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Abstract: Predicting traffic flow has always been a significant task in intelligent transportation systems. Due to the substantial temporal
and spatial dependencies of traffic flow sequences, accurately predicting traffic flow poses a considerable challenge. Many existing works
primarily rely on recurrent neural networks, graph neural networks, and Transformer models to establish traffic flow prediction models. To
better extract features and enhance efficiency, a traffic flow prediction model based on multi-view spatiotemporal convolution (MVSC) is
proposed. This model learns the representation of sequence data at the input encoding layer and incorporates location and time information.
In the spatiotemporal feature representation learning layer, considering the diverse periodic patterns in sequences, several representation
learning modules are designed, conducting local spatiotemporal feature exploration through one-dimensional convolution and then accom-
plishing global spatiotemporal feature mining based on causal convolution. To further enhance the model’s utilization of spatiotemporal
features, a channel attention mechanism is introduced at the prediction layer. The forecasting method employed in the study is direct multi-
step, and subsequent experiments conducted on two real datasets demonstrate that the MVSC model exhibits a certain degree of superiority
in MAE, RMSE, and MAPE for both short-term and long-term predictions compared to existing models. And through the latest experi-
ments and investigations, it has been found that MVSC has improved MAPE performance by about 1.2% compared to recent models such
as RTGCN and STRGCN, achieving the intended outcomes.
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1. Introduction

Time series prediction technology is one of the indispens-
able human intelligence technologies in the field of transportation
[1, 2]. For example, traffic management departments can optimize
traffic signal control and alleviate congestion based on vehicle flow
prediction at each intersection [3]. Bus companies can reasonably
plan departure frequency based on road flow to reduce citizens’
waiting time [4–6]. Emergency rescue department, in the face of
fire, dangerous chemical explosion, and other emergencies, the
accurate prediction of traffic flow at each intersection to help emer-
gency traffic route planning is of great significance. The state also
clearly proposed in the “14th Five-Year Plan” to strengthen the deep
application of big data and artificial intelligence technology in the
transportation industry.

The current mainstream deep learning-based traffic flow
prediction models can be summarized into the following two cat-
egories [7]. (1) Model based on recurrent neural network (RNN).
For instance, Huang et al. [5] devised a segmented attention mod-
ule based on GRU network to achieve traffic flow prediction [8].
Then, the ConvLSTM model, based on LSTM, combined with
CNN to learn temporal features of sequences and achieve pre-
diction. In last several years [9], graph neural networks (GNN)
have been widely applied in feature learning modeling of social
networks, traffic networks, molecular structures, and other data
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due to their powerful spatial network modeling capabilities [10,
11]. Therefore, scholars will also incorporate GNN in RNNs. For
example, Yu et al. [12] used graph network to model the spatial
relationship of traffic at each intersection in the traffic network
and used LSTM to learn the temporal characteristics of the spatial
relationship [13]. (2) Models based on Transformer framework.
For example, Xu et al. [14] build a time-sequence representation
module and a spatial representation module based on Transformer
[15], making traffic flow prediction a reality. And many Trans-
former variants have been proposed during these past few years,
including informer [12], autoformer [16], FEDformer [17], etc.,
which can be used for AC flow premeasurement. The GNN net-
work can also be combined with the Transformer class model [10,
11]. For example, Wang et al. [18] constructed a spatial-temporal
feature extraction module based on GCN and Transformer through
multi-scale partitioning of sequences [19, 20].

The Transformer model operates through multi-head self-
attention, effectively capturing interdependencies among elements
within sequential data [14]. Nonetheless, despite the non-sequential
nature of the self-attention mechanism, it excels at capturing con-
textual semantics in textual data without issue [21]. For time series
data such as traffic flow, ignoring the sequence of data is not con-
ducive to its feature mining. Therefore, literature focuses on the
feasibility of Transformer for sequence prediction. In addition, this
paper argues that the Transformer model introduces many redun-
dant operations in the attention module (Q, K, V calculation part)
[22], and this increases the computational complexity of the model
to a certain extent. Thus, although the Transformer class model has
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a good performance in sequence prediction [15], this paper does not
build a traffic flow prediction model relying on Transformer frame-
work, but a novel model based on convolutional operations. On the
one hand, the volume operation is more efficient than the Trans-
formermodel in terms of computational efficiency [15]. On the other
hand, convolutional-based models have very powerful feature min-
ing capabilities for image data, and there are also some models that
mine features of time series data based on one-dimensional convo-
lution design models, such as TCN [23]. For time series data such
as traffic flow, the local fluctuation is very large, and the whole has
a certain periodicity. Based on the convolutional design prediction
model, this paper considers that the following problems need to be
solved: (1) Circular networks naturally have the ability of timing
mining, while convolutional networks do not have such ability, so
how to learn the timing relationship of traffic flow data is the first
problem to be considered in model design; (2) Traffic flow data
have a certain periodicity, and the local fluctuation is large, so how
to effectively mine the cycle pattern is also an important issue to be
considered.

In this study, a multi-view spatiotemporal convolution
(MVSC) model was proposed for traffic flow prediction. The pri-
mary contributions of the MVSC model are outlined as follows:
(1) The learning layer of spatiotemporal feature representation of
traffic flow data based on convolutional network is designed, and
multi-view mode is introduced to complete spatiotemporal feature
learning of different cycle modes with different views; (2) A predic-
tion layer relies on channel attention mechanism that was designed
for multi-dimensional time series data prediction. Channel attention
completed the filtering of multi-view spatiotemporal feature infor-
mation and provided effective spatiotemporal feature information
for the prediction module. Experiments were conducted on two traf-
fic datasets, and the experimental results verified the effectiveness
of the model.

2. Relevant Theoretical Knowledge

2.1. Convolutional network

Convolutional network realizes feature extraction of data based
on convolutional kernel. For image data, two-dimensional convolu-
tional networks are commonly used. For time series data, two typical
1D convolutional networks are introduced in this paper. The charac-
teristic of a two-dimensional volume network is that the convolution
kernel moves in two dimensions.

The working principle of a conventional one-dimensional con-
volutional network is shown in Figure 1(a), where the time series
dimension is 1, the quantity of input and output channels is 1, and
the size of the convolutional kernel is 3. The convolution kernel
operates from left to right and performs a dot product operation on
an input subsequence of equal length to obtain the corresponding
output. If it is desired for the input sequence to match the length of
the output sequence, padding can be applied to the input sequence.
When the output channel is greater than 1, repeat the above pro-
cess for each output channel with different kernel matrices and
then stack the output vectors sequentially.

The working principle of causal convolution is shown in
Figure 1(b), which is characterized by the fact that an element
in the output sequence can only depend on the element before it
is in the input sequence. To ensure that the length of the output
tensor and input tensor is the same, zero padding is applied after
each convolution. When the output channel is greater than 1,
the operation method is the same as that of a one-dimensional
convolutional network.

Figure 1
Convolutional example (a) One-dimensional convolution and

(b) Causal convolution

2.2. Attention mechanism

The function of attention mechanism is to train the model to
assign different attention weights to input data [24]. In addition, it
can make the model only focus on a part of the input sequence,
thereby improving the efficiency and performance of the model
without falling into the problem of insufficient resources [25]. The
attention mechanism is expressed in a more general way [22]:

Attention (Q,K,V) = ∑n

j=1 Softmax (Similarity (Q, kj)) ∗ Vj

(1)

where Q is the query matrix; K is the keyword matrix; V is the value
matrix.

Multi-head attention of a Transformer can be expressed as:

H = concat (b1, ....bu) Wo (2)

The computational process is as below: firstly, u attention rep-
resentations are concatenated, and then matrix multiplication is
performed with Wo. Each header is implemented based on a single
self-explanatory mechanism, i.e., a function of Q, K, V [22]:

bi = softmax (QKT√dk V) (3)

Figure 2 shows a schematic of the self-attention mechanism. It can
be seen that the self-attentionmechanism considers all the input vec-
tors, but ignores the position information of the vectors. And a1, a2,
and a3 represent the vectors used to compute the attention weights
for queries (Q), keys (K), and values (V), b1, b2, b3 represent other
parameters related to attention calculation.

Figure 2
Examples of self-attention mechanisms
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3. MVSC Model

3.1. Problem definition

The traffic flow prediction problem is to predict the data
Y ∈ RT×N of all observation points in the future T period by
learning function F based on the given historical observation data
X ∈ RH×N, where N is the number of observation points and H is
the window size of the historical sequence input [26]. The formula
is defined as below:

Y = F (X) (4)

3.2. Model overview

Figure 3 shows the overall architecture of a MVSCmodel. The
model contains three parts, which are input coding layer, spatiotem-
poral feature representation learning layer, and prediction layer.
First, the input coding layer encodes the input sequence and adds
time information and position information to increase the input char-
acteristics of each observation point. Secondly, there are multiple
spatiotemporal convolution modules in the spatiotemporal feature
representation learning layer, and the convolution kernel used in
each module is different in size. In each module, one-dimensional
convolution, causal convolution, and one-dimensional deconvo-
lution are used to complete spatiotemporal feature extraction of
sequences [19]. Finally, in the prediction layer, traffic flow predic-
tion is completed based on the channel timing attention module,
two-dimensional convolution, and multi-layer perceptron.

3.3. Enter the coding layer

At present, the mainstream Transformer variant models such as
Informer [12], Autoformer [16], FEDformer [17], part of the input
of the decoder of these models are the input vector of the encoder,
and the other part of the information is constant. Inspired by this, this
paper adopts a simpler zero-complement strategy in the input coding
layer to keep the following convolution module working normally.

In addition, this paper refers to the setup of the FEDformer model
[17], using three parts of input:

Xemb = Ve + Pe + Te (5)

where Xemb ∈ R(H + T)×d; Veis the representation vector of the
input sequence supplemented by 0; Pe is the sequence of location
information encoding; Teis the encoding of sequence time informa-
tion Xtime ∈ R(I + O)×5, which is mainly composed of month, day,
week, hour and minute. The formula for calculating Ve, Te, and Pe
is as follows:

Ve = VE ([X||X0 ]) (6)

Pe =
⎧⎪⎪⎨⎪⎪⎩
sin ( t

10000

2i
d

) if t = 0, 2, 4, ...
cos ( t

10000

2i
d

) if t = 1, 3, 5, ... (7)

Te = TE (Xtime) (8)

In the formula, VE is a value coding network, implemented using a
one-dimensional convolutional network, with input channel N and
output channel d; TE is a time-coded network consisting of 5 fully
connected layers. Each fully connected layer encodes the month,
day, week, hour, and minute respectively, and then sums the feature
vectors. The input dimension of each fully connected layer is 1, and
the output dimension is d. In formula (7), t corresponds to the actual
position of the input value in the sequence.

3.4. Spatiotemporal features represent the learning
layer

The spatiotemporal feature representation learning layer is
composed of multiple views, each view map corresponds to dif-
ferent spatiotemporal feature modules, and convolution kernel of
different sizes is used for different views in feature mining. The vol-
ume kernel size corresponding to each view is kernel = k, k ∈{H/4,

Figure 3
Overview of the MVSC model

Pdf_Fol io:397 397



Journal of Computational and Cognitive Engineering Vol. 3 Iss. 4 2024

H/6, H/8, H/16}, in this paper, H is set to 96, taking 4 views, then
the convolution kernel of each view is 24,16,12,8, respectively. The
following details the implementation steps of spatiotemporal feature
mining in each view.

1) Local spatiotemporal feature mining

Xemb contains historical traffic flow information and time
information for all traffic intersections. It should be noted that
Xembhas done preliminary representation learning for the spa-
tial correlation of each intersection, that is, the dimension of
input sequence data X is changed from RH×N to R(H + T)×d by
inputting into the coding layer. In this paper, the spatiotemporal
characteristics of a periodic model are further extracted based on
one-dimensional convolutional networks. Define the periodic pat-
tern according to the size of the convolution kernel, and then, the
convolution operation is as follows:

Xk
local = Convld (Padding (Xemb)) kernal= k (9)

The convolution kernel size of one-dimensional convolution is set
to k ∈ {H/4, H/6, H/8, H/16} ,and the moving step is stride = k,
that is, the convolution is used for feature extraction every cycle.
After passing through the convolutional network, the eigenvector is

compressed, and the dimension of Xk
local is R

H + T
k

×d
.

2) Global spatiotemporal feature mining

Xk
local only contains spatiotemporal features of local cycles. In

order to explore spatiotemporal features across the entire input time
scale, this paper designs a causal convolution module:

Xk
causal = CasualConv (XK

local) (10)

In order to ensure that the Xk
causal and X

k
local have the same dimen-

sion, padding is required for Xk
local. After the causal convolution

operation, the activation layer and Dropout operations are pro-
grammed. The activation function adopts Tanh, Dropout value is
0.1, that is:

Xk
causal = Dropout (Tanh (XK

causal)) (11)

The role of Xk
causal is to aggregate information on different local

spatiotemporal features to complete the mining of spatiotemporal
features on the entire input time scale.

Inspired by the encoding and decoding framework, this paper
expects to achieve prediction by decoding. Therefore, a one-
dimensional deconvolution module is designed to extend the
dimension of spatiotemporal feature vector, and the global spa-
tiotemporal feature Xk

global is obtained. The execution steps are as
follows:

Xk
res = Normal (Xk

causal + Xk
local) (12)

Xk
trans = ConvldTrans(Xk

res) (13)

Xk
trans = DropOut (Tanh (Xk

trans)) (14)

Xk
global = Norm (Xk

trans + Xemb) (15)

Before performing deconvolution, residual joins were introduced
to fuse information from Xk

causal and Xk
local, as shown in formula

(12). After the one-dimensional deconvolution operation, the acti-
vation layer and Dropout operation are designed. The activation
function uses Tanh and the value of Dropout is 0.1. Finally, the
global space-time feature Xk

global ∈ R(H + T)×d is obtained by fusing
the information of Xk

trans and Xemb through residual connection.

3.5. Prediction layer

In the prediction layer, Merge operation is used to merge the
global spatiotemporal features in different view images. Due to
the initiation of channel attention mechanism, this paper believes
that the different dimensions of spatiotemporal characteristics after
fusion have different importance to prediction, so the channel atten-
tion module is introduced.

First of all, Merge operation of multi-view global spatiotempo-
ral features is implemented as follows:

Xglobal = concat (X1
global , ...,Xk

global) (16)

Then, the channel attention weight Mc is calculated based on
the channel attention module, as shown in Figure 4. First, the
maximum pooling and average pooling operations are performed
on Xglobal, respectively, and the representation vectors Xmax

global ∈
Rl×d and Xavg

global ∈ Rl×d are obtained. These two representa-
tion vectors pass through the multi-layer perception, respectively.
And thenmerge the output vectors. Thewhole process is represented
as [27]:

Xmax
global = MaxPool (XVglobal) (17)

Xavg
global = AvgPool (Xglobal) (18)

Mc = 𝜎 (MLP (Xmax
global) + MLP(Xmax

global)) (19)

Xglobal is then channeled as follows:

Xc = Mc ⊙ Xglobal (20)

Xc = concat (max (XC), avg (Xc)) (21)

The dimension of Xc after channel pooling is R
(H + T)×2. Finally,

the prediction is realized through 2D convolution layer and multi-
layer perceptron:

Ŷ = MLP (Conv2d (Xc)) (22)

3.6. Training

In the training stage of the MVSCmodel, the error between the
predicted traffic flow and the real traffic flow is used to guide the
model to update parameters. The loss function is as follows:

Loss = 1
nT ∑n

i
∑T

j
(Ŷi,j − Yi,j)2 (23)

where Ŷi,j is the predicted traffic flow; Yi,j is the real traffic flow;
n represents the number of training samples; T is the predicted time
step.
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Figure 4
Channel attention module

4. Experiment

4.1. Data set

This paper verifies the performance of MVSC on two public
transportation datasets.

1) METR-LA: Los Angeles Freeway traffic dataset, fromMarch 1,
2012 to June 30, 2012, deployed 207 ring sensors collected on
the freeway, sampling frequency of 5 min, sequence length of 34
272.

2) PEMS-BAY: BAY Area of California traffic dataset, from
January 1, 2017 to May 31, 2017, collected by the Traffic Per-
formance Measurement System (PEMS) (325 sensors), with a
sampling frequency of 5 min and a sequence length of 52 116.

Each dataset is divided into training, testing, and validation sets in a
7:2:1 ratio. And the method used is cross-validation, and each sam-
ple is constructed with a sliding window with a window length of
H+T and a sliding step size of 5. For the convenience of comparing
model performance, the Z-score method was adopted to standardize
the data by referring to the data preprocessing method of STSGCN
model [28]. The concrete calculating method is as follows:

Z = X − X
std(X) (24)

where X is the mean value of the data set; std (X) is the variance.

4.2. Evaluation index and comparison model

In this article, mean absolute error (MAE), RMSE, and mean
absolute percentage error are used. MAPE was used to evaluate
model performance. The specific calculation formula is as follows:

MAE = 1
nT ∑n

i= 1
∑T

j
||Ŷi,j−i,j|| (25)

RMSE =√ 1
nT ∑n

i= 1
∑T

j
(Ŷi,j − Yi.j)2 (26)

MAPE = 100%
nT ∑n

i= 1
∑T

j

|||| Ŷi,j − Yi,j
Yi,j

|||| (27)

This article contrasts the performance of MVSCmodel with 5 main-
stream models.

1) ARIMA: The ARIMA model is a classic time series analy-
sis method used to predict future time series data. It combines
three parts: AR model, difference operation, and moving aver-
age model. Model parameters (p, d, q) are set to (3,1,2) through
data analysis.

2) GBRT: Gradient boosting regression tree model. It is an ensem-
ble learning method that uses serial training of multiple decision
tree models for prediction. At each step, the model will attempt
to correct the errors in the previous step to gradually reduce the
prediction error. The main parameter settings are as follows: The
number of estimators is 100, the learning_rate is 1, the max-
depth is 3, and the min_samples_leaf is 2.

3) LSTM [29]: This model is a variant of RNN, aimed at solv-
ing problems such as vanishing and exploding gradients in the
original RNN model, especially suitable for tasks that require
processing long sequence data. The parameter settings are as
follows: The num_layers is 1, the hidden_size is 64, and the
learning rate is 0.001.

4) STGCN: STGCN is a deep learning model for processing spa-
tiotemporal data that combines the characteristics of (GCN) and
spatiotemporal data, effectively capturing complex relationships
and patterns in spatiotemporal data. The channels of three lay-
ers in ST-Conv block are 64, 16, 64 respectively, the graph and
temporal convolution kernel size are set to 3, the input time step
is 12, the batch size is 50, and the learning rate is 0.001.

5) Informer [12]: It is a deep learning model used for spatiotem-
poral sequence prediction, specifically designed to handle long
sequence prediction problems. The model parameters are set as:
The seq_len is 96, the label_len is 48, the enc_in, dec_in and
c_out is 7, the n_head is 8 etc.

4.3. Contrast experiment

The performance comparison experiment with the benchmark
model is carried out in this section. Tables 1 and 2 respectively list
the experimental results on the data set of METR-LA and PEMS-
BAY, from which the following conclusions can be drawn: On the
two datasets, the proposed model performs better than the other
five models in short-, medium-, and long-term prediction, except
that the MAE of 30 min prediction on the METR-LA dataset is
slightly worse than that of the Informer model. The ARIMA model
has the worst overall performance on the two datasets, especially on
the METR-LA dataset, where the performance deteriorates as the
prediction step size increases. GBRT is an integrated model with
good performance, and its performance is better than LSTM. The
reason why LSTM is worse than STGCN, Informer and MVSC
is the lack of mining the correlation features of sequence space.
Because it is iteratively premeasured forward, the performance dete-
riorates with the increase of the predicted step size. STGCN is
based on graph convolutional network to realize spatial correlation
mining. Informer and MVSC directly embed input sequences as
high-dimensional feature vectors, and realize spatiotemporal feature
mining based on high-dimensional feature vectors, without strictly
distinguishing the relationship between sequences. Judging by the
results of the experiment, this strategy worked better. Compared
with Informer and other models, MVSC relies on convolutional
design as a time series predictionmodel. By setting different volume
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Table 1
Comparison of traffic flow predictive performance on the METR-LA dataset

15 min 30 min 60 min
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA 3.35 6.33 9.13% 3.79 7.25 10.45% 4.37 8.72 13.18%
GBRT 2.89 5.84 7.22% 3.47 6.64 9.77% 4.07 7.89 11.26%
LSTM 3.34 7.15 8.13% 4.14 8.13 10.57% 5.03 9.79 12.19%
STGCN 2.94 5.65 7.64% 3.15 6.43 8.93% 4.58 8.42 10.65%
Informer 2.76 5.67 7.05% 3.08 6.32 8.82% 4.54 8.15 10.33%
MVSC 2.66 5.44 6.89% 3.13 6.18 8.44% 4.02 7.99 9.74%

Table 2
Comparison of predictive performance of the PEMS-BAY dataset

15 min 30 min 60 min
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA 2.05 4.18 4.82% 2.99 4.58 5.32% 2.39 5.02 6.72%
GBRT 1.38 2.99 3.03% 1.82 3.97 3.92% 2.18 4.89 5.93%
LSTM 1.49 3.13 3.21% 1.99 4.15 4.32% 2.72 5.52 7.03%
STGCN 1.34 2.97 2.99% 1.89 4.18 4.21% 2.59 5.78 6.94%
Informer 1.43 3.09 3.08% 1.72 4.02 3.99% 2.17 4.89 5.65%
MVSC 1.22 2.88 2.54% 1.33 3.01 2.98% 2.02 4.25 4.89%

nuclei and introducing channel attention, the final model is superior
to Informer and other models.

4.4. Ablation experiment

Ablation experiments are performed in this section to verify the
validity of the channel convolution and multi-view schemes used
in the MVSC model. The following model variants were taken for
comparison.

1) SSTC: single-view model, that is, only one convolution module
is used in the spatiotemporal representation learning module. In
the experiment, this paper only selected convolution kernel size
8 and convolution kernel size 12 for the experiment, which were
denoted as SSTC-8 and SSTC-12 respectively.

2) MVSC/CA: Remove the Channel Attention module (CA for
short). All variant model hyperparameters remain consistent
with the original model. The results of the ablation experi-
ment are shown in Table 3, and the following conclusions can

be drawn: (1) The MVSC model is better than the other three
variants; (2) From the results of MVSC/CA, it has the worst
effect, which indicates that the channel attention module plays
a significant role in MVSC. Due to the merging operation of
multi-view space-time features, the channel attention module
can effectively filter useful information and thus improve the
model performance.

4.5. Hyperparameter analysis experiment

The MVSC model has two important hyperparameters: the
multi-view combination mode and the hidden layer dimension.
In Section 3.4, the ablation experiment shows that the multi-
view approach is beneficial to spatiotemporal feature representation
learning. This section focuses on the effects of different multi-view
combination modes on model performance.

In Figure 5, the model’s experimental results on theMETR-LA
and PEMS-BAY datasets are displayed, forecasting the traffic flow
for the next 60 min. Only 4 combination modes were used in the

Table 3
Ablation result dataset

15 min 30 min 60 min
Dataset Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

SSTC-8 2.72 5.63 7.02% 3.32 6.79 9.22% 4.63 8.33 11.24%
SSTC-12 2.75 5.53 7.14% 3.29 6.82 9.35% 4.59 8.28 11.32%
MVSC/CA 2.87 5.73 7.46% 3.42 6.98 9.43% 4.94 8.78 12.13%

METR-LA

MVSC 2.66 5.44 6.89% 3.13 6.18 8.44% 4.02 7.99 9.74%
SSTC-8 1.45 3.14 3.25% 1.97 4.13 4.29% 2.43 5.34 7.12%
SSTC-12 1.52 3.21 3.29% 1.92 4.21 4.33% 2.39 5.32 7.04%
MVSC/CA 1.57 3.19 3.38% 2.04 4.36 4.79% 2.62 5.53 7.22%

PEMS-
BAY

MVSC 1.21 2.88 2.53% 1.33 3.02 2.99% 2.02 4.25 4.89%
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Figure 5
Impact of multi-view approach (a) METR-LA dataset and

(b) PEMS-BAY dataset

Figure 6
Influence of embedding dimensions on model performance (a)

METR-LA dataset and (b) PEMS-BAY dataset

experiment. According to the experimental results, the model effect
is gradually improved with the increase of view combination.

Figure 6 shows the performance table of the model under dif-
ferent hiding layer dimensions, predicting the traffic flow in the
future 60 min. This paper solely examines the influence of the hid-
den layer dimension on the model without delving into the hidden
layer dimensions of individual neural networks within the model.

Therefore, the hidden layer dimension of all networks in the
experiment is set the same. As can be seen from the figure, the per-
formance of the model is improved to some extent with the increase
of the dimension of the hidden layer. However, the model perfor-
mance is not significantly improved when the dimensions are 128
and 64. Therefore, in the experiment, the hidden layer dimension of
each network layer of the MVSC model is set to 64.

4.6. Prediction examples

Figure 7 shows the predicted examples and true values of
MVSC respectively.

Figure 7
Prediction results of dataset (a) Predicting time steps of METR-
LA dataset and (b) Predicting time steps of PEMS-BAY dataset

It can be seen that MVSC is relatively accurate in predicting
traffic flow on two datasets and has a good predictive effect on sud-
den changes in traffic flow.

5. Conclusion

This paper presents the development of the MVSC traffic
flow prediction model based on convolutional networks. In the
exploration of spatiotemporal features for traffic flow analysis,
MVSC incorporates multiple spatiotemporal representation learn-
ing modules to discover various cycle patterns in traffic flow. Each
module conducts local spatiotemporal feature extraction via one-
dimensional convolution, followed by global spatiotemporal feature
extraction with causal convolution. The prediction module inte-
grates a channel attention mechanism to enhance the utilization of
spatiotemporal features. The model has significantly improved the
problem of insufficient utilization of spatiotemporal features in the
previously mentioned models such as LSTM. The channel attention
mechanism in the prediction layer has better enhanced the model’s
utilization rate of spatiotemporal features. The representation learn-
ing module has effectively learned the data features under different
periodic patterns. The method of first local and then global spa-
tiotemporal feature exploration has reduced the prediction error and
interference.

Extensive experiments were conducted using real traffic flow
datasets fromMETR-LA and PEMS-BAY, demonstrating the excel-
lent performance of MVSC in traffic flow prediction tasks. And
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the forecasting method employed in the study is direct multi-step;
on each dataset, the existing model shows particularly significant
improvements in mid- to long-term predictions, with nearly a 1.2%
enhancement in MAPE compared to traditional machine models or
subsequent emerging models (such as STGCN). However, it also
demonstrates corresponding shortcomings in short-term forecasts,
with about a 0.4% gap compared to STGCN. The effectiveness
of the multi-view mode and the channel attention mechanism was
verified through ablation experiments. Additionally, hyperparame-
ter analysis experiments were carried out, discussing the impact of
multi-view combinations and hidden layer dimensions on themodel.
A limitation of this study is that sensor failures in transportation
systems cause data loss. Therefore, this paper will further explore
how to conduct spatiotemporal feature extraction on traffic flow
datasets with missing values and design effective traffic flow pre-
diction models based on convolutional networks.
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