tiple individuals around the target, aiming to surround it from all
sides. Because of the initial unknown search space, the current lead-
ing contender solutions is viewed as the prey’s or objective’s goal,
and it is quite near to the optimum. After determining the most effi-
cient search contender solution, additional search agents are likely
to change their positions depending on that optimal solution [22].

The encircling feature is mathematically defined as in
Equation (1):

Sh (r+1) = Shj (u) — P.Pi (1)

The space between the prey as well as the spotted hyena is formu-
lated as in Equation (2):

Pi = |H.Shj (u)—Sh (u)| ©)

The current iteration is denoted as ‘u’, where Shj indicates the vec-
tor’s position of the prey, and Sh represents the vector’s position of
the spotted hyena. The operator /° represents the true value, and the
operator “-” is implemented to denote vector multiplication. There
two vectors are used naming P and H. The P and H are the coeffi-
cient vectors, and their mathematical equation can be calculated as
in Equations (3) and (4):

P=2ul1 3)

H=2sv2 -5 “)

In this context, the variable “smax” denotes the highest recurrence
count, and the iteration “s” ranges from 1 to smax. The vectors
“v1” and “v2” are randomly generated vectors with values between
0 and 1. In order to strike a balance between exploration and
exploitation during the iterations, the value of “s” gradually
decreases linearly from 5 to 0 over the course of smax. This
linear decrease is mathematically represented by the following

Equation (5):

s = 5 — (s* (5/ smax)) &)

4.1.2. Hunting process

In the mathematical description of spotted hyena behavior, it is
assumed that the most effective search agent, representing the opti-
mum, possesses knowledge about the prey’s position.

The remaining search agents create a cluster that functions as
an established circle of friends, and they orient themselves toward
the most effective search agent. These agents store the ideal solu-
tions they have found so far and update their positions based on this
information.

The hunting process is represented by Equations (6-8):

Pi = |H.Shi — Shi| (©6)

06

Here, the best spotted hyena’s position is represented as “Shi,” while
the positions of the other hyenas are denoted as “Shl.” Additionally,
the cluster containing “Y”, in the present search space, the number
of optimum solutions is referred to as “V.”

Y represents the number of spotted hyenas and is computed in
Equation (9).

Y = Zf (Shi, Shi + 1, Shi +2, ...(Shi + A)))

A is the arbitrary vector inside [0.5, 1], f is the total amount of
solutions, and Z is all possible solutions.

4.1.3. Attacking the prey process

We develop a parameter labeled “s” in order to mathematically
represent the exploitation process, which entails attacking the target.
During the iteration phase, this parameter is crucial in lowering the
value of s from 5 to 0. Additionally, we adjust the V vector to reduce
changes and let s steadily decline. The spotted hyena moves closer
to the prey, signaling the start of the attacking phase in the equation,
when the magnitude of vector V, indicated by |V, falls below 1. (10).

(10)

In Equation (10), Sh(s + 1) refers to the process of updating the other
search agent depending on the location of the best answer.

Shis+ 1) = UiY

4.1.4. Searching the prey process

The location of the group of spotted hyenas in the vector Ui
determines where they go in quest of prey. To search for and assault
animals or food, they disperse wider. The search agents are under
pressure to travel further away from the prey by altering the vector
V with random values greater than 1 and less than —1. On the other
hand, [V| > 1 then, the spotted hyenas are enticed to approach the
prey. This process makes it easier to find global solutions.

4.2. Emperor Penguin Optimizer (EPO)

To begin with, Emperor penguins randomly establish the
perimeter of their huddle. Once established. Simultaneously, the dis-
tance between emperor penguin is calculated, which aids in further
exploration and exploitation. Subsequently, the optimal solution,
known as the effective mover, is determined. This solution guides
the search agents to better positions. Using the updated emperor
penguin positions or search agents, the huddle boundary is then
recomputed to enhance the overall effectiveness of the process.

There are four steps considering the working of EPO:

4.2.1. Achieve and gather complete chaos border

While huddling, emperor penguins typically arrange them
along the boundary of a polygon-shaped grid. Each emperor
penguin has at least two neighboring penguins, randomly selected.
The flow of wind within the huddle is examined to determine the
chaotic boundaries precisely. Notably, the wind speed is greater than
that of an individual emperor penguin. To characterize the randomly
produced chaotic border of emperor penguins, complex variables
are used.

Let € represent the speed of the wind and £ the gradient of €.

€ = o (11)

Journal of Computational and Cognitive Engineering

Vol. 00 Iss. 00 2024

The complex potential is generated by combining vectors ¥ and £.

(12)

where j is the imaginary constant and G is an analytical function on
the polygon plane.

G=0+ ¥,

4.2.2. Temperature around gathering

The major goal of the emperor penguin’ pandemonium is
to preserve energy and maximize the temperature within them.
To mathematically depict this situation, we assume the following
assumptions: When the radius of the polygon, represented as R,
exceeds 1, the temperature U is set to 0. However, when the radius
decreases and becomes less than 1, the temperature Te is assigned
a value of 1. This temperature profile plays a crucial role in driving
the exploration and exploitation processes for the emperor penguins
across various locations within the chaos.

Te' = Te— Max Iterations

(13)

y — Max Iterations

Te= 0
Or

if R>1

1 if R<1

where y explains the current iteration, Max Iterations represent the
maximum number of iterations, R is the radius, and 7e is the moment
to identify the best possible outcome in a search space.

4.2.3. The separation between emperor penguins

After producing the cluster border, the distance among the
emperor penguin and the best-found optimum solution is deter-
mined. The current best ideal solution is the one with the fitness
value closest to the optimum. The remaining search agents, or
emperor penguins, will modify their placements based on the infor-
mation from the current optimal solution.

Dep = Abs (S.AP. — C.Pepx) (14)

The variable “Dep” reflects the difference between the emperor pen-
guin and the fittest best search agent (i.e., the most fit emperor’s
penguins with the lowest fit value) in iteration “Y”. The variables
“4” and “C” are utilized to prevent collisions between neighboring
emperor penguins. “P” denotes the best optimal solution, which cor-
responds to the fittest emperor penguin, and “Pep” represents the
emperor penguin’s position vector. “S” represents the social influ-
ences that influence emperor penguins, pushing them toward the
most ideal search agent.

4.2.4. Relocating the mover

The locations of emperor penguins have been modified using
the best-found optimum solution, known as the “mover.” This
movement is in charge of changing the locations of other search
agents in the search space, and it will leave its present position unoc-
cupied during this update. To determine an emperor penguin’s future
position, the following equation is suggested:

Px(x+1) = PxA.Dep (15)

where Px (x + 1) indicates the emperor penguin’s most recent posi-
tion update. The clustered habits of emperor penguins are recalcu-
lated throughout the iteration phase once the moving object has been
repositioned.

4.3. Proposed hybrid HSHEP algorithm

The hybridization of SHO and EPO two algorithms involves
combining their principles, mechanisms, or strategies to create
a new hybrid optimization approach. The aim is to leverage
the strengths of both algorithms, leading to potentially improved
exploration and exploitation capabilities, and achieving better per-
formance in solving challenging optimization problems [23, 24].
Refactoring is a software development technique that modifies cur-
rent code to enhance its structure, readability, and maintainability
while retaining its exterior behavior. Let us create an algorithm for
refactoring the fictional “hybrid spotted hyena and emperor pen-
guin” algorithm we previously defined. This refactoring aims to
enhance the code’s structure, clarity, and modularity. Since the pre-
vious algorithm was also fictional, we will assume that it is written
in a high-level language like Python for simplicity.

Algorithm for refactoring sequencing the HSHEP:

4.3.1. Initialization phase

Initialize the population using random solutions. Set settings
such as population size, maximum iterations, crossover rate, muta-
tion, and local search rate. Determine the initial best solution in the
population using the fitness function.

4.3.2. Main optimization loop
Repeat for a predefined number of iterations

1) Hunt and Capture Phase (Spotted Hyena Behavior)

Create offspring individuals by performing crossover and
mutation operations on the population. Add the offspring to the pop-
ulation.

2) Information Sharing Phase (Spotted Hyena Behavior)

Share information between individuals to enhance global
search capabilities.

3) Huddling Phase (Emperor Penguin Behavior)

Sort the population based on fitness and perform local search
around the top individuals. Add the local search results to the pop-
ulation.

4) Individual Movement Phase (Emperor Penguin Behavior)

Exploring new areas of the search space can lead to the
development of new solutions. Introduce the new solutions to the
population.

1) Selection

Select the best individuals from the population based on fitness,
keeping the population size constant.

2) Update the Best Solution

If a better solution is discovered during the iteration, update the
best solution accordingly.

4.3.3. Termination
When the maximum number of iterations is achieved or another
stopping requirement is fulfilled, the main loop ends.

4.3.4. Bring back the best solution
Return the best solution discovered throughout the optimiza-
tion process as the ideal answer to the problem.

07

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

Figure 1
Proposed methodology of code smell refactoring sequencing

Data Selection

\ Data Collection
\ Optimization

Refactoring /

Discarded

Refactoring

In this theoretical description, each step outlines the main
actions and phases performed in the Hybrid Spotted Hyena and
Emperor Penguin Optimization (HSHEPO) algorithm [25-27]. The
specific details and implementation of functions may vary based on
the problem domain and the algorithm’s requirements. The algo-
rithm combines emperor penguin social dynamics and spotted hyena
hunting behavior to improve optimization outcomes.

4.4. Research methodology

Prior to elaborating on the suggested framework for refactoring
prioritization, we will now discuss the proposed research methodol-
ogy, outlined in figure given below [28]. The primary objective of
this paper is to explore the potential analogies between the behaviors
and characteristics of emperor penguins with spotted hyenas and the
process of refactoring code sequences. The methodology comprises
four phases, each of which is introduced in Figure 1:

1) Phase 1

Data Selection: The data selection for performance evaluation
and analysis involves choosing different open-source and publicly
available Java datasets. These different datasets will be used to
assess and analyze the proposed approach.

2) Phase 2

Data Collection: The data and code smells are being gathered.
A software tool is built to extract metrics such as the number of
classes coupled with the main class (CBO), the relationship between
various methods and parameters of the class (LCOM), the complex-
ity of the class (RFC), the maintainability value, and the complexity
of the methods. Five code smells, including a lengthy argument
list, long function, blob, feature envy, and huge class, have been
recognized as needing to be refactored. Table 2 provides detailed
measurements and descriptions.

Table 2
Dataset metrics

System #Classes #Bad Smells
JHotDraw 753 42
GanttProject 245 67
JEdit 184 51
JFreeChart 521 82
Xerces 991 106

08

3) Phase 3

Optimization: The hybrid spotted HSHEP serves as the foun-
dation for identifying the most effective refactoring sequences to
completely eliminate the identified design smells. By drawing inspi-
ration from the resourcefulness of spotted hyenas and the collective
intelligence of emperor penguins, the algorithm proposes creative
strategies to tackle code smells and optimize the refactoring process
as shown in Table 3. These metaphorical mappings guide developers
in selecting the optimal refactoring actions that result in the success-
ful eradication of design smells from the code.

Table 3
Open-source program parameters
Total Number Total Number
Dataset Name Dataset Type of Classes of Smells
JHotDraw Open Source 398 1215
GanttProject Open Source 776 63
JEdit Open Source 5421 1365
JFreeChart Open Source 3257 793
Xerces Open Source 2551 5989
4) Phase 4

Refactoring: During this phase, refactoring tasks are performed
based on the sequences generated in the previous phase. To enhance
user involvement, our method provides software engineers with
three alternatives for dealing with side effects. They can choose
to address all newly discovered odors, rearrange the sequence of
smells, or ignore the new smells entirely [29, 30]. These choices
empower engineers to make informed decisions while maintaining
control over the refactoring process. The programme statics of dif-
ferent smells are shown in Table 4.

Table 4
Programme statistics

System #Classes #Bad Smells
JHotDraw 753 42
GanttProject 245 67
JEdit 184 51
JFreeChart 521 82
Xerces 991 106

5. Computational Complexity

5.1. Time complexity

The time complexity of the HSHEP optimization-based algo-
rithm is primarily influenced by the individual complexities of the
Spotted Hyena Optimization (SHO) and Emperor Penguin Opti-
mization (EPO) algorithms, as well as the operations required to
combine them effectively.

The SHO algorithm typically exhibits a time complexity of
O(n2), where n is the number of hyenas or the population size.
This complexity arises from the need to evaluate the fitness of each
individual and update their positions iteratively based on the best
solutions found.

Similarly, the EPO algorithm has a time complexity of
O(n * m), where n is the population size and m is the number of

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

iterations. This results from the evaluation of fitness and position
updates based on the emperor penguin behavior model.

When these two algorithms are hybridized in the HSHEP
approach, the combined time complexity can be approximated as
O(n2 + n * m). The exact complexity depends on how the two algo-
rithms are integrated. If the processes are sequential, the complexity
would be the sum of the individual complexities. If they run in par-
allel or have overlapping operations, the effective complexity could
be closer to the higher of the two.

Additionally, the integration mechanism in HSHEP, which
involves hybridizing the search and optimization strategies, adds an
overhead. Assuming a linear combination, the complexity remains
dominated by the higher-order term, which is O(n2) in this context,
considering m <= n. Therefore, the overall time complexity of the
HSHEP algorithm can be approximated as O(n2), ensuring efficient
performance for large-scale optimization problems with a manage-
able population size.

6. Experimental Results and Discussions

The initial step involved a comparison of the approach with
two alternative algorithms that do not incorporate prioritization—
specifically, SHO without prioritization and the method proposed
by EPO. In this comparison, a fitness function is used to quantify
the number of rectified code-smells. This was done to assess the
efficacy of using prioritizing in the schema.

The extended assessment compares the outcomes of the SHO
approach to three well-known metaheuristics: PSO, GA, and the
suggested algorithm. During this stage of the study, the same fitness
function is used to validate the utility of the SHO method.

Given the intrinsic randomized behavior of the algorithms and
techniques being investigated, it is crucial to remember that the
findings may differ somewhat with each run. To account for this
unpredictability and back up our deductive statistical assertions, the
experimental research includes 31 unique runs of simulation for
each method and approach examined.

To determine the significance of the findings, they used the
Wilcoxon ranking summation test, as described in PSO and GA.
This test was used to evaluate the SHO-based strategy against all the
other strategies investigated in the study. Another important point
to note is that the bulk of unresolved code smells detected in both
SHO without prioritization and EPO are of the “large class” type
[31, 32]. This type of code smell often needs numerous refactoring
operations and is extremely difficult to resolve without the introduc-
tion of a specialized strategy, such as priority.

Conversely, the computed Code-Smell Correction Ratio
(CCR) score associated with the “blob” code-smell is acceptable,
averaging at 79% across all systems. However, it is worth noting
that this score falls short of the scores achieved by both of the
other approaches. The deficiency in the correction ratio for data
classes is considerably compensated by the substantial improve-
ments observed in terms of importance, risk, and severity scores.

This lower score is primarily attributed to the fact that, in the
experiments, data classes are not prioritized; they are assigned the
least priority score, set to 1, in contrast to the treatment of blob
code-smells. This score allocation is in accordance with developer
preferences. Moreover, data classes, in general, undergo infrequent
alterations during development and maintenance, primarily con-
taining data and predominantly composed of setters and getters
functions, which involve minimal processing of data.

As a result, the significance score associated with this code
smell is fairly low. In contrast, as shown in Table 5, all discovered
“large” code-smells are properly handled, resulting in a perfection

rate of more than 90%. As a result, their relevance score is signifi-
cantly higher, making them more deserving of prioritizing.

Furthermore, to ensure the effectiveness and applicability of
our technique, we manually verified the likelihood of the different
recommended refactoring sequencing for every system.

They’re encountered certain semantic errors in the program’s
behavior. When identifying such errors manually, the classified
operations associated with these changes as suboptimal recommen-
dations [33]. To assess the success of an approach, compute an
accuracy precision outcome, which is the ratio of potential refac-
toring actions. On average, 90% of the refactorings are deemed
feasible. This score is in line with those achieved by both of the other
approaches as shown in Table 6.

However, it is worth mentioning that our results for data classes
are somewhat less favorable than those obtained by other method-
ologies. Generally, this type of code smell is less critical and poses a
lower risk than some other code smells, requiring less extensive cor-
rective action by software engineers, especially when compared to
code blobs. To fix difficulties with data classes, program maintainers
can simply use refactorings such as inlining classes, shifting meth-
ods/fields to offer new behaviors/functionality, or combining data
classes with existing classes in the system. Although the technique
does not explicitly select data classes, we were able to obtain an
acceptable rectification score. This is partly attributed to the fact that
code blobs are often associated with data classes [34-36]. Conse-
quently, addressing code blobs can indirectly resolve issues related
to their associated data classes. Experimental results on different
datasets are shown in Figures 2—6.

Furthermore, there were good findings in terms of importance,
risk, and severity correction ratings. The majority of the important,
high-risk, and severe code smells were successfully handled, and
over 90% of the recommended refactoring sequences were seman-
tically consistent.

6.1. Fitness function

The pursuit of optimal solutions is driven by a single fitness.
The primary objective is to maximize the system’s overall quality.
By doing so, the approach becomes cost-effective; as it effectively
minimizes cost of the rework that may arise in the future. The pri-
mary objective of any software system, from a software engineering
standpoint, is to achieve exceptional software quality. This focus on
software quality has been a prominent area of interest in the software
engineering field for many decades [34, 35]. Among the various
activities in the software development lifecycle, software mainte-
nance and evolution stand out as the costliest, accounting for more
than 75% of the development expenses [36]. Consequently, the pres-
ence of software smells poses a potential risk for future software
maintenance [37]. However, by detecting and correcting these soft-
ware smells through refactoring, the system’s overall quality can be
significantly enhanced proactively, before these undesirable traits
spread to other phases and incur additional maintenance costs [38].

n—1

Fitness(r) = (yi x (8 % Severity (ci) + y * Priority (ci)
0

i=

+_,6’ % Risk (ci) + o % Importance (ci)))

Formula (1) enables the computation of the efficacy of the refac-
toring solution denoted as “w.” In this formula, “yi” is assigned a
value of 0 if the current class is identified as a code smell using
the code smell detection criteria, and 1 if no code smell is found.
The parameters &, ¥, 8, and « collectively sum up to 1, reflecting
the confidence or significance (weight) attributed to each individual

09

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

Table 5

Refactoring results: Code smell

Code Smell Correction Ratio

Long Parameter Large
System Approach Long Method (%) Feature Envy (%) Blob (%) List (%) Class (%)
JHotDraw SHO 91(5/9) 89(15/4) 90(3/4) 89(4/9) 92(9/11)
EPO 91(6/9) 91(2/4) 89(2/4) 91(5/9) 90(8/11)
PSO 93(5/9) 92(3/4) 90(3/4) 92(7/9) 91(8/12)
GA 94(6/9) 91(2/4) 90(3/4) 90(4/9) 89(6/11)
Proposed Algorithm 92(7/9) 92(47/4) 93(4/4) 93(8/9) 92(10/11)
GanttProject SHO 91(4/7) 93(7/9) 93(6/7) 87(11/19) 90(14/18)
EPO 92(5/7) 92(6/9) 92(5/7) 91(16/19) 91(15/18)
PSO 94(6/7) 90(5/9) 92(5/7) 92(17/19) 93(15/18)
GA 94(4/7) 92(6/9) 90(6/7) 92(17/19) 90(14/18)
Proposed Algorithm 93(6/7) 93(8/9) 93(7/7) 94(19/19) 93(16/18)
JEdit SHO 90(197/27) 90(16/20) 90(20/27) 89(17/22) 91(20/27)
EPO 89(17/27) 91(16/20) 91(21/27) 91(18/22) 90(16/27)
PSO 91(19/27) 92(17/20) 91(20/27) 92(20/22) 90(20/27)
GA 90(19/27) 89(15/20) 90(16/27) 93(21/22) 91(21/27)
Proposed Algorithm 93(20/27) 92(18/20) 92(22/27) 93(21/22) 92(22/27)
JFreeChart SHO 92(15/17) 87(20/27) 92(21/26) 87(7/14) 91(14/16)
EPO 91(14/17) 91(24/27) 89(16/26) 90(11/14) 92(15/16)
PSO 92(15/17) 92(25/27) 91(19/26) 91(12/14) 92(15/16)
GAProposed 89(9/17) 93(25/27) 90(19/26) 90(119/14) 89(9/16)
Algorithm 92(15/17) 94(27/27) 93(24/26) 92(612/14) 92(15/16)
Xerces SHO 88(17/29) 91(63/72) 89(27/31) 87(17/29) 91(26/31)
EPO 92(21/29) 92(64/72) 91(26/31) 91(23/29) 91(25/31)
PSO 91(20/29) 89(57/72) 91(25/31) 91(24/29) 92(26/31)
GA 91(21/29) 91(62/72) 92(26/31) 90(21/29) 89(27/31)
Proposed Algorithm 93(23/729) 92(65/72) 93(29/31) 93(25/29) 93(29/31)
Average 92 93 93 93 92
Table 6
Refactoring results: Importance, risk, severity, and refactoring precision scores
Systems Approach Importance Risk Severity Precision Score
JHotDraw SHO 89 90 87 89
EPO 76 76 76 75
PSO 72 72 73 74
GA 61 61 61 67
Proposed algorithm 57 53 59 56
GanttProject SHO 89 92 87 93
EPO 77 77 76 76
PSO 71 72 73 76
GA 61 63 67 64
Proposed algorithm 59 66 87 59
JEdit SHO 88 94 90 91
EPO 77 76 77 78
PSO 72 72 73 74
GA 65 61 69 65
Proposed algorithm 56 59 57 59
(Continued)

10

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024
Table 6
(Continued)
Systems Approach Importance Risk Severity Precision Score
JFreeChart SHO 88 92 87 89
EPO 77 76 76 78
PSO 73 72 72 74
GA 61 61 65 65
Proposed algorithm 55 57 58 57
Xerces SHO 89 93 89 90
EPO 77 76 76 87
PSO 75 74 72 75
GA 68 65 61 64
Proposed algorithm 59 55 54 57
Figure 2

100

100
90
80
70
60
50
40
30
20
10

Experimental results on Gantt Project using proposed and competitor approaches

SHO

77 77 76 76

EPO

W Importance

GanttProject

PSO
m Risk

Figure 3

i Severity

GA

Proposed algorithm

' Precision Score

Experimental results on JEdit using proposed and competitor approaches

77 76 77 78

JEdit

72 72 73 74

PSO
JEdit

M Importance ®Risk = Severity ' Precision Score

Proposed algorithm

11

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

Figure 4
Experimental results on JHotDraw using proposed and competitor approaches

JHotDraw

100 89 90 g7 89
I mppHn

61 61 61 o/

PSO Proposed algorithm

JHotDraw

B Importance WM Risk M Severity | Precision Score

Figure 5
Experimental results on JFreeChart using proposed and competitor approaches
JFreeChart
88 92 g7 89
1 ¥ 77767678 73737274 65 65
80 61 61 55 57 58 57
60

40
20
0

PSO Proposed
algorithm

JFreeChart

B Importance MRisk ¥ Severity ' Precision Score

Figure 6
Experimental results on Xerces using proposed and competitor approaches

Xerces
100 g9 93 gg 90 87

75 74 72 75

PSO Proposed algorithm

Xerces

mImportance mRisk mSeverity Precision Score

12

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

measure. These weights can be adjusted based on developer pref-
erences. A series of comprehensive experiments were conducted,
involving diverse combinations of weights for each prioritization
measure. In the specific case of equal weights, each measure was
assigned a weight of 0.25.

Subsequently, here we present a set of 4 prioritizing criteria
(severity, priority, risk, and importance) that is included into the
methodology for resolving code smells during refactoring.

Severity: In practical scenarios, the influence or significance of
code smells is not uniform across all instances. Each specific occur-
rence is associated with a severity rating that enables designers to
promptly identify and address the most crucial occurrences of each
code smell. More precisely, identical types of code smells can man-
ifest in various code segments, each carrying distinct impact scores
on the system’s architecture. These impact scores gauge the relative
magnitude of the code smell, encompassing both its comparative
severity and the absolute detrimental effect on the overall system
quality.

Priority: Developers commonly assign varying degrees of sig-
nificance to distinct types of code smells, which can have diverse
implications for the overall quality of the system. By prioritiz-
ing detected code smells based on their individual preferences,
developers can arrange these types in a ranked order. This prioritiza-
tion approach empowers designers to optimize time utilization and
enhance the effectiveness of resource allocation for maintenance
tasks within their software projects.

Risk: An essential factor to take into account is the vulnera-
bility score. Therefore, this was posited that as code strays further
from established best practices, its susceptibility to risk increases.
Consequently, during the correction phase, the code smells posing
the highest level of risk should be given precedence. Each identified
code smell is accompanied by a vulnerability score, reflecting the
degree of departure from well-structured code design.

Importance: Typically, developers require an understanding
of the key code segments (such as classes and packages) within
the entire software system to effectively direct their efforts toward
enhancing their excellence. Within a standard software package
system, pivotal code segments are those that undergo frequent
modifications throughout the development and maintenance stages,
facilitating the addition of new features, adaptation to changes, and
overall enhancement of the software’s structural integrity [39, 40].

The graphical representations of refactoring results on differ-
ent types of the open-source software JHotDraw, JFreeChart, JEdit,
Gantt Project, and Xerces are given below in Figure 7.

6.2. Objective of maintainability

Maintainability of programs is the ease with which software
systems may be changed. It is a critical software quality factor that
directly influences the cost of software development. Therefore, to
effectively manage software development costs, it becomes imper-
ative to evaluate the maintainability of software systems [41]. To
achieve this, a metrics-based approach will be employed, which is
commonly utilized for predicting and estimating quality attributes,
specifically to assess the effect of fixing code smells. In our sce-
nario, the system’s maintainability will be assessed following the
implementation of a full refactoring process.

Software maintainability can be separated into five key
features:

1) Modularity: The software is organized into separate and cohe-
sive modules, allowing for easier understanding and changes to
be made to individual parts without affecting the whole system.

2) Readability: The code is well documented and written in a clear,
understandable manner, enabling developers to comprehend its
functionality and make modifications efficiently.

3) Testability: The software is designed to be easily testable, with
well-defined test cases and test environments, facilitating the
identification and resolution of defects.

4) Extensibility: The software is constructed in a way that allows
for straightforward addition of new features or functionali-
ties without major code changes or disruptions to the existing
system.

5) Reusability: The code is structured in a manner that promotes the
reuse of modules or components in other parts of the software or
in different projects, leading to increased efficiency and reduced
development effort.

By adhering to these characteristics, software developers can
create maintainable systems that are more adaptable to changes,
have fewer defects, and are more cost-effective to manage over their
lifecycle [42].

Figure 7
Experimental results on all datasets using proposed and competitor approaches

AVERAGE SUGGESTED REFACTORINGS ON
DIFFERENT DATASETS

80
70
60

40
30
20 1

7 9
Ll _ ™ ™

19 18 17

~

JHotDraw Gantt Project

10 20

™ Long Method Feature Envy

o/
% %

27 26 27 55 27 29

JFreeChart

Blob %

72

31 59 31
20 22 M

14 16 - M

-

JEdit Xerces

30 30 40

Long Parameter List ™ Large Class

o/

(74 %
7 70

13

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

Figure 8
Code smell refactoring sequencing technique

Code Smell
Identification

* Proposal for

e |dentify

Optimization Code Smell

Impact
Analysis

¢ Analysing

Code Smell
Effect

Refactoring
Sequencing

Optimization

e High Priority
Code Smell

¢ Code Smell
removed

Table 7
The five different code smell are used

Code Smell Illustration

Refactoring Technique

1. Long Method
classified as a long method.

2. Feature Envy

A method containing more than 10 lines of code (LOC) is

A method shows more attention or dependencies toward other

Extract Method

Move Method

classes rather than the class in which it is declared.

3. Blob
multiple responsibilities.

4. Long Parameter List

A class or method becomes excessively large and takes on

A method has a large number of parameters, which can make

Extract Class or Extract Method

Replace Parameter

the method’s signature cumbersome and hard to manage

5. Large Class
of attributes and methods

A class becomes overly large, containing a significant number

Extract Class or Sub Class

6.3. Refactoring techniques

Refactoring is the practice of reorganizing software code to
reduce unpleasant odors while maintaining its exterior functional-
ity. Code smell leads to errorless coding in the programmes, hence
these code smells should be removed by refactoring. The refactor-
ing sequencing technique takes place in different steps as shown in
Figure 8. “The process of refactoring involves modifying the inter-
nal attributes of the software while preserving its external behavior
[43]. The primary objective is to eliminate code inefficiencies and
bad smells. Below are some of the techniques employed in this
study” as shown in Table 7.

In this study, the focus is basically on five code smells and
HSHEP technique is employed to choose the top optimized solution
for refactoring sequencing in order to remove these smells:

1) Long Method: A long method is a code smell. When a method
is implemented in a long method of code, it smells. Excessively
long, containing numerous lines of code and performing multi-
ple tasks. This can make the method challenging to comprehend,
test, and modify.

2) Feature Envy: The code smell known as “feature envy” takes
place when a procedure is more focused on another object’s data
than on its own. In other words, a method is excessively using the
data and behavior of another class, indicating a potential design
issue.

3) Blob: It occurs when a class or module becomes excessively
large, complex, or has too many responsibilities, resulting in a
monolithic and difficult-to-maintain structure.

4) Long Parameter List: It is a code smell that occurs when a func-
tion or method has an excessive number of parameters. This
code smell can make the code harder to read, understand, and
maintain. It is typically an indication that the function may be
taking on too many responsibilities or that its interface could be
improved.

14

5) Large Class: It is a code smell that occurs when a class becomes
excessively large, typically due to having too many methods,
attributes, or responsibilities. Large classes can be challenging
to understand, maintain, and extend, and they often violate the
principles of encapsulation and single responsibility.

6.4. Potential facts

This section addresses the threats to the validity of the prior-
itization detection technique, discussing various factors that could
potentially impact the results.

Constructional accuracy: This hazard refers to probable mis-
takes in the model’s scent detection rules. Although we employed
highly accurate, precise, and recall-oriented rules for detection,
there remains a possibility that some model smells were not iden-
tified or that certain detected smells were not genuine. The used
model odors detection approach may generate false positives, influ-
encing the results of our research.

Inner authenticity: This risk assesses the possibility that the
quality estimate and maintenance calculator used will really achieve
their intended aims [44, 45]. We utilized the number of refac-
toring possibilities as a measure of the effort required to convey
model quality and improve the system, which is consistent with past
research. For sustainability, we follow the ISO/IEC 25,010 standard.
However, it should be noted that these indicators were chosen based
on their utilization in relevant research, which may have an impact
on internal validity [46].

External validity: This danger examines the generalizability
of the findings. In our studies, we used data from seven open-
source apps covering multiple areas and sizes. Nonetheless, further
research may be conducted to improve the generalizability of the
findings [47].

Addressing these validity threats allows for a more compre-
hensive understanding of the prioritization detection technique and

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

the robustness of its results [48]. By acknowledging and consider-
ing these potential limitations, we can gain greater confidence in the
outcomes of the study.

7. Conclusion

This article proposes a unique hybrid strategy based on the
HSHEP algorithm that uses single strategies for objective optimiza-
tion. The refactoring of design smells is handled by the solutions,
in contrast to existing refactoring methodologies. A five-point eval-
uation of the HSHEP priority algorithm. The optimum refactoring
order, which results in the highest quality with the least amount
of maintainability, may be made using a variety of model smells.
A sizable bespoke dataset was used to evaluate the effective-
ness of the chosen refactoring strategies are created along dataset
which includes more 29,000 class records, using five well-known
open-source software initiatives. This article also provided the per-
formance data for benchmarking reasons represents an enhanced
variation of the current emperor penguin and spotted hyena. The
proposed approach can fix all reported pattern smells while also
identifying the restructuring sequencing that result in the great-
est improvements in software reliability and maintainability. These
gains are measured in terms of execution time, hyper volume, cov-
erage, and spacing parameters. According to the given results, the
effective prioritization process successfully rectified all detected
design smells. The HSHEPI algorithms revealed 2871 and 2856
refactoring possibilities utilizing 100-length sequences after 1000
iterations, in contrast to current single objective solutions. The
method is based on a unique relative accuracy coverage statistic,
which compares all solution points on average. To address addi-
tional model and code smells, the HSHEP applied an objective
optimization strategy to achieve the highest average maximum qual-
ity score of 1149. In addition, the HSHEP technique will be used
to address challenges in other domains, which include design pat-
tern prioritizing or defect repair priority, as well as the proposed
mapping scheme between actual numbers and solution representa-
tions. Finally, we want to construct a stand-alone tool that includes
the proposed refactoring solutions. Future aims involve turning the
proposed refactoring techniques into a stand-alone tool for practical
use. This study will also look at how the HSHEP method may be
used to solve issues in a variety of fields, exploiting its benefits in
terms of software quality and maintenance.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

Author Contribution Statement

Ritika Maini: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Resources,
Data curation, Writing — original draft, Writing — review & editing,

Visualization, Funding acquisition. Navdeep Kaur: Supervision.
Amandeep Kaur: Project administration.

References

[1] Acharya, B., & Sahu, P. K. (2020). Software development
life cycle models: A review paper. International Journal of
Advanced Research in Engineering and Technology, 11(12),
169-176.
Almogahed, A., & Omar, M. (2021). Refactoring techniques for
improving software quality: Practitioners’ perspectives. Jour-
nal of Information and Communication Technology, 20(4),
511-539. https://doi.org/10.32890/jict2021.20.4.3
Jerzyk, M., & Madeyski, L. (2023). Code smells: A compre-
hensive online catalog and taxonomy. In N. Kryvinska, M.
Gregu$ & S. Fedushko (Eds.), Developments in information
and knowledge management systems for business applications
(pp- 543-576). Springer. https://doi.org/10.1007/978-3-031-
25695-0_24
[4] Kaur, M., & Singh, D. (2022). An intelligent code smell
detection technique using optimized rule-based architecture for
object-oriented programmings. In International Conference on
Artificial Intelligence and Sustainable Engineering, 349-363.
https://doi.org/10.1007/978-981-16-8542-2_27
Traini, L., Di Pompeo, D., Tucci, M., Lin, B., Scalabrino, S.,
Bavota, G, ..., & Cortellessa, V. (2021). How software refac-
toring impacts execution time. ACM Transactions on Software
Engineering and Methodology, 31(2), 25. https://doi.org/10.
1145/3485136
[6] Agnihotri, M., & Chug, A. (2020). A systematic literature sur-
vey of software metrics, code smells and refactoring techniques.
Journal of Information Processing Systems, 16(4), 915-934.
https://doi.org/10.3745/J1PS.04.0184
[7] Johnson, R. E., & Opdyke, W. F. (1993). Refactoring and
aggregation. In International Symposium on Object Technolo-
gies for Advanced Software, 264-278. https://doi.org/10.1007/
3-540-57342-9 78
[8] Mu, L., Sugumaran, V., & Wang, F. (2020). A hybrid genetic
algorithm for software architecture re-modularization. Infor-
mation Systems Frontiers, 22(5), 1133—1161. https://doi.org/10.
1007/510796-019-09906-0
Alotaibi, M. (2018). Advances and challenges in software refac-
toring: A tertiary systematic literature review. Master’s Thesis,
Rochester Institute of Technology.
Kalhor, S., Keyvanpour, M. R., & Salajegheh, A. (2024).
A systematic review of refactoring opportunities by software
antipattern detection. Automated Software Engineering, 31(2),
42. https://doi.org/10.1007/s10515-024-00443-y
Jain, S., & Saha, A. (2024). Improving and comparing per-
formance of machine learning classifiers optimized by swarm
intelligent algorithms for code smell detection. Science of
Computer Programming, 237, 103140. https://doi.org/10.1016/
j.s€ico0.2024.103140
Noei, S., Li, H., & Zou, Y. (2024). Detecting refactoring
commits in machine learning python projects: A machine
learning-based approach. arXiv Preprint:2404.06572. https://
doi.org/10.48550/arXiv.2404.06572
Almogahed, A., Mahdin, H., Omar, M., Zakaria, N. H.,
Mostafa, S. A., AlQahtani, S. A., ..., & Hidayat, R. (2023).
A refactoring classification framework for efficient software
maintenance. /[EEE Access, 11, 78904—78917. https://doi.org/
10.1109/ACCESS.2023.3298678

—
N
—_—

—
w
—_

—
W
—_

[9

—

[10]

(11]

[12]

[13]

15

https://doi.org/10.32890/jict2021.20.4.3
https://doi.org/10.1007/978-3-031-25695-0_24
https://doi.org/10.1007/978-3-031-25695-0_24
https://doi.org/10.1007/978-981-16-8542-2_27
https://doi.org/10.1145/3485136
https://doi.org/10.1145/3485136
https://doi.org/10.3745/JIPS.04.0184
https://doi.org/10.1007/3-540-57342-9_78
https://doi.org/10.1007/3-540-57342-9_78
https://doi.org/10.1007/s10796-019-09906-0
https://doi.org/10.1007/s10796-019-09906-0
https://doi.org/10.1007/s10515-024-00443-y
https://doi.org/10.1016/j.scico.2024.103140
https://doi.org/10.1016/j.scico.2024.103140
https://doi.org/10.48550/arXiv.2404.06572
https://doi.org/10.48550/arXiv.2404.06572
https://doi.org/10.1109/ACCESS.2023.3298678
https://doi.org/10.1109/ACCESS.2023.3298678

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

[14]

[15

—_

[16]

(18]

[19]

[20

—_—

[22]

[23

—_

[24

—_

(23]

[26]

16

Alkharabsheh, K., Alawadi, S., Ignaim, K., Zanoon, N.,
Crespo, Y., Manso, E., & Taboada, J. A. (2022). Prioritiza-
tion of god class design smell: A multi-criteria-based approach.
Journal of King Saud University-Computer and Information
Sciences, 34(10), 9332-9342. https://doi.org/10.1016/].jksuci.
2022.09.011

AbuHassan, A., Alshayeb, M., & Ghouti, L. (2022). Pri-
oritization of model smell refactoring using a covariance
matrix-based adaptive evolution algorithm. Information and
Software Technology, 146, 106875. https://doi.org/10.1016/].
infs0f.2022.106875

Saheb-Nassagh, R., Ashtiani, M., & Minaei-Bidgoli, B. (2022).
A probabilistic-based approach for automatic identification and
refactoring of software code smells. Applied Soft Computing,
130, 109658. https://doi.org/10.1016/j.as0c.2022.109658
Kaur, S., & Singh, P. (2019). How does object-oriented code
refactoring influence software quality? Research landscape and
challenges. Journal of Systems and Software, 157, 110394,
https://doi.org/10.1016/j.jss.2019.110394

Gao, Y., Zhang, Y., Lu, W.,, Luo, J., & Hao, D. (2020).
A prototype for software refactoring recommendation system.
International Journal of Performability Engineering, 16(7),
1095-1104. https://doi.org/10.23940/ijpe.20.07.p12.10951104
Sidhu, B. K., Singh, K., & Sharma, N. (2022). A machine
learning approach to software model refactoring. International
Journal of Computers and Applications, 44(2), 166—177. https://
doi.org/10.1080/1206212X.2020.1711616

AlOmar, E. A. (2021). State of refactoring adoption: Towards
better understanding developer perception of refactoring. PhD
Thesis, Rochester Institute of Technology.

Vissia, S., Wadhwa, R., & van Langevelde, F. (2021).
Co-occurrence of high densities of brown hyena and spotted
hyena in central Tuli, Botswana. Journal of Zoology, 314(2),
143-150. https://doi.org/10.1111/jz0.12873

McCormick, S. K., Holekamp, K. E., Smale, L., Weldele,
M. L., Glickman, S. E., & Place, N. J. (2022). Sex differences
in spotted hyenas. Cold Spring Harbor Perspectives in Biology,
14(6), a039180. https://doi.org/10.1101/cshperspect.a039180
Lacerda, G., Petrillo, F., Pimenta, M., & Guéhéneuc, Y. G.
(2020). Code smells and refactoring: A tertiary systematic
review of challenges and observations. Journal of Systems
and Software, 167, 110610. https://doi.org/10.1016/j.jss.2020.
110610

Krishna, M. M., Panda, N., & Majhi, S. K. (2021). Solv-
ing traveling salesman problem using hybridization of rider
optimization and spotted hyena optimization algorithm. Expert
Systems with Applications, 183, 115353. https://doi.org/10.
1016/j.eswa.2021.115353

Dhiman, G., Oliva, D., Kaur, A., Singh, K. K., Vimal, S.,
Sharma, A., & Cengiz, K. (2021). BEPO: A novel binary
emperor penguin optimizer for automatic feature selection.
Knowledge-Based Systems, 211, 106560. https://doi.org/10.
1016/j.knosys.2020.106560

Harifi, S., Mohammadzadeh, J., Khalilian, M., &
Ebrahimnejad, S. (2021). Hybrid-EPC: An Emperor Penguins
Colony algorithm with crossover and mutation operators and
its application in community detection. Progress in Artificial
Intelligence, 10(2), 181-193. https://doi.org/10.1007/s13748-
021-00231-9

Subha, R., & Anandakumar, H. (2022). Improved EPOA
clustering protocol for lifetime longevity in wireless sensor

[28

—_

[29

—

[30]

[31

—_

[32

—_—

133

—_

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

network. Sensors International, 3, 100199. https://doi.org/10.
1016/.sintl.2022.100199

Dhiman, G. (2021). SSC: A hybrid nature-inspired meta-
heuristic optimization algorithm for engineering applications.
Knowledge-Based Systems, 222, 106926. https://doi.org/10.
1016/j.knosys.2021.106926

Muhammad, A. H., Siddique, A., Youssef, A. E., Saleem, K.,
Shahzad, B., Akram, A., & Al-Thnian, A. B. S. (2020). A hier-
archical model to evaluate the quality of web-based e-learning
systems. Sustainability, 12(10), 4071. https://doi.org/10.3390/
sul2104071

Tarwani, S., & Chug, A. (2020). Investigating optimum refac-
toring sequence using hill-climbing algorithm. Journal of
Information and Optimization Sciences, 41(2), 499-508. https://
doi.org/10.1080/02522667.2020.1724614

AbuHassan, A., Alshayeb, M., & Ghouti, L. (2021). Soft-
ware smell detection techniques: A systematic literature review.
Journal of Software: Evolution and Process, 33(3), ¢2320.
https://doi.org/10.1002/smr.2320

AlOmar, E. A., Wang, T.,, Raut, V., Mkaouer, M. W,
Newman, C., & Ouni, A. (2022). Refactoring for reuse:
An empirical study. Innovations in Systems and Software
Engineering, 18(1), 105-135. https://doi.org/10.1007/s11334-
021-00422-6

Alizadeh, V., Fehri, H., & Kessentini, M. (2019). Less is
more: From multi-objective to mono-objective refactoring via
developer’s knowledge extraction. In 19th International Work-
ing Conference on Source Code Analysis and Manipulation,
181-192. https://doi.org/10.1109/SCAM.2019.00029

Ghafori, S., & Gharehchopogh, F. S. (2022). Advances in
spotted hyena optimizer: A comprehensive survey. Archives
of Computational Methods in Engineering, 29(3), 1569-1590.
https://doi.org/10.1007/s11831-021-09624-4

Panda, N., Majhi, S. K., & Pradhan, R. (2022). A hybrid
approach of spotted hyena optimization integrated with
quadratic approximation for training wavelet neural net-
work. Arabian Journal for Science and Engineering, 47(8),
10347-10363. https://doi.org/10.1007/s13369-022-06564-4
Jia, H., Li, J., Song, W., Peng, X., Lang, C., & Li, Y. (2019).
Spotted hyena optimization algorithm with simulated annealing
for feature selection. IEEE Access, 7, 71943-71962. https://doi.
org/10.1109/ACCESS.2019.2919991

Khan, M. R., & Das, B. (2021). Multiuser detection for
MIMO-OFDM system in underwater communication using a
hybrid bionic binary spotted hyena optimizer. Journal of Bionic
Engineering, 18(2), 462—472. https://doi.org/10.1007/s42235-
021-0018-y

Das, S. R., Sahoo, A. K., Dhiman, G., Singh, K. K., &
Singh, A. (2021). Photo voltaic integrated multilevel inverter-
based hybrid filter using spotted hyena optimizer. Computers
& Electrical Engineering, 96, 107510. https://doi.org/10.1016/
j-compeleceng.2021.107510

Abid, C., Alizadeh, V., Kessentini, M., Dhaouadi, M., &
Kazman, R. (2021). Prioritizing refactorings for security-
critical code. Automated Software Engineering, 28(2), 4. https://
doi.org/10.1007/s10515-021-00281-2

AbuHassan, A., Alshayeb, M., & Ghouti, L. (2024). Software
refactoring side effects. Journal of Software: Evolution and
Process, 36(1), e2401. https://doi.org/10.1002/smr.2401
Kataoka, Y., Imai, T., Andou, H., & Fukaya, T. (2002).
A quantitative evaluation of maintainability enhancement by

https://doi.org/10.1016/j.jksuci.2022.09.011
https://doi.org/10.1016/j.jksuci.2022.09.011
https://doi.org/10.1016/j.infsof.2022.106875
https://doi.org/10.1016/j.infsof.2022.106875
https://doi.org/10.1016/j.asoc.2022.109658
https://doi.org/10.1016/j.jss.2019.110394
https://doi.org/10.23940/ijpe.20.07.p12.10951104
https://doi.org/10.1080/1206212X.2020.1711616
https://doi.org/10.1080/1206212X.2020.1711616
https://doi.org/10.1111/jzo.12873
https://doi.org/10.1101/cshperspect.a039180
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.eswa.2021.115353
https://doi.org/10.1016/j.eswa.2021.115353
https://doi.org/10.1016/j.knosys.2020.106560
https://doi.org/10.1016/j.knosys.2020.106560
https://doi.org/10.1007/s13748-021-00231-9
https://doi.org/10.1007/s13748-021-00231-9
https://doi.org/10.1016/j.sintl.2022.100199
https://doi.org/10.1016/j.sintl.2022.100199
https://doi.org/10.1016/j.knosys.2021.106926
https://doi.org/10.1016/j.knosys.2021.106926
https://doi.org/10.3390/su12104071
https://doi.org/10.3390/su12104071
https://doi.org/10.1080/02522667.2020.1724614
https://doi.org/10.1080/02522667.2020.1724614
https://doi.org/10.1002/smr.2320
https://doi.org/10.1007/s11334-021-00422-6
https://doi.org/10.1007/s11334-021-00422-6
https://doi.org/10.1109/SCAM.2019.00029
https://doi.org/10.1007/s11831-021-09624-4
https://doi.org/10.1007/s13369-022-06564-4
https://doi.org/10.1109/ACCESS.2019.2919991
https://doi.org/10.1109/ACCESS.2019.2919991
https://doi.org/10.1007/s42235-021-0018-y
https://doi.org/10.1007/s42235-021-0018-y
https://doi.org/10.1016/j.compeleceng.2021.107510
https://doi.org/10.1016/j.compeleceng.2021.107510
https://doi.org/10.1007/s10515-021-00281-2
https://doi.org/10.1007/s10515-021-00281-2
https://doi.org/10.1002/smr.2401

Journal of Computational and Cognitive Engineering Vol. 00

Iss. 00 2024

[42

[44

—_—

—_

—

—_

refactoring. In International Conference on Software Mainte-
nance, 576-585. https://doi.org/10.1109/ICSM.2002.1167822
Alsarraj, R., & Altaie, A. (2021). Refactoring for software main-
tenance: A review of the literature. Journal of Education and
Science, 30(1), 89-102. http://dx.doi.org/10.33899/edus;j.2020.
127426.1085

Wholin, C., Runeson, P., Host, M., Ohlsson, M. C.,
Regnell, B., & Wesslén, A. (2012). Experimentation in software
engineering: An introduction. USA: Springer.

Fernandes, E., Chavez, A., Garcia, A., Ferreira, 1., Cedrim, D.,
Sousa, L., & Oizumi, W. (2020). Refactoring effect on internal
quality attributes: What haven’t they told you yet? Information
and Software Technology, 126, 106347 https://doi.org/10.1016/
j.infs0f.2020.106347

Moghadam, I. H., O Cinnéide, M., Sardarian, A., & Zarepour, F.
(2024). Model-based source code refactoring with interaction
and visual cues. Journal of Software: Evolution and Process,
36(5), €2596. https://doi.org/10.1002/smr.2596

[46] Kuo, J. Y., Hsieh, T. F., Lin, Y. D., & Lin, H. C. (2024). The

study on software architecture smell refactoring. International
Journal of Software Innovation, 12(1), 1-17. https://doi.org/10.
4018/1JS1.339884

[47] Nandini, A., Singh, R., & Rathee, A. (2024). Code smells

and refactoring: A tertiary systematic literature review.
International Journal of System of Systems Engineering, 14(1),
83—143. https://doi.org/10.1504/1JSSE.2024.135914

[48] Aljohani, A., & Do, H. (2024). From fine-tuning to output:

An empirical investigation of test smells in transformer-based
test code generation. In Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing, 1282—1291. https://doi.org/
10.1145/3605098.3636058

How to Cite: Maini, R., Kaur, N., & Kaur, A. (2024). HSHEP: An Optimization-
Based Code Smell Refactoring Sequencing Technique. Journal of Computational
and Cognitive Engineering. https://doi.org/10.47852/bonviewJCCE42023180

17

https://doi.org/10.1109/ICSM.2002.1167822
http://dx.doi.org/10.33899/edusj.2020.127426.1085
http://dx.doi.org/10.33899/edusj.2020.127426.1085
https://doi.org/10.1016/j.infsof.2020.106347
https://doi.org/10.1016/j.infsof.2020.106347
https://doi.org/10.1002/smr.2596
https://doi.org/10.4018/IJSI.339884
https://doi.org/10.4018/IJSI.339884
https://doi.org/10.1504/IJSSE.2024.135914
https://doi.org/10.1145/3605098.3636058
https://doi.org/10.1145/3605098.3636058
https://doi.org/10.47852/bonviewJCCE42023180

	Introduction
	Literature Review
	Contribution
	Hybridization of Algorithm
	Spotted Hyena Optimizer
	The encircling prey process
	Hunting process
	Attacking the prey process
	Searching the prey process

	Emperor Penguin Optimizer (EPO)
	Achieve and gather complete chaos border
	Temperature around gathering
	The separation between emperor penguins
	Relocating the mover

	Proposed hybrid HSHEP algorithm
	Initialization phase
	Main optimization loop
	Termination
	Bring back the best solution

	Research methodology

	Computational Complexity
	Time complexity

	Experimental Results and Discussions
	Fitness function
	Objective of maintainability
	Refactoring techniques
	Potential facts

	Conclusion

