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Abstract:With increased digitization comes an increase in the speed at which threats to the data are emerging. Although it can be challenging
to identify, fake image creation doesn’t require any particular memory, computational equipment, or hardware. Consequently, this study uses
deep learning to achieve accurate detection. In order to improve detection performance, the study strengthened the line separating the
background from the object. It also used the adaptive 2D Wiener filter for preprocessing in order to attenuate noise that was
unintentionally reinforced throughout the process of improving the image. This essay suggests an Efficient Skip Connections-based
Residual Network (ESkip-ResNet) by utilizing skip connections with the Residual Network (ResNet). The ESkip-ResNet architecture
also has a number of stages and progressively more leftover blocks to enhance the classification process. ESkip-ResNet uses the
remaining blocks of identity mapping through skip connections in the ResNet architecture. Additionally, ESkip-ResNet has effective
techniques for downsampling and stable batch normalization layers, which both improve its stable and dependable performance. The
Coot Bird Optimization (CBO) method is used to fine-tune the hyper-parameters of the proposed classifier. The suggested model,
ESkip-ResNet, was proposed to be more sensible and to offer better performance. The ESkip-ResNet architecture also has a number of
stages and progressively more leftover blocks to enhance the classification process. The proposed model achieved 98.9% and 98.8%
accuracy and precision, respectively. Comprehensive test results demonstrate that CBO-based ESkip-ResNet outperforms other
approaches in fake detection. The proposed research also took into account every kind of facial alteration, improving the model’s
robustness, lightweight nature, and generalizability. It was able to identify every type of facial alteration found in images taken from the
Deepfake Detection Challenge dataset.
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1. Introduction

Deepfake detection has become an important area of research and
technological advancement [1]. The objective is to create and put into
use reliable algorithms and systems that can tell the difference between
real faces and ones that were created artificially [2]. Combating
various deceptive practices, like deepfake videos and manipulated
images, is crucial because they can be used for malicious purposes
like identity theft, disseminating false information, and eroding
confidence in visual media [3].

In the fields of artificial intelligence (AI) and computer vision,
scientists and researchers are actively investigating novel methods
for identifying phony faces [4]. These approaches frequently make

use of deep neural networks, facial recognition software, and
sophisticated image analysis techniques. The creation of
trustworthy fake face detection tools is essential for preserving the
integrity of visual content as well as protecting people and
organizations from the possible risks associated with manipulating
and misleading images [5, 6].

By allowing machines to learn and make decisions in ways that
are inspired by the human brain, one powerful branch of AI has
revolutionized a number of industries [7]. These deep neural
networks are capable of autonomous data classification, pattern
recognition, and prediction. Their numerous hidden layers set
them apart [8]. Numerous industries, including health care,
finance, autonomous vehicles, and recommendation systems, are
using deep learning (DL). The capabilities of machines to
understand and process complex data are continuously being
pushed by these applications [9].
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DL has revolutionized the fake face detection field by
providing an accurate and useful way to distinguish between real
and manipulated facial imagery [10]. DL models have become
indispensable tools in the ongoing battle against altered visual
content, particularly in the area of facial recognition [11].
These models employ complex neural networks and sophisticated
algorithms. The ability of these models to distinguish between
facial representations created or modified through various
manipulation techniques and those derived from real-world data
stems from their exceptional skill at recognizing intricate patterns,
subtleties, and characteristics in face data [12]. Through the
analysis of large datasets and a multitude of facial variations,
DL algorithms have refined their capacity to identify minute cues,
disparities, and anomalies suggestive of artificial or manipulated
facial images [13].

1.1. Motivation

In the current digital environment, data is becoming more and
more vulnerable, which emphasizes the urgent need for robust
defenses against emerging threats. Data protection is becoming
increasingly challenging due to the concerning increase in the
production of false images. This study, however, does more than
just list the issues; it provides an innovative solution based on
cutting-edge technology. This work presents a novel DL approach
called Coot Bird Optimization (CBO)-based ESkip-ResNet. This
architectural wonder combines state-of-the-art techniques like
CBO for hyper-parameter tuning to improve its accuracy (ACC)
and dependability while fortifying the lines between reality and
manipulation. This model stands out due to its all-encompassing
approach; not only does it perform remarkably well in performance
metrics such as ACC and sensitivity, but it also takes into account
the variety of facial modifications, ensuring adaptability and
low-weight functionality. The remarkable outcomes of 99.6%,
99.2%, and 99.4% confirm its unparalleled efficacy in identifying
fraudulent content. It paves the way for a safer and more secure
digital future by handling face modification comprehensively and
enhancing resilience. Its success is a triumph for both detection
technology and data integrity preservation.

1.2. Main contributions

This work’s primary contributions are:

• Introduction of DL for fake image detection: DL techniques are
used to correctly detect bogus photos.

• Improvement in image preprocessing: Utilizing the adaptive 2D
Wiener (A2D-Wiener) to minimize noise while improving images.

• Architecture enhancement – ESkip-ResNet: Utilizing skip
connections and multiple stages while utilizing ResNet, ESkip-
ResNet is being developed.

• Identity mapping integration: Improved performance of the model
and identity mapping are achieved through the addition of skip
connections.

• Improvements in robustness: Include effective downsampling
techniques and stabilizing batch normalization (BN) layers for
increased model robustness.

• CBO hyper-parameter tuning: The model’s performance will be
enhanced by modifying the hyper-parameters of the suggested
classifier using CBO.

• Performance results: Excellent performance in fake detection is
indicated by ACC (99.6%), sensitivity (99.2%), and specificity
(99.4%), together with 98.6% F1-score values.

• Entire facial modification coverage: Addressing various face
alterations and enhancing the model’s robustness, lightweight,
and generalizability.

• Effective use of theDFDC dataset: Pictures from theDFDC dataset
are used to show how well the model recognizes different types of
facial alterations.

The remaining sections of this essay are organized as follows:
Related works are presented in Section 2. Section 3 contains the
experimental data as well as the methodological details. Section 4
presents a discussion and analysis of the experimental results.
Section 5 finally brings the paper to a close.

2. Related Works

Using 190,335 RGB-resolution deepfake or real photos as a
dataset, Iqbal et al. [14] classified deepfake images using data
augmentation and transfer learning techniques. Convolutional
neural networks (CNNs), Inception V3, VGG16, VGG19, and a
transfer learning approach were used in the experiments. Important
evaluation metrics were used to determine the effectiveness of the
strategy, including the area under the curve-receiver operating
characteristics (AUC-ROC) curve score, F1-score, recall (RC),
ACC, precision (PR), and confusion matrix. The optimized VGG16
algorithm achieved 92.9% ACC, 90.6% PR, 90.2% F1-score, and
89.9% AUC-ROC score, outperforming other DL techniques in the
differentiation of real and deepfake images.

GLFNet is a global–local facial fusion network that uses both
global and local physiological receptive features. It was first used
by Xue et al. [15]. GLFNet was divided into two branches: the
local region detection branch, which used a residual connection to
distinguish between real and fake images, and the global detection
branch, which focused on features like the iris and pupils to detect
facial fraud. GLFNet enhanced reliability over single-class
detection techniques by effectively identifying forged traces using
stable DL features with physiological properties by combining
physiological features with DL.

A computer vision model based on CNNs was presented by
Hamid et al. [16] for the identification of fake images. Six
common machine learning (ML) models and six different CNN
architectures were compared in order to determine which model
was best for additional testing. With an overall ACC of 0.99, their
suggested model, which was based on ResNet50 and efficient
preprocessing techniques, performed as the best fake image detector.

DL and ML approaches should be used for the automated
classification of deepfake images, according to Rafique et al. [17].
They brought attention to the shortcomings of traditional ML
systems, which limit their applicability in changing real-world
scenarios by making it difficult to extract complex patterns from
poorly understood or complex data. Their proposed framework
first applied error-level analysis to images and then used CNNs to
extract deep features. They used K-Nearest Neighbors and
Residual Network to attain the best ACC of 89.5% through hyper-
parameter optimization and support vector machines.

Several DL architectures were examined by Coccomini et al.
[18] in order to determine how well-suited they were for a broad
interpretation of deepfakes. According to their research, CNNs
outperformed other models when given datasets with fewer
elements and manipulation techniques because of their capacity to
identify particular anomalies. On the other hand, when trained on
a variety of datasets, the Vision Transformer outperformed other
methods in generalization. In cross-dataset scenarios, the Swin
Transformer performed well, potentially replacing attention-based
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techniques when data was limited. Experiments suggested that
attention-based architectures performed better because of their
important ability to generalize in real-world scenarios.

A multi-feature channel domain-weighted framework (MCW)
for deepfake detection across databases was developed by Guan
et al. [19] using meta-learning. By combining RGB and frequency
domain data, this framework enhanced the model’s feature
extraction capabilities and improved its generalization by
allocating meta weights to feature map channels. Insufficient data
compression resistance and poor detection performance for
samples generated by unknown algorithms were addressed by the
MCW framework. The MCW framework performed better in
cross-algorithm and cross-dataset detection than alternative
algorithms in both zero-shot and few-shot scenarios. It showed
resilience to compression, robustness in generalization, and
improved fine-tuning potential in scenarios with subpar training
images and different generation algorithms.

2.1. Research gap

Data threats are emerging at a faster rate due to the current state
of digital advancements. The generation of counterfeit images, which
lack any particular memory, computing apparatus, or hardware, is
very difficult to detect. This study uses DL to achieve accurate
detection in order to overcome this difficulty. The research
enhances detection performance while reducing accidentally
reinforced noise through preprocessing with the A2D-Wiener filter
(A2WF). By combining skip connections with the Residual
Network (ResNet) architecture, it presents the ESkip-ResNet. The
consistent and dependable performance of ESkip-ResNet is
enhanced by the integration of stable BN layers and effective
downsampling techniques. The sensitivity and effectiveness of the
suggested classifier are improved by tuning the hyper-parameters
with the usage of the CBO method. In particular, the ESkip-
ResNet model outperforms other methods in counterfeit detection
with astounding ACC (98.9%) and PR (98.8%). This study
supports the model’s robustness, adaptability, and lightweight
design while also demonstrating its ability to recognize different
types of facial alterations found in the DFDC dataset. This offers
a promising path toward improving the ACC and legitimacy of
counterfeit image identification in dynamic digital environments.

3. Proposed Methodology

The diagram in Figure 1 illustrates the stages involved in putting
the suggested technique into practice. This section covers image
preprocessing, the classification procedure using ESkip-ResNet,
and hyper-parameter tuning with CBO.

3.1. Dataset description

When creating a DL model, the dataset is essential. Results are
frequently predicated on the chosen dataset. The DFDC (Deepfake
Detection Challenge) dataset was the choice [20]. It is roughly
470 GB in size. This dataset was obtained from the Google-
provided Kaggle Competition.

Although the dataset is generalized, some events such as eye
blinking, face swapping, lip movement, etc., do not have images
available. Consequently, the model is unable to forecast the
intended outcome. To enhance the trained model’s functionality,
we must develop new techniques with more sophisticated
parameters to improve the results before running any simulation
with this dataset. This dataset was split up into testing, validation,

and training sets. Real and fake videos can both be found in this
dataset. Videos are transformed into frames, and faces in those
frames were chosen to feed data into the model depicted in
Figure 2. 68,258 fictitious images and 65,234 real images were
used to train the model after breaking down all of the videos into
frames and identifying faces in each frame. 5698 phony images
and 5876 real images were used for validation. 9542 bogus
images and 9785 real images were used for testing.

Table 1 displays the DFDC dataset’s statistics, particularly the
quantity of faces-containing frames, which were used for the
model’s training, validation, and testing. The study did not train or
test the model using other faceless frames that are extracted from the
videos. After eliminating the faceless frames, for model validation,
the study found 65,234 real and 68,258 fictitious images; for model
training, this work found 5876 real and 5698 fictitious images; and
for model testing, the study found 9785 real as well as 9542

Figure 1
Workflow of the proposed model

Figure 2
Sample images from the DFDC dataset

Table 1
Dataset statistics

Dataset size
DFDC 470

GB

Training Frames having faces (real) 65,234
Training Frames having faces (fake) 68,258

Validation Frames having faces (real) 5876
Validation Frames having faces
(fake)

5698

Testing Frames having faces (real) 9785
Testing Frames having faces (fake) 9542
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fictitious images. For the model to function to learn as many features as
possible, a lot of data are retained for training, and the proposed study
also kept some unseen data for evaluating the model’s effectiveness.

3.2. Preprocessing

Noise in images taken outside can come from a variety of
sources. In particular, photos captured in dimly lit areas are less
sharp and more prone to noise. When image enhancement
techniques are applied to noisy images, they may inadvertently
amplify the noise, which could hinder further data processing, like
object detection. An A2WF [21] was used to lessen these noise
effects. A2WF adapts to each pixel of the image and is especially
good at eliminating additive white Gaussian noise.

ID x; yð Þ ¼ µþ σ2�v2
σ2 IE x; yð Þ � µð Þ (1)

µ ¼ 1
PQ

P
x;y2M IE x; yð Þ (2)

σ2 ¼ 1
PQ

P
x;y2M IEðx; yÞ2 � µ2 (3)

Here, ID is the picture shown in Equation (1) which is got by reducing
the picture enhancement’s noise; µ and σ2 are the local variance and
mean in relation to the size P;Q in Equation (2) is the pixel in the
input picture (x, y) as defined in Equation (3); and v2 is the variation
in the image’s noise level. If the noise variance is unknown, then one
must use the mean of all local variances. Put differently, there is a
significant smoothing of the pixels in the local region if the local vari-
ance of the A2WF is large; otherwise, there is very little smoothing.
Its selectivity is therefore higher than that of a linear filter, and it
operates adaptively to local variance. Consequently, the boundaries
and additional high-frequency areas exhibiting rapid alterations are
adequately maintained. After preprocessing, the classification should
be carried out for model enhancement and ACC.

3.3. Classification using ESkip-ResNet

This paper, which takes inspiration from Kaur et al. [22],
suggests a complete ESkip-ResNet. By addressing the problem
of vanishing gradients, the ESkip-ResNet (see Algorithm 1) makes
training deep neural networks easier by using residual blocks with
skip connections. To improve feature learning and capture intricate
patterns, five stages make up the structure of ESkip-ResNet, and
each one gradually adds more residual blocks. Moreover, BN layers
and effective downsampling strategies are incorporated into the
ESkip-ResNet architecture to maximize computational efficiency
and stabilize and accelerate the process of training.

Algorithm 1: Efficient Skip Connections-based Residual
Network (ESkip-ResNet)

Data: Input Image Tensor x
Result: Classification Result
Initialization: Initialize parameters and hyper-parameters;

inputLayer  Image Input Layer 224� 224� 3½ �ð Þ;
F  64;

layers  [inputLayer];
s for i ¼ 1 to 4 do

layers  StackResidualBlock(layers, F; S);
F  F � 2;
S 1;

layers  [layers, 2D� GaP; FC 128; d1ð Þ; FC 64; d2ð Þ;
FC 3ð Þ; SM;CL�;

return layers;

Function StackResidualBlock (layers, F, S):
conv1  Conv ð3; F, Padding, SÞ;
bn 1 BNð conv1);
relu1  ReLUð bn 1Þ;
conv 2 Conv ð3; F, Padding)(relu1);
bn 2 BNð conv 2Þ;
skip  x þ Convð3; F, Padding Þ BNð Þ;
relu2  ReLUð skip);
conv 3 Conv ð3; F, Padding)(relu2);
bn 3 BNð conv3);
output  x þ BN;

3.3.1. Convolution layers in a residual block
One of the essential components of the ResNet architecture is

the residual block. It is composed of an addition operation (Add),
multiple convolutional layers (Conv), BN, and skip connections
(Skip). The residual block formula is stated in Equation (4) as
follows:

function layers ¼ residualBlock x; F; Sð Þ
Conv 3; F; Padding; Sð Þ xð Þ

BN Convð Þ xð Þ
ReLU BNð Þ

Conv 3; F; Paddingð Þ ReLUð Þ
Skip : x þ Conv 3; F; Paddingð Þ BNð Þ

ReLU Skipð Þ
Conv 3; F; Paddingð Þ ReLUð Þ

BNðConvÞ
Final Output : x þ BN

3
7777777777775

(4)

where x stands for the tensor of input,F indicates howmany filters are used
in the layers of convolutions, and S symbolizes the process by which these
convolutional layers are applied to the input tensor to extract features at
various levels of abstraction. Additionally, “Conv” refers to the
convolutional layer, “BN” to the batch normalization layer, “ReLU” to
the rectified linear unit activation mechanism, “Skip” to the identity
mapping that performs the skip connection, and “Add” to the element-
wise addition operation that performs the skip connection. But rather
than using the “Add” operation directly, the “Skip” connection is used,
which essentially represents an addition process (element-by-element
addition) between x and the “Conv” and “BN” results.
(A) Stage 1: Building Depth and Feature Learning

In order to improve the feature learning and depth capabilities of
the network, stacking multiple residual blocks is a crucial step in the
construction of ESRNet. There are F distinct stages to this
architectural design, as well as the quantity of leftover blocks in
each step increases gradually. The maintenance of skip
connections is crucial in order to guarantee a gradient flow that is
smooth during training. The underlying structure of ESRNet can
be better understood by examining Equation (5) that follows:

input Layer ¼ Image Input Layerð½224 224 3�Þ

layers ¼

input Layer
Convð7; F; Padding; SÞ

BNðConvÞ
ReLU BNð Þ

MaxPooling 3; Sð Þ

2
66664

3
77775

(5)

Starting at the beginning, an input layer is made to hold image data
that has 224 × 224 × 3 dimensions. The filter count, represented by
the letter F, is 64. Several key layers are stacked in this step in order:
rectified linear unit activation, BN after the convolution, a layer of

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

04



convolution with a kernel size of 7, and three kernel sizes in the max-
pooling layer and suitable stride (S). These procedures work to
gradually extract and handle the characteristics of the input data.
The solid architecture of the ResNet model is formed by the
successive stages building upon this first one.

(B) Stage 2: Three Residual Blocks Stack with Skip Connections

In the ESkip-ResNet second stage, skip connections are stacked
on top of three residual blocks. In order to decrease the feature map’s
sample size, the first block’s stride is set to 2. It has the following
definition in Equation (6) as follows:

S ¼ 1 for i ¼ 1
2 for i > 1

�
(6)

In this case, in order to account for the downsampling in the first
block and keep the stride at 1 for the blocks that follow, the stride
value S fluctuates between 1 and 2 depending on the iteration
index i. Utilizing these incremental changes while stacking
the three residual blocks allows for effective control of the
second stage map of feature size.

(C) Stage 3: Capture Complex Elements

In Stage 3, the study improves ESkip-ResNet’s ability to extract
complex features even more. With a few significant exceptions, this
stage expands on the framework established in Stage 2. First, in
comparison to Stage 2, the quantity of filters (F) increases by two,
allowing ESkip-ResNet to explore more complex representations
and patterns. Second, to guarantee spatial reduction, the stride of
2 marks the start of the first residual block, just like in Stage 2.
That being said, unlike in Stage 2, where the study keeps the
stride of 1 for every residual block that follows, in Stage 3, this
work doesn’t stop at 1. This tactical decision maintains the feature
maps’ spatial dimensions for the duration of this phase. The
changes made between Stages 2 and 3 support ESkip-ResNet’s
progressive feature learning, which improves the network’s ability
to accurately classify brain tumors.

(D) Stage 4: Elevated-Level Abstractions

In Stage 4, specific modifications were made in comparison to
Stage 3 while still deepening ESkip-ResNet. The proposed study
uses twice as many filters (F), just like in the previous stage, so
that ESkip-ResNet can obtain even more intricate representations
and features. The way the study downsamples the feature maps is
where the main distinction is found, though. Although the first
block in Stage 3 had a downsampling stride of 2, this stride of 2
was kept for the first block in Stage 4 in order to successfully
reduce the spatial dimensions. By lowering the spatial resolution,
this decision enables ESRNet to focus on abstractions at the
highest level. Rather than stacking f’th residual blocks in Stage 3,
it stacks six in Stage 4, which improves ESkip-ResNet’s ability to
acquire intricate features even more. These changes between
Stages 3 and 4 add to ESkip-ResNet’s growing representational
power and depth, which improves its ACC in fake detection.

(E) Stage 5: Improved Feature and Depth Learning

In the last and fifth stages, particular modifications are
introduced to adjust to the increasing depth while keeping the
pattern of architecture established in the previous phases. Similar
to Stage 4, in order to enable ESkip-ResNet to efficiently capture

high-level features, the proposed work adds two more filters (F).
But when it comes to downsampling, the stride value (S) is where
the crucial change is found. Similar to Stage 4, the first block in
this stage reduces the feature maps’ spatial dimensions by using a
stride of 2, sharpening the network’s ability to prioritize more
ethereal depictions. Following the same arrangement as in the
earlier phases, three residual blocks are then stacked. The changes
made at this stage, particularly the addition of more filters and the
purposeful use of stride to downsample, enhance the feature and
depth learning of ESkip-ResNet and qualify it for precise
deepfake detection.

(F) Final Layers

Last but not least, completely integrated layers with dropout
support for regularization come after a global average pooling
layer in ESkip-ResNet. A classification layer (CL) and a softmax
activation layer complete the architecture.

layers ¼

layers
2D� GaP
FC 128; d1ð Þ
FC 64; d2ð Þ
FC 3ð Þ
SM
CL

2
666666664

3
777777775

(7)

Byutilizing the featuremaps’ global average pooling, the 2D-GaP layer in
Equation (7) is essential to global feature extraction. Two crucial fully
connected (FC) layers, namely, FC (512, d1) and FC (256, d2), are
positioned within the purpose-driven network. The former has a
dropout mechanism and 128 units that drop out at a rate of d1 for regu-
larization, whereas the latter uses dropout at a rate of 64 units to improve
the generalization of themodel. The architectural design concludeswith an
FC (3), d2 containing three units of output, each ofwhich represents one of
the three different classes. After calculating probability distributions using
softmax activation, theSoftMax (SM) layer assigns the input data to a class
based on the softmax probabilities, and the Classification Layer (CL) per-
forms the final classification. This intricate arrangement of components
and layers creates a solid and efficient foundation for precise Bitcoin clas-
sification (BTC).
1) Categorical Sparse Cross-Entropy Loss

During the training process of ESkip-ResNet for BTC, the
sparse categorical cross-entropy (SCCE) loss was selected as the
loss function. When representing class labels as integers rather
than as one-hot encoded vectors, for tasks involving multi-class
classification, this loss function performs well.

The SCCE loss quantifies the difference between the input data
samples’ actual integer class labels and the class probabilities that the
model predicted. By measuring the discrepancy between the
predictions, it efficiently directs the training procedure (yˆ) as well
as the labels for ground truth (y), assisting in the neural network’s
parameter optimization for precise classification outcomes. SCCE
has the following mathematical definitions:

L y; ŷð Þ ¼ � 1
N

P
N
i¼1

P
C
j¼1 1 yi ¼ jf g � log ŷij

� �� �
(8)

where L y; ŷð Þ symbolizes the loss function in Equation (8), N is the
quantity of training examples, C is the quantity of courses (in this
case, three for a pituitary tumor, glioma, and meningioma), yi indi-
cates the ith sample’s actual class label, ŷij shows the expected
likelihood that the ith sample will belong to the class j, and
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1 yi ¼ jf g is a function that indicates and equals 1 when yi is equal to j
and 0 otherwise.

A key step in the training process of ESkip-ResNet is the
application of this loss function, which guarantees that the model
learns to accurately and intelligently classify fake images into
different categories.

3.4. Hyper-parameter tuning using CBO

An algorithm for meta-heuristic optimization is the recently
proposed CBO for the hyper-parameter tuning process. It takes its
cues from the swarming behavior of the coot, an incredible
species of waterbird [23, 24]. In an amazing formation, the coot
birds repeatedly rearrange themselves in order to break through
large waves by sending their strongest leaders toward the front of
the flock. Weak leaders are swapped out for stronger ones in this
process, which is repeated. The flock members’ energy is
conserved, and the flock moves faster toward its objective thanks
to this swarming behavior. Below is a brief explanation of the
algorithm used by CBO, which draws inspiration from nature.

3.4.1. CBO inspiration
The configuration of the swarming flock of coots alternating

between two foraging strategies is incredibly inspirational. The
first movement strategy uses a low-density flock of coots and a
disjointed allocation. The second flock of coots is more uniformly
distributed and regularized in a high-density flock. To speed
up their surfing in search of food, they can fly in a third
direction in addition to moving on the surface of the water, in two
directions [25]. These tactics have been converted into
mechanisms for exploration and exploitation, which serve as the
foundation concerning the CBO algorithm [26].

3.4.2. CBO code
Each member of the coot flock, including the leader and

subordinates, makes up a fraction of the total number of coots in
the flock, according to the original algorithm in NPop

� �
, and there

is a mathematical way to express this by NPop ¼ Nleader þ Ncoot.
The symbols represent the progression of competent subordinate
coots and the movement of coots to take the place of less effective
leaders Poscoot and Posleader, respectively. The following equations
are used to initially randomize the coots’ positions to begin the
algorithm with Equations (9) and (10):

Poscoot ¼ randcoot� Ub � Lbð Þ þ Lb (9)

Pos leaderle ¼ randleader � Ub � Lbð Þ þ Lb (10)

wherein the symbols Ub and Lb, respectively, refer to the problem’s
upper and lower boundaries. As a result, each subordinate coot’s
fitness is extracted, and the ideal location and score can then be
calculated in Equation (11) as follows:

Fitcoot 1 � ið Þ ¼ Fobj Poscoot ið Þð Þ (11)

Since Fobj in Equation (12) shows the function for the fitness goal and
i receive numbers between 1 and Ncoot:

If Optimscore > Fitcoot 1; ið Þ
Optimscore ¼ Fitcoot 1; ið Þ
Optimpos ¼ Poscoot ið Þ

(12)

Similarly, Equation (13) can be used to extract each leader’s
fitness, and the following formula can be used to determine the
ideal score and position:

Fitleader 1 � ið Þ ¼ Fobj Posleader ið Þð Þ; i belongs to Nleader (13)

If Optimscore > Fitleader 1; ið Þ
Optimscore ¼ Fitleader 1; ið Þ
Optimpos ¼ Posleader ið Þ (14)

Since Nleader is the number of leaders in the flock of coots, which
makes up a portion of the entire flock NPop, the rest of NPop is deter-
mined by how many coots are beneath NCoot.

Every leader coot has a subordinate coot that the algorithm
randomly selects, and each time around, their positions are
improved until the maximum number of iterations is reached
(ItmaxÞ using Equations (15) and (16). From Equation (16), the boun-
daries are guaranteed to be respected by the new subordinate coot
position.

Poscoot ið Þ ¼ 2 � randcoot � cos 2 � π � rð Þsince; r ¼ 1þ 2 � randcoot
(15)

Posleader kð Þ � Poscoot ið Þ½ � þ Posleader kð Þ � i 2 NCoot and k 2 Nleader

(16)

If Poscoot ið Þ > Ub; make Poscoot ið Þ ¼ Ub : If Poscoot ið Þ
< Lb; make Poscoot ið Þ ¼ Lb (17)

where rand coot and rand leader are operators that are chosen at ran-
dom to indicate the leader and subordinate coots’ respective posi-
tions. Equation (17) is used to calculate each type’s fitness in a
way that makes it possible to compare and swap out a subordinate
coot that performs worse for a stronger one, and vice versa.

If Fitcoot 1 � ið Þ < Fitleader 1; kð Þ;
make Fit leader let 1 � kð Þ ¼ Fitcoot 1; ið Þ;

and Posleader kð Þ ¼ Poscoot ið Þ (18)

The leader coot’s positions are upgraded at random making use of
Equations (18) and (19). Consequently, the best possible score
Optimscoreð Þ and the matching places (Optim pospos

�
are calculated

utilizing Equation (19).

b ¼ 2� It Lð Þ=Itmaxð Þ
r ¼ 1þ 2 � randleader (19)

where It Lð Þð Þ connects to the index of the current iteration and
(I tmaxÞ: When the optimization process reaches its maximum
iteration, it is referred to as in Equation (20).

Posleader ¼ b � randleader � cos 2 � π � rð Þ
Optimpos � Posleader kð Þ
� �þOptimpos

If Optim
score

(20)

Notably, there are just two parameters in the CBO algorithm that
need to be adjusted: the number of people, also referred to as the
search agents NPop

� �
, and the maximum quantity of repetitions

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

06



Itmaxð Þ. This demonstrates the benefits of the CBO algorithm in
tuning the hyper-parameters of the proposed classifier. Hence,
CBO-based ESkip-ResNet classification produces the best results
in fake detection.

4. Results and Discussion

4.1. Experimental setup

MATLAB 2023a was used to conduct the experiments.
The computer platform had an 11th generation Intel® Core™
i9-11950H vPro® Processor, which had a maximum turbo
frequency of 5.00 GHz and a base clock speed of 2.60 GHz.
Processing was accelerated by using an NVIDIA® RTX™
A4000 Laptop GPU with 8 GB of GDDR6 graphics memory.
32 GB of DDR4-3200MHz SODIMM RAM, organized into two
16 GB modules, made up the memory capacity, which allowed
for effective handling and processing of data throughout the
experiments.

4.2. Performance metrics

A popular statistic for assessing the effectiveness of
classification models is ACC. According to Equation (21), it
calculates the percentage of properly recognized samples out of all
samples.

Accuracy ¼ TPþTN
TPþTNþFPþFN (21)

The F1-score, a measurement of ACC obtained from a weighted
average of PR and RC, is defined by Equation (22). It offers an
assessment of the test’s capacity to differentiate between favorable
and unfavorable results.

F1 ¼ 2�precision�recall
precisionþrecall (22)

Equation (23), which introduces the PR rate, assesses how well a
model can predict positive samples among those it considers to be
positive.

Precision ¼ TP
TPþFP (23)

Equation (24), sometimes referred to as the true positive rate or
sensitivity, measures how well a prediction model picks up on
true positive data. The true positive to total true positive and false
negative ratio is used to calculate it.

Recall ¼ TP
TPþFN (24)

4.3. Analysis of classification process

In Table 2, the models’ performance metrics including ACC,
PR, RC, and F1-score are presented. VGGNet, ResNet, PolyNet,
and the proposed model are among the models. VGGNet shows
92.9% ACC with PR, RC, and F1-score values of 90.6%, 89.9%,
and 90.2%, respectively. With a higher RC (94.3%) and PR
(91.5%), ResNet’s ACC of 93.5% is marginally higher than other
networks, resulting in an F1-score of 92.5%. Although PolyNet
has a 95.6% ACC rate, it has a slightly lower PR, RC, and
F1-score (93.9%, 90.2%, and 89.5%, respectively). But overall,
PolyNet performs better. In comparison with the other models in
the table, the proposed model performed better in fake detection,

with an ACC of 96.2% and better PR (94.1%), RC (95.2%), and
F1-score (95.4%).

Table 3 shows that AlexNet achieves an ACC of 94.3% with
high RC (94.5%), PR (93.9%), and F1-score (94.8%). With a
95.7% ACC rate, superior PR (95.6%), RC (96.7%), and an
F1-score of 95.8%, ResNet is still getting better. PolyNet keeps
performing well, producing an F1-score of 95.9% with an ACC of
96.5%, well-balanced RC (96.3%), and PR (96.4%). However, the
suggested model outperforms the other models in the table,
achieving an astounding 98.9% ACC as well as remarkable RC
(98.7%), PR (98.8%), and F1-score (98.6%). Its outstanding
performance is apparent in every metric that has been assessed.
VGGNet is applicable without the CBO technique, and AlexNet
works with the CBO technique only, and that’s why each table
contains different methods during the comparison.

5. Conclusion

Proposed detection methods need to advance more quickly to
keep up with the rapidly rising quality of deepfakes. Deepfake
producers and catchers are facing more and more competition
every day. The idea behind the deepfake detection model that has
been suggested is that DL methods can address issues that arise
from other DL methods. The DFDC dataset was used in this work
for additional processing. Subsequently, the A2WF was employed
in the proposed study’s preprocessing phase to minimize undesired
noise and improve contrast while enhancing the images. Accurate
detection is achieved through the classification process that follows
the preprocessing phase. Therefore, ESkip-ResNet is suggested
as a method for accurately detecting and classifying images.
A hyper-parameter tuning procedure was suggested using this
work, which is based on the CBO algorithm with inspiration from
nature. The suggested ESkip-ResNet classifier’s hyper-parameters
are adjusted using this CBO algorithm. Overall, with 98.9% ACC
for fake detection, ESkip-ResNet proved to be a strong and
effective framework, offering better performance and efficiency in
addressing crucial issues in the fake network domain.
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Table 2
ESkip-ResNet classification without CBO

Models ACC (%) PR (%) RC (%) F1 (%)

VGGNet 92.9 90.6 89.9 90.2
ResNet 93.5 91.5 94.3 92.5
PolyNet 95.6 93.9 90.2 89.5
Proposed model 96.2 94.1 95.2 95.4

Table 3
CBO-based ESkip-ResNet classification

Models ACC (%) PR (%) RC (%) F1 (%)

AlexNet 94.3 93.9 94.5 94.8
ResNet 95.7 95.6 96.7 95.8
PolyNet 96.5 96.4 96.3 95.9
Proposed model 98.9 98.8 98.7 98.6
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