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Abstract: Parkinson’s disease (PD) is a chronic neurodegenerative disorder that is affecting millions of people worldwide. There is a lot
of research reported on using different biomarkers and different deep learning (DL) approaches for the early detection of PD. However,
there is no research reported on which biomarker is better suited when a specific DL model is used and vice versa. This research is aimed
at addressing this issue. We use two widely used DL-based methods, Autoencoder (AE)-based and Convolution Neural Network (CNN)-
based, to find out which one is better suited for PD classification when imaging, voice, and cerebrospinal fluid (CSF) biomarkers are used for
evaluation. Further, we explore which biomarker, among imaging, voice, and CSF, is better suited for PD classification when the AE-based
approach and CNN-based approach are used for evaluation. Two variants of AE-based approaches, Sparse AE (SAE) and Stacked Sparse
AE (SSAE), are implemented in this research. The biomarkers’ values are used from publicly available databases. Various experiments are
conducted by using several performance parameters, and it is observed that (i) SSAE is better than SAE as well as CNN for the considered
MRI, CSF, and voice features, based on the average of all the performance parameters’ values for training as well as for testing datasets,
and (ii) MRI is better than CSF as well as voice features for the considered SAE, SSAE, and CSF frameworks, based on the average of all
the performance parameters’ values, for training as well as for testing databases: for training databases, these values are 91.83% for MRI
features, 84.55% for voice features, and 74.88% for CSF, and for testing databases, these values are 96.53 % for MRI features, 92.08 % for
voice features, and 85.51% for CSF.
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1. Introduction

Parkinson’s disease (PD) is affectingmillions of people all over
the globe. According to Parkinson’s Foundation [1], in the USA,
approximately one million people are affected with PD. This count
is likely to be 1.2million by the year 2030. Another country in which
PD is more prevalent is China. According to Li et al. [2], by the year
2030, China will be having approximately half of the PD popula-
tion in the world. Because of the increasing population and aging,
PD cases are anticipated to reach 4.94 million by 2030 in China.
A similar situation is with India too. In 2016, there were approxi-
mately 0.58 million PD-affected people in India [3], with a major
increase expected in the coming years. The number of PD cases is
growing very rapidly. The risk of PD development is twice as high
in males than females, but faster progression of PD is observed in
females [4]. As the number of PD cases is increasing, it is burdening
the countries’ economies. Besides the economic interruption, this
neurodegenerative disease is also causing social hindrance to the
community. In 2017, in the USA, the collective economic burden
was $51.9 billion including the direct medical cost of $25.4 billion
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and indirect and nonmedical cost of $26.5 billion [5]. Since PD is
impacting a lot of people economically, socially, and personally, it
is very important to optimize the ways to control this disease, and
it can be done by diagnosing PD while it is in the early stages. If
PD is not detected in the early stages, it could lead to the death of
the affected person. It is important to find out the ways to detect PD
in the early stages so that the treatment can be started on time, the
symptoms will be less severe, and the quality or quantity of life of
the patient will be better.

It is difficult to diagnose PD in its initial stages because other
neurodegenerative diseases such as Alzheimer’s disease (AD) have
similar symptoms. Though, in advanced stages, it is easy to differen-
tiate PD from AD, it is difficult to find an effective treatment for PD
in those stages. Levodopa is a common medicine that can suppress
the motor symptoms of PD for a short duration, but a permanent
cure is still unavailable [6, 7].

Neuroimaging methods (NIMs), rating scale methods (RSMs),
and other biological/biochemical biomarkers (BBs) can be utilized
to discriminate between various neurological disorders and the
stages of these disorders. Some NIMs used for diagnosing neurode-
generative diseases are CT, MRI, fMRI, PET, and SPECT [6]. Some
RSMs used to evaluate the progression of the PD symptoms, func-
tional changes, and treatment-related observations are the Unified
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Parkinson’s Disease Rating Scale [8], Hoehn and Yahr (H&Y) [7],
and Schwab and England Activities of Daily Living Scale.

Biomarkers play a very vital role in diagnosing PD at different
stages, hence in curing it to some extent. Biomarkers are categorized
as clinical, genetic, biochemical/biological, and imaging biomark-
ers [9]. Though each type of biomarker is important to assess the
progression of PD, in this study, we are evaluating voice, imaging
(MRI), and biological biomarkers (cerebrospinal fluid (CSF)) indi-
vidually to see the effectiveness of these biomarkers, in classifying
PD subjects from healthy (HY) subjects, in a given collection of
subjects. In this research, the term “PD classification” also includes
determining or diagnosing if a given subject is a PD subject or not.
In addition, the terms “feature” and “biomarker” are used inter-
changeably in this research. The same is true for “approach” and
“framework”.

The contribution of this study is provided next.
Thepresent research is theearliestone that isaimedat findingout

(a) the deep learning (DL)-based framework, among Sparse Autoen-
coder (SAE), StackedSparseAutoencoder (SSAE), andConvolution
Neural Network (CNN), which is better suited for PD classifica-
tion when imaging, voice, and CSF biomarkers are used, and (b) the
biomarker, among imaging, voice, and CSF, which is better suited
for PD classification when DL-based frameworks are used.

The rest of the research is composed as follows: Section 2
discusses the research done so far about PD classification using arti-
ficial intelligence (AI) methods, including machine learning (ML)
and DL, on the datasets consisting of voice recordings, imaging,
and biological biomarkers. Section 3 represents the data collection
methods, the statistical summary of CSF, and the voice recording
datasets used in this research. Further, AI methods used for PD clas-
sification based on these datasets are discussed in the same section.
The experimental details are provided in Section 4, followed by a
conclusion in Section 5.

2. Existing Research

The basal ganglia are the core brain region compromised in PD
[10]. These researchers also mentioned that PD is caused by dys-
function of the whole basal ganglia-cortex-cerebellum system rather
than just by basal ganglia. There are other region of interests (ROIs)
such as the visual cortex, cortex, and temporal gyrus that are affected
by PD [11].

Along with the changes in the brain, there are certain other
BBs that are also affected as PD progresses. Parnetti et al. [12]
discussed the importance of CSF and blood biomarkers in PD diag-
nosis. Pahuja and Prasad [13] discussed various CSF biomarkers,
like A𝛽42, 𝛼-Syn, Total-tau, and P-tau, which are affected by PD.
Despite a lot of research and scientific advancements, there is no sin-
gle biomarker that can be used for the early detection of PD. Thus,
in this study, various biomarkers are being compared to find out the
categories of biomarkers that are more prevalent during PD and can
be used for PD classification.

Most of the work done so far for PD classification is based on
voice recordings, MRI, and BBs, using AI methods. Some of the
important findings based on these biomarkers are provided next. Das
[14] found that “voice” plays a very important role in PD classifi-
cation. Das [14] used four different classification methods, namely,
regression, DMNeural, decision tree, and Artificial Neural Network
(ANN) on the voice dataset. An overall classification score of 92.9%
wasachievedby that authorbyusingANN.Karamanet al. [15]devel-
opedaCNNmodelforPDidentificationbasedonbiomarkers-derived
voicecharacteristics.SqueezeNet1_1,DenseNet161,andResNet101
wereassessed to findoutwhicharchitecture identifies thePDsubjects

more accurately.These authors identifiedDenseNet-161architecture
as the most suitable one with the highest testing accuracy at 89.75%
among the other considered architectures.

Pahuja and Nagabhushan [16] observed an accuracy of 95.89%
on the same voice dataset as used by Das [14], by using ANN with
the Levenberg–Marquardt algorithm. Suppa et al. [17] demonstrated
that voice disorders are obvious in the early stages of PD and as the
disease progresses speech gets worse. These authors classified the
PD patients from HY subjects by considering the disease’s stage,
severity of PD, and effect of levodopa treatment. Cavallieri et al.
[18] noticed that the acoustic speech variables and bradykinesia are
correlated with each other in advanced PD. Thus, it is evident that
voice plays a vital role in PD classification.

Various NIMs such as MRI, SPECT, fMRI, and CT have been
used for PD classification. MRI is noninvasive [19] and does not
use radiation, thus making MRI safe as compared to other imaging
methods. Hence, we are considering MRI in the present study as
well. Some of the findings for PD classification based on the MRI
features are discussed next. Chakraborty et al. [20] employed 3D
CNN architecture on 3T T1-weighted MRI scans of 406 (203 PD
and 203HY) subjects collected from Parkinson’s ProgressionMark-
ers Initiative (PPMI). These authors observed the following results
for both classes: an overall accuracy of 95.29% with an average
precision of 0.927, average recall of 0.943, f1-score of 0.936, aver-
age specificity of 0.9430, and receiver operating characteristic-area
under curve (ROC-AUC) of 0.98. Sivaranjini and Sujatha [21] used
deep learning neural networks (CNNAlexNet) for PD classification
based on MRI and observed an accuracy of 88.9%. Solana-Lavalle
and Rosas-Romero [11] performed MRI-based experiments for PD
classification separately in men and women. T1-weighted MRI
images of 312 male subjects and 168 female subjects are collected
from PPMI. These authors used voxel-based morphometry (VBM)
for feature extraction and observed that different brain regions
are affected in men and women; specifically, the basal ganglia,
fourth ventricle, brainstem, cerebellum, and lateral ventricle are
the affected brain regions in men, while the affected brain regions
in women are the thalamus, basal ganglia, the frontal lobe, and
small part of the cerebellum. The following performance values are
obtained by these authors: in men, an accuracy of 99.01%, 99.35%
of sensitivity, 100% of specificity, and 100% of precision, while
in women, an accuracy of 96.97%, 100% of sensitivity, 96.15% of
specificity, and 97.22% precision. Vyas et al. [22] employed 318
MRI scans in the axial plane for PD classification and observed an
accuracy of 72.22% with an AUC of 0.50 and an accuracy of 88.9%
with an AUC of 0.86 by using 2D and 3D CNN models, respec-
tively. Pahuja and Prasad [13] used DL architectures on MRI scans
for PD classification. These authors observed an accuracy of 61%,
76.5%, and 91.43% by using Softmax Classifier (SC) with one SAE,
stacked SAE, and CNN, respectively. Thus, it is evident that MRI
plays a vital role in PD classification. Not only MRI but other imag-
ing methods such as fMRI, SPECT [6], and so on are being used for
PD diagnosis.

CSF proteins play a very important role in diagnosing early
stages of PD clinically [23]. These authors collected 15 CSF pro-
tein markers for 80 PD and 80 controls. After performing univariate
analysis, these authors observed that there are six potential biomark-
ers for PD diagnosis, and these are 𝛼-syn, S100𝛽, DJ-1, p-Tau,
A𝛽42, and t-Tau. After that, based on the ML approach, these
authors found that the important biomarkers for PD diagnosis are𝛼-syn, S100𝛽, and UCHL1. Katayama et al. [24] presented a review
of CSF biomarkers for PD diagnosis based on the latest literature and
meta-analysis data. Although recently available PD detection meth-
ods depend on imaging and clinical features, CSF is a very important
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biomarker that reflects early variation occurring in the brains of PD
subjects [25]. Kwon et al. [26] discussed that CSF is a promising
candidate biomarker for PD diagnosis as it is near to the brain struc-
tures. Hence, it could indicate the changes in pathologic procedures.
Thus, it is observed that imaging, voice, and CSF biomarkers play
a vital role in PD classification.

3. Materials and Methods

3.1. Details of the biomarkers employed in this study

Voice recordings, MRI images/scans, and CSF are the three
biomarkers used in this study. Details are provided in subsections
3.1.1, 3.1.2, and 3.1.3.

3.1.1. MRI scans
From the literature, it is evident that PD leads to a change in the

brain volumes of gray matter (GM)/white matter (WM)/CSF of the
patients as this disease progresses [27]. ROI and VBM approaches
are the two well-known approaches that are employed to relate
brain volume changes with neurodegenerative disease’s progression
[28]. VBM is being used here in this to evaluate the GM variations
between PD and HY groups. Before using the VBM approach, it is
required to preprocess the MRI scans, and this is done by Statistical
Parametric Mapping Version 8 (SPM8). Preprocessing is required
to ensure the proper alignment of MRI images. The following steps
are involved in the preprocessing of MRI images: conversion of
DICOM (Digital Imaging and Communications in Medicine) to
3D NIFTI (Neuroimaging Informatics Technology Initiative) for-
mat conversion, spatial normalization, unified segmentation, and
smoothing [29]. After this preprocessing, either of the smoothed
GM/WM/CSF TPMs (tissue probability maps) can be used for

extracting the MRI features. In this study, we used GM volumes for
extracting the features.

In this research, to perform PD classification, T1-weighted
MRI scans are collected, for 200 subjects, from PPMI. Because of
the failure of the segmentation process on approximately 40 MRI
scans,MRI features from the remaining 160 (200minus 40) subjects
are used for PD classification in this study. Details of these MRI
scans are provided in Table 1. By using SPM8/VBM, a total of 2038
features are extracted from MRI scans of these 160 subjects. There
could be a possibility that, by using the same set of MRI scans, dif-
ferent researchers got different numbers of features fromMRI scans
[27] as there are many settings that can be varied in SPM8/VBM,
thus affecting the accuracy of the classification results.

3.1.2. CSF biomarkers’ values
In this research, to perform PD classification, four CSF

biomarkers’ (i.e., 𝛼-synuclein, A𝛽42, total-tau, and P-tau181P) val-
ues for 474 subjects are collected from PPMI. Out of these 474
subjects, 350 are early PD because they are in Stages 1 and 2 of the
H&Y rating scale, and the remaining 124 are HY. The statistical sig-
nificance of each of these CSF biomarkers is done at a significance
level (p-value) of 0.10. It is observed that, for each of these four
CSF biomarkers, the p-value is below 0.10, and this shows that the
CSF biomarkers’ values that are considered are significant. Hence,
these biomarkers’ values should be considered for PD classification.
Table 2 and Figure 1 show the details and the boxplots, respectively,
of the CSF biomarkers’ values used in this study.

From Figure 1, it is evident that the notches for CSF biomark-
ers’ values for early PD and HY subjects are separated from each
other. Therefore, the above-mentioned CSF markers have an impor-
tant part in distinguishing the HY and early PD subjects.

Table 1
Details of MRI scans of 80 early PD and 80 HY subjects collected from PPMI

Variable Early PD subjects (80) HY subjects (80)
Gender (F/M) 24/58 22/60
Age (range in years) 31–82 34–77
Slice thickness 1–1.5 mm 1–1.5 mm
Voxel dimensions 1_1_1.20 mm 1_1_1.20 mm

Table 2
Details of the CSF biomarkers’ values for the PD (350) and HY (124) subjects

Total-tau P-tau181P 𝛼-synuclein A𝛽42
Min (minimum value) PD 14.4 5.00 363.12 129.2

HY 18.23 5.10 641.90 94.00
Q1 (first quartile) PD 32.03 10.01 1309.49 311.43

HY 37.24 12.40 1526.32 324.25
Median (median) PD 40.12 13.54 1736.09 362.40

HY 46.15 14.72 2002.73 385.15
Q3 (third quartile) PD 50.39 19.06 2172.53 419.78

HY 57.14 21.41 2661.74 445.08
Max (maximum value) PD 128.2 94.10 4822.22 796.50

HY 194.97 73.30 5621.51 879.50
Mean (average value) PD 43.94 15.77 1850.77 368.43

HY 51.92 18.11 2228.94 382.91
SD (standard deviation) PD 17.96 8.91 741.47 96.31

HY 24.73 10.70 989.77 109.87
Pdf_Fol io:3 03
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Figure 1
Boxplots of CSF biomarkers’ values
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3.1.3. Voice dataset
In this research, to perform PD classification, a voice recording

dataset consisting of 195 voice measurements from 31 (23 PD and 8
HY) subjects is obtained from the UCI machine learning repository
[30]. Table 3 contains the details of the voice dataset used in this
study.

3.2. Details of the DL-based approaches used in this
study

Autoencoder (AE)-based (i.e., SAE and SSAE) and CNN-
based are the two DL-based approaches used in this study, and they
are explained in subsections 3.2.1 and 3.2.2.

3.2.1. AE-based approach
Analogous to “multilayer perceptron”, AE also consists of an

input layer (InL), hidden layer (HiL), and output layer (OuL). The
count of nodes in OuL and InL is the same. The AE-based approach
compresses the data; thus, it is a dimensionality reduction approach
[31]. Also, AEs are very data specific; that is, they can only com-
press the input data that is similar to what these AEs have been
trained for. The number of HiL nodes is a hyper-parameter that is
set before the training of AE starts, and in our case, we assumed that
number to be 10. The other hyper-parameters, which are important
to initialize before the training of AE starts, are explained later in
this section. SAEs are variations of the AEs, and the only difference
is that in SAEs, a sparsity penalty is involved in the training phase
(Figure 2).

Table 3
Details of the voice dataset

Min Q1 Median Q3 Max Mean SD
Class PD(23) HY(8) PD(23) HY(8) PD(23) HY(8) PD(23) HY(8) PD(23) HY(8) PD(23) HY(8) PD(23) HY(8)

MDVP:Fo(Hz) 88.33 110.74 117.96 117.06 148.14 198.17 173.92 234.50 223.36 260.11 147.34 179.32 33.47 55.95
MDVP:Fhi(Hz) 102.15 113.60 134.66 135.81 163.74 238.24 209.51 252.82 588.52 592.03 189.32 225.46 86.69 103.43
MDVP:Flo(Hz) 65.48 74.29 81.74 96.93 100.76 109.17 133.75 216.21 199.02 239.17 110.32 138.18 35.93 59.61
MDVP:Jitter(%) 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.03 0.01 0.01 0.00 0.01 0.00
MDVP:Jitter(Abs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MDVP:RAP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00
MDVP:PPQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00
Jitter:DDP 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.06 0.02 0.01 0.01 0.01 0.00
MDVP:Shimmer 0.01 0.01 0.02 0.02 0.03 0.02 0.04 0.02 0.12 0.04 0.03 0.02 0.02 0.01
MDVP:Shimmer(dB) 0.09 0.10 0.16 0.14 0.26 0.15 0.38 0.20 1.30 0.41 0.31 0.17 0.21 0.06
Shimmer:APQ3 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.02 0.02 0.01 0.01 0.00
Shimmer:APQ5 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.08 0.02 0.02 0.01 0.01 0.00
MDVP:APQ 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.02 0.14 0.03 0.03 0.01 0.02 0.00
Shimmer:DDA 0.01 0.02 0.03 0.02 0.04 0.03 0.07 0.04 0.17 0.07 0.05 0.03 0.03 0.01
NHR 0.00 0.00 0.01 0.00 0.01 0.01 0.03 0.01 0.31 0.11 0.03 0.01 0.04 0.02
HNR 8.44 17.88 18.80 22.25 21.53 24.69 24.89 25.53 33.05 26.81 21.37 23.78 4.70 2.50
RPDE 0.26 0.26 0.43 0.38 0.51 0.44 0.60 0.52 0.69 0.66 0.51 0.45 0.10 0.10
D2 0.57 0.63 0.69 0.65 0.73 0.67 0.76 0.75 0.83 0.79 0.73 0.69 0.05 0.05
DFA –7.96 –7.52 –6.14 –7.07 –5.48 –6.77 –4.71 –6.23 –2.43 –5.20 –5.42 –6.77 1.05 0.59
spread1 0.06 0.01 0.19 0.11 0.24 0.16 0.30 0.20 0.45 0.29 0.25 0.16 0.08 0.07
spread2 1.42 1.84 2.14 2.01 2.43 2.16 2.66 2.36 3.67 2.88 2.43 2.16 0.40 0.26
PPE 0.04 0.07 0.16 0.10 0.22 0.12 0.27 0.16 0.53 0.25 0.23 0.12 0.09 0.04
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Figure 2
SAE architecture
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AE (i.e., SAE and SSAE) architecture with Softmax Classifier
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In SAEs, not all, but only a fraction of HiL nodes is activated,
and the other HiL nodes are penalized. This strategy is implemented
by “regularization,” and by using this strategy, it is certain that SAEs
are learning only the latent representations, not the redundant infor-
mation, from the input data. This approach works fine if the HiL size
is even larger as only a few nodes are active at any time and AEs
will be learning the useful features only. L2 regularization is used
in this study as it adds the squared magnitude of the coefficients as
the penalty. Also, L2 regularization moves the weights “w” toward
0, but because of small step sizes, “w” never reaches 0. The mean
squared error and the cross-entropy are the types of loss functions
that are used with AEs.

Since we are dealing with the PD classification problem here,
cross-entropy is being used. When the output of one SAE (i.e.,
SAE1) relates to the input of the next SAE (i.e., SAE2), it is called
SSAE [31]. Since the dataset (voice, imaging, andCSF)we are using
here for PD classification is a labeled dataset, SC is used to classify
the PD and HY subjects as shown in Figure 3.

More details about PD classification by using SC with SAE
and SSAE can be found in Pahuja and Prasad [13]. All the
experiments are performed by using the online Matlab free ver-
sion (https://matlab.mathworks.com/). For AE-based approach, the
hyper-parameters’ values used for sparsity regularization, L2weight
regularization, and sparsity proportion are 4, 0.01, and 0.05, respec-
tively. Purelin and cross-entropy are used as the decoder transfer
function and loss function, respectively.

Figure 4
CNN-based approach
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HY
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3.2.2. CNN-based approach
CNN is a kind of deep neural network that learns from the data

directly, and the need for manual feature extraction is eliminated.
Like ANN, CNN consists of an InL, an OuL, and many HiLs in
between the InL and OuL (Figure 4).

Convolution layer, pooling layer, and rectified linear unit
(ReLU) are the three common layers that can be heaped in
accordance with the functionality [32]. After feature extraction
is performed, the next phase is classification. As observed from
Figure 4, in this research, SC is a layer that is used as OuL. SC gives
the classification output to the user. Additional details about CNN
architecture, hyper-parameters, and layers can be found in O’Shea
and Nash [32]. For the CNN-based approach, adaptive moment esti-
mation optimizer (Adam), ReLU, and cross-entropy are used as an
optimizer, activation function, and loss function, respectively.

3.3. Biomarker datasets and DL-based approaches
in action

In this study, DL-based (i.e., AE-based and CNN-based)
frameworks are implemented to perform PD classification based on
collected voice, imaging, and CSF biomarkers’ values.

Figure 5 represents the schematic diagram of the approach used
in this research. The datasets used in this work are not balanced;
that is, the number of HY subjects is unequal to the number of
PD subjects. Hence, the performance parameters sensitivity (Sen),
specificity (Spe), precision (Pre), F1-score (F1), and geometric
mean (Gme) are used along with accuracy to determine the perfor-
mance of DL-based frameworks [33].

In both the DL-based approaches, the three features (voice, fea-
tures extracted from MRI scans, and CSF) are used to find out the
most promising feature for PD classification, as shown in Figure 5.
In addition, for each of these three features, the twoDL-based frame-
works are used to find out the most promising DL-based framework
(among these two DL-based frameworks) for PD classification, as
shown in Figure 5. Since the subjects are different for each of the
three features considered, and due to the nonavailability of the same
set of subjects with these three features, experiments are conducted
as follows for different combinations of these features and these two
DL-based frameworks:

1) Voice + SAE, Voice + SSAE, and Voice + CNN
2) MRI + SAE, MRI + SSAE, and MRI + CNN
3) CSF + SAE, CSF + SSAE, and CSF + CNN.

The results of these experiments are provided in the following
section.
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Figure 5
A schematic diagram of the approach used in this study
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Note: TP is true positive, FN is false negative, TN is true negative, and FP is false positive

4. Experimental Results and Discussion

The six performance parameters used in all the experiments in
this research are Sen, Spe, Acc, F1, Pre, and Gme. As explained
earlier, SC is used with SAE, SSAE, and CNN in all these exper-
iments. Therefore, in the rest of this work, SAE, SSAE, and CNN
mean SAE + SC, SSAE + SC, and CNN + SC, respectively.

The mean values of each of the six performance parameters,
received from five experiments conducted on the voice features (five
experiments on the training voice dataset to determine the training
efficiency in terms of voice and another separate five experiments
on the testing dataset to determine the testing efficiency in terms of
voice), are presented graphically in Figure 6. Similar calculations
are done for MRI and CSF features and are represented in Figures 7
and 8, respectively.

4.1. Comparison between the performance of DL-
based frameworks, by considering voice features

From Figure 6(a), it is evident that SSAE (90.01% Sen, 85.75%
Spe, 89.03% accuracy, 93.33% F1, 87.73% Gme, and 97.05% Pre)
is giving better results, on the training voice dataset, as compared
to SAE (89.29% Sen, 84.14% Spe, 88.13% accuracy, 92.78% F1,
86.49% Gme, 96.72% Pre) in terms of the value of each of these
performance parameters. In addition, from Figure 6(a), it is evident
that, on the training voice dataset, SSAE is better than CNN (96.89%
Sen, 35.57% Spe, 81.67% accuracy, 88.91% F1, 56.11% Gme, and
82.32% Pre) in terms of the value of each of these performance
parameters except for Sen.

Furthermore, for the testing voice features, as shown in Figure
6(b), SSAE (100% Sen, 100% Spe, 100% accuracy, 100% F1, 100%
Gme, and 100% Pre) is outperforming SAE (97.88% Sen, 83.03%
Spe, 93.50% accuracy, 95.60% F1, 89.76% Gme, and 93.55% Pre)
as well as CNN (88.33% Sen, 80.00% Spe, 83.33% accuracy,
87.14% F1, 77.32% Gme, and 88.00% Pre) in terms of the value of
each of these performance parameters.

Figure 6
Performance parameter values obtained on training and
testing the voice features by using SAE, SSAE, and CNN
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4.2. Comparison between the performance of
DL-based frameworks, by considering CSF features

For the training CSF dataset (Figure 7(a)), the performance
parameters’ values obtained by SSAE are 80.65% Sen, 79.02%
Spe, 80.58% accuracy, 88.07% F1, 79.81% Gme, and 97.07%
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Figure 7
Performance parameter values obtained on training and

testing CSF dataset by using SAE, SSAE, and CNN
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Pre. These values are greater than the values achieved by SAE
(77.76% Sen, 67.40% Spe, 76.84%, accuracy, 85.95% F1, 72.37%
Gme, and 96.07% Pre). Furthermore, for the training CSF dataset,
SSAE is also outperforming CNN (97.19% Sen, 6.65% Spe,
73.68% accuracy, 84.43% F1, 22.21% Gme, and 74.83% Pre) in
terms of the value of each of these performance parameters except
for Sen.

Furthermore, for the testing CSF dataset (Figure 7(b)), SSAE
(99.44% Sen, 99.09% Spe, 99.36% accuracy, 99.58% F1, 99.27%
Gme, and 99.72% Pre) is outperforming SAE (99.16% Sen, 94.95%
Spe, 98.09% accuracy, 98.73% F1, 97.03% Gme, and 98.31% Pre)
as well as CNN (92.73% Sen, 14.00% Spe, 69.33% accuracy,
80.81% F1, 27.47% Gme, and 72.16% Pre) in terms of the value of
each of these performance parameters.

4.3. Comparison between the performance of
DL-based frameworks, by considering MRI features

For the training MRI features, as shown in Figure 8(a), all the
performance parameters’ values obtained by using SSAE (100%
Sen, 100% Spe, 100% accuracy, 100% F1, 100% Gme, and 100%
pre) are better than or equal to the corresponding performance
parameters’ values obtained by using SAE (67.23% Sen, 89.90%
Spe, 73.75% accuracy, 78.20% F1, 77.69% Gme, and 93.75% Pre)
as well as CNN (89.11% Sen, 100.00% Spe, 95.00% accuracy,
94.04% F1, 94.30% Gme, and 100% Pre).

Furthermore, for the testing MRI features, as shown in Figure
8(b), SSAE (100% Sen, 100% Spe, 100% accuracy, 100% F1, 100%
Gme, and 100% Pre) is outperforming SAE (97.50% Sen, 97.50%
Spe, 97.50% accuracy, 97.50% F1, 97.50% Gme, and 97.50% Pre)
as well as CNN (90.00% Sen, 93.33% Spe, 93.33% accuracy,
90.48% F1, 90.47% Gme, and 95.00% Pre) in terms of the value of
each of the performance parameters.

Figure 8
Performance parameter values obtained on training and

testing MRI dataset by using SAE, SSAE, and CNN
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4.4. Comparison between the performance of
DL-based frameworks, by considering all the
performance parameters

To determine which DL-based approach provides better train-
ing performance for PD classification, when voice, imaging, and
CSF are used, we have performed the following experiment on the
considered MRI, CSF, and voice features:

1) Calculated the average value of all the six performance parame-
ters obtained, for training, for the voice dataset (i.e., we added the
values of all these six performance parameters, shown in Figure
6(a), then divided that sum by 6).

2) Added the values of all those six performance parameters shown
in Figure 7(a) then divided by 6.

3) Added the values of all those six performance parameters shown
in Figure 8(a) then divided by 6.

Similarly, to determine which DL-based approach provides
better testing performance for PD classification, when voice, imag-
ing, and CSF are used, we have repeated the above experiment by
using Figures 6(b), 7(b), and 8(b), in place of Figures 6(a), 7(a), and
8(a), respectively.

The results obtained from the above two experiments are
depicted in Figure 9(a) and (b), respectively.

From Figure 9(a), it can be observed that, for the training
dataset, SSAE (100% for MRI, 90.48% for voice, and 84.20% for
CSF) is better than SAE (80.09% for MRI, 89.59% for voice, and
79.40% for CSF) as well as CNN (95.41% for MRI, 73.58% for
voice, and 59.83% for CSF) for the MRI, CSF, and voice datasets
that are used.

From Figure 9(b), it can be noticed that, for the testing dataset,
SSAE (100% for MRI, 100% for voice, and 99.41% for CSF) is
better than SAE (97.50% for MRI, 92.22% for voice, and 97.71%
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Figure 9
Comparison between the performance of DL-based frameworks when all the six

performance parameters are considered together
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Figure 10
Comparison between the performance of biomarkers when all

the six performance parameters are considered together
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for CSF) and CNN (92.10% forMRI, 84.02% for voice, and 59.42%
for CSF) for the MRI, CSF, and voice datasets that are used.

4.5. Comparison between the performance of
biomarkers, by considering all the performance
parameters

To determine which biomarker provides better training perfor-
mance for PD classification when DL-based frameworks are used,
we calculated the average value of all the six performance parame-
ters obtained by SAE, SSAE, andCNN, for training the voice dataset
(i.e., we added the values of all the six performance parameters
received by DL-based frameworks, i.e., Figures 6(a), 7(a), and 8(a),
then divided that sum by 18).

To determine which biomarker (among voice, imaging, and
CSF) provides better testing performance for PD classification,
when DL-based frameworks are used, we have repeated the experi-
ment explained in the above paragraph by using Figures 6(b), 7(b),
and 8(b), in place of Figures 6(a), 7(a), and 8(a), respectively.

The results obtained from the above two experiments are
depicted in Figure 10(a) and (b), respectively.

FromFigure 10(a), it can be noticed that, for the training dataset,
theperformanceparameters’value(91.83%)forMRIfeaturesisbetter
than that for the voice features (84.55%) as well as CSF (74.48%).

From Figure 10(b), it can be noticed that, for the testing dataset,
the performance parameters’ value (96.53%) obtained for MRI fea-
tures is better than that for the voice features (92.08%) as well as
CSF (85.51%).
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5. Conclusion

This research is conducted by using AE-based and CNN-based
frameworks and by using MRI, CSF, and voice biomarkers. Based
on the experiments, the following observations are made:

For the testing voice dataset, SSAE is better than SAE as well
as CNN, in terms of the value of each of the performance parameters.
For the training voice dataset, SSAE is better than SAE in terms of
the value of each of the performance parameters. In addition, for
the training voice dataset, SSAE is better than CNN in terms of the
value of each of the performance parameters except for Sen.

For the testing CSF dataset, SSAE is better than SAE as well as
CNN, in terms of the value of each of the performance parameters.
For the training CSF dataset, SSAE is better than SAE in terms of
the value of each of the performance parameters. However, for the
training CSF dataset, SSAE is better than CNN in terms of the value
of each of the performance parameters except for Sen.

For the testingMRI dataset, SSAE is better than SAEClassifier
as well as CNN, in terms of the value of each of the performance
parameters. The same is true for the training MRI dataset.

Based on the average of all the performance parameters’ val-
ues, for training as well as for testing, SSAE is better than SAE as
well as CNN for the considered MRI, CSF, and voice features.

Based on the average of all the performance parameters’ val-
ues, for training as well as for testing, efficiencies of each of the
SAE, SSAE, and CSF are calculated, it is observed thatMRI is better
than CSF as well as voice features for the considered SAE, SSAE,
and CSF frameworks.

Recommendations

We believe that improved results may be achieved with these
DL-based frameworks if more features are considered (i.e., larger
dataset is used). Though the results achieved in this study can be
noticed as a significant step for PD classification, these DL-based
frameworks may be evaluated by changing the SAE, SSAE, and
CNN hyper-parameter values and by considering other DL-based
frameworks. Further, we have compared only three types of features
here. Therefore, future studies must also consider other features
from motor, non-motor, and imaging categories.
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