
Received: 21 March 2024 | Revised: 6 May 2024 | Accepted: 21 May 2024 | Published online: 31 May 2024

RESEARCH ARTICLE

Data Science in Cybersecurity to Detect
Malware-Based Domain Generation
Algorithm: Improvement, Challenges,
and Prospects

Mohamed Hassaoui1 , Mohamed Hanini1 and Said El Kafhali1,*

1Computer, Networks, Modeling, and Mobility Laboratory (IR2M), Hassan First University of Settat, Morocco

Abstract:Nowadays, themalware communicates with command and control servers using domains generated algorithmically. Domain generation
algorithms (DGAs) are continually evolving, which degrades the accuracy of the existing methods calls for the continuous tracking of how DGAs
develop and their detection methods and calls for a good evaluation of the stage to open horizons for new detection methods. Data science plays a
key role in cybersecurity by providingmethods for detecting and analyzing network traffic data, includingDGAs, and helping to improve the overall
security of computer systems and networks. It can also be used to analyze large datasets of domain names and to develop and optimize solutions for
DGA detection, by applying techniques such as machine learning, deep learning, and genetic algorithms, which have shown their effectiveness in
detecting new and unknown DGAs. This paper reviews the role of data science in cybersecurity systems to detect DGAs. Hence, it also brings
together publicly available domain name datasets and data science techniques utilized in recent DGA detection systems to highlight current issues
and potential directions. This article additionally explains issues related toDGAdetection. Thiswill assist researchers in improving the current DGA
detection algorithms as well as creating new powerful models.

Keywords: domain generation algorithms, data science, malware, cybersecurity, machine learning

1. Introduction

It is important to keep in mind that technology is not inherently
good or bad, but its use and application can be. As technology
continues to advance, an attacker can use advanced technology to
find new attack methods or identify vulnerabilities in a system.
Therefore, it is also important for organizations to stay informed and
adapt their cybersecurity strategies to mitigate the risks of attacks [1].

Domain generation algorithms (DGAs) have become popular
tools for cybercriminals to evade detection and maintain control over
their malware. Figure 1 represents a schematic illustration of DGA
attacks. DGA is a technique used by malware to generate a large
number of domain names that can be used as command and control
(C2) servers [2]. The malware uses a DGA seed value, which is a
starting point, and an algorithm to generate the domain names. The
infected system will then periodically check the generated domain
names to see if any of them are active [3]. If a C2 server is found,
the infected system will connect to it and receive instructions. All
these techniques are used by malware to evade detection and
maintain persistent control of the infected system.

The random or pseudorandom nature of DGA-generated domain
names makes it difficult to detect and block them using traditional
methods. Furthermore, the fact that DGAs are always changing

makes it necessary to continuously monitor how they evolve and
their detection methods; it also necessitates a good review of the
stage at which new detection methods can be developed.

Data science provides a powerful approach to detect DGA-
generated domain names by analyzing patterns and features in the
domain names and classifying them as malicious or benign. The
process of DGA detection can be broken down into several steps
such as presented in Figure 2, including data collection, data

Figure 1
Schematic illustration of DGA attacks

*Corresponding author: Said El Kafhali, Computer, Networks, Modeling, and
Mobility Laboratory (IR2M), Hassan First University of Settat, Morocco.
Email: said.elkafhali@uhp.ac.ma

Journal of Computational and Cognitive Engineering
2024, Vol. 3(3) 213–225

DOI: 10.47852/bonviewJCCE42022875

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

213

https://orcid.org/0000-0002-1809-8259
https://orcid.org/0000-0001-8998-9617
https://orcid.org/0000-0001-9282-5154
mailto:said.elkafhali@uhp.ac.ma
https://doi.org/10.47852/bonviewJCCE42022875
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

preprocessing, feature extraction by humans or automatically, model
training and evaluation, and deployment and monitoring. The
performance of DGA detection methods can be improved by using
advanced machine learning (ML) techniques such as deep learning,
which can automatically extract features from the data and improve
the performance of the model. Additionally, assembling multiple
models can also improve the performance and robustness of the
DGA detection system.

If computer networks do not have a security plan that includes a
thorough assessment of the steps to use innovative detection
techniques, they are susceptible to attack by DGAs.

We have developed a number of important questions as part of
our research methodology. As a result, this study has considerable
significance since it explores the following important subjects:

1) What are the essential components or parameters that an attacker
might take into account while creating a DGA?

2) What are the latest tactics employed by attackers to create DGAs,
and how do they modify their approaches to keep one step ahead
of security experts’ detection and mitigation strategies?

3) What recent and essential features should be looked for while
examining DGAs in order to identify and lessen malware?

4) What factors are most important to take into account when
choosing a technique for gathering DGA data?

5) What effect does data preprocessing have when building a model
that accurately identifies DGAs?

6) Which data science methods and tools may be used for the study
and identification of DGA-generated domain names, and how can
we leverage DGA data to enhance our capacity to recognize and
avoid harmful communications?

With these questions in mind, this research aims to highlight current
obstacles to DGA detection by consolidating current DGA
construction methods and exploring how attackers adapt to circumvent
detection. Additionally, the study reviews over 90 existing papers on
publicly available labeled DGA detection, encompassing data sources,
features, and ML models. Finally, the research examines the limits
and strengths of existing methodologies to pave the way for new
detection approaches.

This study employs a spectrum of data science techniques to delve
into the role of cybersecurity systems in identifying DGAs. The
methodology endeavors to evaluate the efficacy of diverse data
science methodologies in fortifying cybersecurity measures,
specifically in uncovering and mitigating threats originating from
DGAs. By conducting a comprehensive analysis of various
algorithms, methodologies, and their utilization in cybersecurity
systems, the aim is to contribute to the comprehension of how data

science can be utilized to reinforce the defenses against malicious
activities, including DGA-based attacks.

The rest of this article is organized as follows. Section 2 gives an
overview of algorithms used inDGA construction. Section 3 discusses
the DGA detection methods using data science; their processes are
detailed, and their challenges and prospects are summarized. Some
selected works are studied and compared in Section 4. A summary
of the main research issues and future directions in the studied field
are given in Section 5. Section 6 gives a conclusion of this work.

2. Construction of Domain Generation Algorithms

The use of advanced methods of computation such as artificial
intelligence (AI), machine learning (ML), and genetic algorithms can
be both a powerful tool and a significant threat in cybersecurity and
intrusion detection [4]. On one hand, these methods can help to
improve cybersecurity by automating tasks such as intrusion
detection, incident response, and threat intelligence. They can
analyze large amounts of data from various sources, such as network
traffic and log files, to identify patterns and anomalies that may
indicate a security incident. They can also learn from past incidents
to improve their ability to detect and respond to future incidents. On
the other hand, these advanced computational methods can also be
used by attackers to evade detection and launch sophisticated
attacks. Adversaries can use AI and ML techniques to develop
malware that can evade traditional security measures and
impersonate legitimate users [5]. They can also use AI and ML to
automate the process of launching and managing attacks, making it
more difficult for defenders to identify and respond to them.

In the context of malware based on DGAs, the seed value plays
a critical role in the construction DGA process; it is often hard-coded
into the malware, and it is the starting point of the algorithm. The use
of advancedmethods of computation makes it difficult to identify the
seed of DGAs, and if the seed value is difficult to identify,
researchers cannot predict the next set of domain names generated
by the DGA, which cannot help with blocking the communication
between the malware and the command and control infrastructure.

There are many methods used to generate domain names, but
the common goal of these methods is to make DGAs hard to be
detected by security systems and take them down; some of these
methods are complex and use advanced methods of computation.
The authors of DGAs also use a top-level domain (TLD) list
which is a program that generates domain names by using a list of
TLDs such as .Com, .Net, .Org, etc. The program may use a
specific rule to combine the TLDs with the domain names, such
as appending them or prepending them.

The following are the methods used to construct DGAs:

Figure 2
Data science process to detect DGAs

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

214

1) Using a date [6]: An algorithm generates domain names using a
specific date. The program may use a specific rule to combine the
date with the domain names, such as appending the date in the
form of YYYYMMDD. This technique has been used for
several years as a way for malicious actors to evade detection
and maintain access to their infrastructure.

2) Combining words from a dictionary [7, 8]: A program
generates domain names by combining words from a
dictionary with a set of characters or numbers. The program
may use a specific rule to combine the words, such as
concatenating them or inserting characters between them.

3) Pseudorandom number generators [9–11]: A program
generates domain names using a pseudorandom number
generator, which creates a sequence of numbers that appears
random but is determined by a seed value. The generated
domain names may be based on a specific pattern, such as
combining a set of randomwords with a set of random characters.

4) Hash-based [12–14]: A program generates domain names by
applying a hash function to a seed value. The generated
domain names are determined by the input to the hash function
and the specific hash algorithm used.

5) Markov chain [15–17]: A program generates domain names by
using a Markov chain model, which is a mathematical model that
describes a sequence of events in which the probability of each
event depends on the state of the system in the previous event.
The program generates domain names by simulating a sequence
of characters based on the probabilities of the previous characters.

6) Deep neural networks [18–20]: Neural networks are designed to
capture long-term dependencies in sequential data and to learn the
underlying patterns and distributions in the data, such as Long
Short-Term Memory (LSTM) or Generative Adversarial Networks
(GANs). It can be used to generate domain names by training the
network on a large dataset of existing domain names and using it
to generate new domain names that are similar in structure.

7) Genetic algorithm [21, 22]: A program generates domain names
by using a genetic algorithm, which is a method that mimics the
process of natural selection to evolve solutions to a problem.
The program generates a population of domain names, and
through a process of selection, crossover, and mutation, it
generates new domain names that fit more according to some
fitness function.

In the context ofDGAdetection against constructionmethods ofDGAs,
it is a constant battle between the adversary and defender, with neither
having a permanent advantage nor superiority. The adversary
continually evolves his techniques to evade detection by using DGAs
to dynamically construct domain names using construction methods,
while the defender continually improves his methods for detecting
and classifying DGAs through feature extraction methods to block
malicious activities and protect the system. As technology and
techniques on both sides continue to advance, the defender needs to
stay up-to-date and proactive in his efforts to detect and prevent
malicious activities. At the same time, the adversary will likely
continue to find new ways to evade detection and carry out his
malicious activities, so the battle will likely continue indefinitely.

We should never underestimate the intelligence of our adversaries,
assuming that they are capable of understanding our plans, anticipating
our actions, and coming up with countermeasures. When we often
assume the intelligence of our adversaries, we improve our capacity
to anticipate possible obstacles, which lowers risks and increases our
chances of success.

By consolidating the techniques used in constructing DGAs, we’ve
contributed to heightening awareness of the risks posed by DGA-based

malware. This effort aids in recognizing recurringpatterns and similarities
in DGA creation, facilitating their detection and blocking, thus fortifying
overall security against malicious domains and cyber assaults. Moreover,
summarizing these methods facilitates a deeper comprehension and
analysis of DGA evolution over time, enabling swifter and more
effective responses to emerging threats.

3. DGA Detection Methods Using Data Science

Examining the domain names’ length, entropy, and character
frequency distribution are some of the features that are typically
examined in order to identify DGAs using data science. These
features are used as inputs to train ML models, which allow DGA-
generated domains to be distinguished from real ones. Examples of
these models are decision trees (DT) and random forests (RF).

3.1. Data science methods

The quality and the quantity of the data are crucial for the DGA
detection. The more data you have, the better the detection rate will
be [23]. Additionally, it is important to preprocess the data and
remove duplicates and irrelevant data before using them for DGA
detection. Therefore, this process should be done consistently and
systematically. This section presents a brief overview of the
techniques used to gather information about DGA-generated domains.
Its role is to provide a concise overview of the methods used,
including the tools and techniques used to collect data and to highlight
the key findings and insights gained from the data collection process.

3.1.1. Summary of collection methods
The summary of data collectionmethods helps to provide context

and an understanding of the data collectionmethods. There are several
ways to collect data from domains for DGA detection:
1) Passive data collection [24, 25]: This involves observing Domain

Name System (DNS) traffic to accumulate a significant dataset of
domains. Achieving this can be accomplished through tools like
tcpdump for capturing and examining network traffic or by
configuring a DNS resolver to log all DNS queries and responses.

2) Active data collection [26]: This entails actively querying
domain name registrars or WHOIS [27] databases to collect
information about registered domains. This can be done using
scripting languages such as Python or R to automate the
process of collecting and parsing the data.

3) Open-source intelligence (OSINT) [28, 29]: This involves using
publicly available information, such as social media to gather
information about domains. This can be done using web
scraping, data mining, or other techniques to extract information
from online sources.

4) Honeypots [30–33]: This method involves setting up a server or a
service that looks like a legitimate service but is used to trap
DGA-generated domains. When a DGA-generated domain is
accessed, it can be logged and added to the dataset.

5) Crowdsourcing [34]: This involves using a community of people
to collect and label data. For example, a website could be set up
where users can submit domains they suspect are DGA-
generated, and then other users verify whether the domains are
legitimate or not.

6) Using Application Programming Interfaces (APIs) [35]: Some
companies, such as malware research companies, provide APIs to
access their data. These APIs can be used to get information about
domains and IP addresses and use them to improve the dataset.

7) Using existing datasets: There are also existing datasets of DGA-
generated domains that are publicly available, such as the Alexa

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

215

[36] dataset, which contains a list of the most popular websites on
the Internet, or the Common Crawl [37] dataset, which contains a
large number of web pages collected from the Internet, or
UMUDGA dataset [38], which contains both benign and
malicious domain names and can be used for training and
evaluating ML algorithms for DGA detection. These datasets
can be used as a starting point for DGA detection.

8) Combining different sources: It is also possible to combine data
from different sources to create a more comprehensive dataset.

3.1.2. Discussion and challenges
In general, data collection methods can result in inaccurate or

incomplete information due to human error, measurement error, or
problems with the data collection instruments.

In addition to providing context, the summary of DGA data
collection methods can also play an important role in evaluating the
effectiveness and reliability of the methods used to detect DGAs. It
can highlight potential limitations and biases in the data collection
process and provide suggestions for improvements or alternative
methods that could be used in the future. The summary given in
Table 1 can also serve as a reference for future research and
analysis, providing a historical record of the methods used and their
outcomes. Overall, the summary of DGA data collection methods is
a valuable tool for understanding and interpreting DGA data and
for improving the quality and reliability of DGA research and analysis.

3.2. Features extracted from DGAs

It is important to note that not all DGAs use the same features and
someDGAs aremore sophisticated than others. Therefore, it is important
to use multiple features to achieve the best detection rate. Additionally, it
is also important to keep updating the extraction of features. Several types
of features can be used to detect and classify DGAs such as those
presented in Table 2. In general, we can categorize features extracted
from domain names into two broad categories.

The first one contains features that depend on the specific
execution of malware samples, which are performed in an efficient
environment with a specific configuration and within a specific

time frame, such as temporal feature, behavioral network feature,
and DNS feature, and this is what we call them aware features.

Another category of features that are only linked to the domain
name and which are therefore independent of contextual knowledge,
such as statistical features, structural features, lexical features, etc., is
what we call free features.

3.3. Data preprocessing

Data preparation is an essential step in getting raw data ready
for analysis [57]. Data must be processed and transformed
into a format that can be used for analysis and modeling in this
process.

It is critical to understand that finding DGAs is a challenging task
that requires technical skill in data science, including data pretreatment,
as well as domain-specific understanding. An introduction to data
preparation techniques is given in this part, along with an
examination of the potential and difficulties that come with them.

3.3.1. Summary of data preprocessing
Data preprocessing, as shown in Figure 3, involves getting data

ready for ML by cleaning it, combining it, making it consistent, and
changing its format. These steps, like cleaning and organizing data,
help make it more accurate and reliable. They also make it easier to
spot important patterns and improve the quality of models. Plus,
preprocessing can make data smaller and faster to work with, which
saves time and makes analysis and decision-making more efficient.

Table 3 represents a summary of data preprocessing methods
with descriptions and references.

3.3.2. Discussion: Challenges and prospects in data
preprocessing

Preparing the data for analysis and modeling is a critical step
that comes with many difficulties and restrictions. The following
are some typical challenges in data preprocessing:
1) Data quality: The accuracy and dependability of the

preprocessed data can be significantly impacted by the quality

Table 1
Challenges of DGA data collection

Challenges Description Prospects

Bias DGAs data collection methods can be biased in various ways; for
example, the sources used by OSINT method may be biased
because it relies on publicly available information.

Collect large DGA datasets from a diverse range of
sources over a long period.

Verification and
validation

Verifying the accuracy and reliability of information collected
through OSINT can be challenging and time-consuming.

Create a test environment of the DGAs collected,
statistical analysis, and test.

Cost Data collection methods can be expensive and time-consuming,
especially when large amounts of data are being collected.

Use of parallel computing and GPU.

Data storage and
management

Storing and managing large amounts of data can be a challenge,
especially when data is being collected from multiple sources.

Develop a storage strategy, and implement data
compression.

Inadequate data Open-source information may not provide all the data needed for a
specific analysis or research project.

Collaborate with OSINT and other sources. Utilize
analytical tools such as machine learning
algorithms.

Integration with
other security
tools

Integrating honeypots with other security tools, such as intrusion
detection systems and firewalls, can be complex and require
specialized knowledge.

Develop strategies to integrate honeypots with
other security tools.

Limited
participation

Crowdsourcing efforts may not reach a large enough audience,
limiting the amount and diversity of data collected.

Develop strategies for crowdsourcing such as
identifying the target audience and providing
clear guidelines.

Data updates Keeping existing datasets up-to-date and relevant can be
challenging, as DGA patterns and behaviors change rapidly.

Automation of the data collection and web
scraping process.

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

216

of the underlying data. Outliers, inconsistent measurement units,
and incorrect data types can be challenging to find and fix when
there are data quality problems.

2) Missing values: One of the biggest challenges in data
preprocessing is handling missing values. Depending on the
amount of missing values and the type of data, various
methods, such as advanced imputation techniques or dropping
the missing observations, may be needed to solve the problem.

3) Data transformation: Converting data into a format that can be
analyzed can be difficult as well. To do this, data may need to be
combined, new variables created, or categorical data turned into
numerical data. For accurate results, choosing the right data
transformation techniques is essential.

Although there are some difficulties in preprocessing data, there are
many opportunities to increase the precision and dependability of
data analysis and modeling results. Organizations can gain better
insights and make better decisions based on their data by
overcoming these obstacles and utilizing data preprocessing to the
fullest extent possible. Here are the prospects for using data
preprocessing in DGA detection.

Preprocessing can make it easier to extract more useful features
from raw data, which can then be used to train machine learning
models for DGA detection.

By ensuring that the data is consistent and well-formed,
preprocessing can help to make the DGA detection system more
resilient to new, unseen data.

Table 2
DGA features

Category Type of features Description and examples References

Aware feature Temporal
features

These include the time at which the domain was registered or accessed and the
frequency of domain name generation.

[39]

Domain Name
System (DNS)

These include the use of DNS data, such as the time of resolution, the IP address of
the resolving server, and the response status code, to identify patterns or anomalies
in the generated domain names.

[40, 41]

Behavioral
network
features

These include the network behavior of the generated domains, such as the IP addresses
they resolve to, the domains they connect to, and the type of traffic they generate.

[42]

Free feature Lexical features These include the use of specific words or phrases within the domain name, such as
common dictionary words, or the use of specific letter or number patterns.

[43, 44]

Linguistic
features

These include the use of specific language in the domain name, such as words or
phrases in a foreign language, or the use of homoglyphs (characters that look
similar to other characters).

[44]

Randomness
features

These include the use of random characters or sequences within the domain name and
the measurement of randomness of the domain name using statistical tests such as
chi-square or Kolmogorov–Smirnov.

[43, 45]

Graph-based
features

These include the analysis of the relationship between domains, such as the topology
of the domain name graph and the clustering coefficient of the domain names.

[46]

Phonetic features These include the use of phonetic similarity or phonetic distance measures to
compare domain names and identify patterns or similarities between them.

[47, 48]

Levenshtein
distance

This measures the difference between two strings, this is a way to measure the
similarity between two domain names.

[44, 49]

Neural network-
based features

These include using neural networks to extract features from the domain names, such
as the use of convolutional neural networks or recurrent neural networks to analyze
the domain names.

[50, 51]

Statistical
features

Include measures such as entropy, n-gram, and word frequency. [44, 52, 53]

Structural
features

These include the length of the domain name, the presence of specific characters or
character sequences, and the presence of specific TLDs.

[54, 55]

Markov chain
features

These include the use of Markov chain models to generate domain names and the
analysis of the generated names to detect patterns or anomalies in the generated names.

[44, 56]

Web-scrapped
features

These can be used to extract information from domain names, such as the following:
the domain names’ authority, popularity, and TLD extensions and keywords.

[44]

Figure 3
Data preprocessing methods

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

217

Automated data preprocessing can speed up DGA detection by
decreasing the time and effort needed for manual data preparation.

By preparing the data for analysis, preprocessing can result in
improved model performance, such as higher accuracy, precision,
and recall in DGA detection.

3.4. Summary of DGA detection methods

This subsection provides an overview of the methodologies
employed for DGA detection, including natural language
processing (NLP), graph-based techniques, time series analysis,
supervised learning, unsupervised learning, semi-supervised
learning, reinforcement learning, and ensemble learning.

Overall, DGA detection using data science involves a
combination of different techniques, depending on the nature of
the DGA and the characteristics of the dataset, such as ML,
network analysis, and statistical methods. The choice of
techniques depends on various factors, including the specific
DGA being used, the size and nature of the dataset, and the
desired level of accuracy. In some cases, a combination of
techniques may be necessary to accurately detect DGAs in a dataset.

3.4.1. Natural language processing (NLP)
NLP techniques [43, 68, 69] are utilized to analyze the patterns

of characters in domain names and generate a probability score
indicating the likelihood that a domain is DGA-generated. This
involves processing textual data to extract features and train ML
models.

NLP techniques can also be used to extract relevant features
from domain names. This may include the following:
1) Character-level features: Length of the domain, frequency of

certain characters, or character sequences.
2) Word-level features: Presence of specific keywords or patterns.
3) Morphological features: Prefixes, suffixes, or other linguistic

elements within the domain name.

Although NLP techniques can be used in detecting DGA activity,
they face significant challenges and weaknesses. One major
difficulty is the rapidly evolving nature of DGAs, which can
generate domain names that mimic legitimate ones, making it hard

for NLP models to distinguish between malicious and benign
domains. Additionally, DGAs can generate large volumes of
domain names, overwhelming NLP-based detection systems and
increasing the likelihood of false positives. Moreover, DGAs can
adapt to evade detection by subtly altering their language patterns,
further complicating NLP-based detection efforts. Limited
applicability is another concern, as NLP techniques may not be
well-suited for detecting DGAs in non-textual data sources such
as network traffic. Furthermore, the computational complexity of
NLP algorithms can pose challenges in real-time detection
scenarios, where rapid analysis of large datasets is required. These
challenges underscore the need for a multifaceted approach to
DGA detection that combines NLP with other techniques such as
ML and network analysis.

3.4.2. Graph-based techniques
Methods based on graphs [46, 70–73] entail building a graph

with nodes representing domains and edges representing their
similarity in order to analyze the structure of domains. Next,
groupings of domains that were probably created by the same
DGA are identified using clustering or community identification
techniques.

While graph-based techniques offer the potential to detect DGA
activity, they encounter significant difficulty. Graph-based
approaches often involve constructing and analyzing large-scale
graphs of domain names and their relationships, which can
become computationally intensive and difficult to scale as the size
of the graph increases. Additionally, ensuring the quality and
reliability of the data used to construct these graphs is essential
for accurate detection.

However, obtaining high-quality data, especially in dynamic
environments where DGAs rapidly generate new domain names,
can be challenging. Inaccurate or incomplete data can lead to false
positives or negatives, undermining the effectiveness of graph-
based detection methods. Addressing these challenges requires the
development of efficient algorithms capable of handling large-
scale graphs while also improving the quality and freshness of the
data used for analysis. Moreover, integrating graph-based
techniques with other detection approaches, such as ML and

Table 3
Data prepossessing methods

Methods Description and examples References

Data cleaning This entails removing the dataset’s inconsistent, redundant, or missing values. [57–59]
Data normalization This entails converting the data into a common scale or format. Normalization aids in minimizing

the influence of variables with various scales on the analysis.
[57, 60, 61]

Data transformation This entails transforming the data into a format that is better suited for analysis, such as changing
category data into numerical data.

[57]

Data reduction Aiming to reduce the size of the data and improve the performance of the models without
sacrificing its information content, it contributes to reducing the dimensionality of the data and
improving the results’ interpretability.

[57, 62]

Feature selection Because numerous features overlap and are frequently connected, it is necessary to choose a subset
of pertinent features from the data for analysis. It is a specific case of data reduction.

[57, 63, 64]

Data resampling To balance the class distribution, the data must either be over- or under-sampled. Resampling can
enhance the effectiveness of machine learning models and help to avoid bias in the analysis of
imbalanced data.

[57, 65]

Data augmentation The goal of data augmentation is to increase the size of the training dataset by creating variations
of existing samples, which can help to reduce overfitting and improve the generalization
performance.

[57, 66]

Data integration The goal of data integration is to provide a single, coherent, and consistent view of data, which is
necessary for informed decision-making and efficient operations.

[67]

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

218

behavioral analysis, can enhance the overall effectiveness of DGA
detection systems.

3.4.3. Time series analysis
By analyzing patterns and fluctuations in domain name

registration and usage over time, time series analysis [74–77]
techniques can help identify anomalous behavior indicative of
DGA-generated domains. These techniques can detect sudden
spikes in domain registrations, unusual patterns in registration
frequency, and other temporal anomalies that may indicate
malicious activity. Additionally, time series analysis can be
combined with other detection methods, such as ML algorithms,
to enhance the accuracy and effectiveness of DGAdetection systems.

Time series analysis also faces several challenges. One
difficulty is the presence of noise and variability in the data,
which can obscure the signals indicative of DGA-generated
domains. Filtering out this noise while preserving relevant
patterns requires robust preprocessing techniques and
sophisticated analysis methods. Additionally, DGAs may exhibit
subtle or evolving temporal patterns, making them harder to detect
using traditional time series analysis approaches. Adapting
algorithms to capture and respond to these dynamic behaviors is
essential for accurate detection. Scaling up time series analysis to
manage extensive datasets efficiently can present computational
hurdles, particularly in real-time contexts. Furthermore, DGAs
might display intricate or changing temporal patterns, which can
complicate their detection using traditional time series analysis
methods. It’s crucial to adjust algorithms to effectively capture
and react to these dynamic behaviors for precise detection.
Additionally, in scenarios where timely analysis is crucial, such as
real-time detection, handling large data volumes efficiently
becomes even more challenging. Overcoming these obstacles
demands ongoing enhancement of techniques and algorithms to
guarantee successful DGA detection through time series analysis.

3.4.4. Supervised learning
Supervised learning techniques [78–80] where the model learns

from labeled examples of both legitimate and malicious domain
names to classify unseen domains involve training ML models on
labeled data consisting of both benign and malicious domains.
Models such as DT, RF, and hidden Markov models (HMM) are
then used to predict the label (malicious or benign) of new,
unseen domains.

However, several difficulties exist in using supervised learning
for DGA detection. One challenge is the availability and quality of
labeled data, as obtaining a comprehensive and accurate dataset of
labeled malicious domains can be difficult due to the constantly
evolving nature of DGAs and the dynamic nature of malicious
activity. Additionally, DGAs can generate vast numbers of unique
domain names, leading to class imbalance issues where there are
far more legitimate domains than malicious ones. This imbalance
can bias the model toward classifying most domains as legitimate,
reducing its effectiveness in detecting DGAs. Moreover, DGAs
can exhibit complex patterns and variations that may not be
adequately captured by simple supervised learning models,
requiring.

3.4.5. Unsupervised learning
Instead of requiring labeled data, unsupervised learning

approaches [74, 81, 82] try to uncover the underlying structure of
the data without any prior information. Patterns in domain data
are found using algorithms like restricted Boltzmann machines
(RBM) and K-means clustering.

Unsupervised learning for DGA detection faces several
challenges, including dependence on data quantity and quality,
finding the ideal number of clusters for domain grouping, poor
compatibility between DGA families, and the challenge of
assessing model performance in the absence of labeled data.
These challenges impede the creation of reliable unsupervised
techniques, calling for creative solutions to successfully resolve
these problems.

3.4.6. Semi-supervised learning
Semi-supervised learning [73, 83, 84] includes using both

labeled and unlabeled data to train models, which can be useful
for detecting DGAs. This approach allows models to learn from a
combination of labeled and unlabeled data, potentially improving
detection accuracy.

This approach addresses the challenge of limited labeled data
availability while also benefiting from the broader context
provided by unlabeled data. However, designing effective semi-
supervised learning algorithms for DGA detection requires careful
consideration of the labeling process, selection of appropriate
features, and model architecture to ensure optimal performance.
Additionally, evaluating model performance in the absence of
comprehensive labeled data remains a challenge in
semi-supervised learning scenarios. Despite these challenges,
semi-supervised learning holds promise for enhancing DGA
detection capabilities by leveraging the combined strengths of
labeled and unlabeled data.

3.4.7. Reinforcement learning
Reinforcement learning [85–88] techniques involve an agent

learning to make decisions by taking actions in an environment to
maximize a reward signal. Algorithms such as Q-learning and
Deep Q Networks (DQN) can be applied to detect DGA activity.
This approach addresses the challenge of the complexity of
implementation, difficulty in defining the reward function,
sensitivity to the choice of algorithm, and not enough labeled data
available.

3.4.8. Ensemble learning
Ensemble learning [50, 89–92] techniques combine the

predictions of multiple individual models to produce a more
accurate overall prediction. Methods like RF, bagging, and
boosting are employed to enhance the performance of DGA
detection models. This approach addresses the challenges of
computational complexity, overfitting, model interpretability, and
the difficulty in selecting individual models.

At this stage of our investigation, we provide an overview of the
methodologies employed for detecting DGAs, while also
highlighting some of the challenges faced in this area. In the
following, we will delve into the detailed challenges encountered
in detecting DGA activities, along with an exploration of selected
works that contribute to enhancing our understanding and
methodologies for combating this threat landscape.

Table 4 presents the summary of the DGA detection methods
using data science with descriptions, examples, references, and the
challenges discussed.

3.5. Discussion: Challenges and prospects in DGA
detection

The use of data science techniques holds great promise for
DGA-based malware detection. However, it is a challenging task
due to the dynamic nature of the threat and the complexity of the

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

219

algorithms used. Table 4 presents some of the most important
challenges in this context. The interpretation of these challenges is
explained below:
1) Limited applicability: NLP is typically used for processing

human language and may not be directly applicable to
detecting DGAs, which are often generated using algorithms
that are not based on natural language. However, the potential
for further development in NLP-based DGA detection is high
due to the constantly improving state of the NLP field, as well
as the need to keep up with the evolving threats posed by
DGA-based malware. New techniques and methods are
developed such as domain adaptation in NLP with transfer
learning and fine-tuning [93, 94]. These techniques allow
models to quickly adapt to new data, which is particularly
important in fields where new data is constantly being
generated, and they can be applied to DGA detection to
improve its accuracy and effectiveness, making it an exciting
area of ongoing research and development.

2) Computational complexity: Most data science techniques can
require a lot of computational resources to train, especially
when dealing with large amounts of data or complex models.
This can make it difficult to apply ML techniques in real-time
or in resource-constrained environments. Additionally, some
methods can have millions of parameters that need to be
trained, which can be computationally expensive and time-
consuming. To overcome these challenges, researchers and
practitioners may need to use more efficient ML algorithms or
employ techniques such as dimensionality reduction or model
compression to reduce the computational complexity of
models. Additionally, cloud-based computing and distributed
processing can also be used to provide the necessary resources
for data science applications.

3) Scalability: As the magnitude of the graph increases, the
intricacy of employing graph-based methodologies can emerge
as a bottleneck, particularly concerning extensive datasets. It is
imperative for researchers and practitioners to proactively

Table 4
DGA detection methods

Methods DGA detection methods References Challenges

Natural language
processing (NLP)

To analyze the patterns of characters in the domain
names and generate a probability score indicating
the likelihood that a domain is DGA-generated.

[43, 68, 69] Limited applicability, computational complexity

Graph-based
techniques

To analyze the structure of the domains. This can
be done by constructing a graph where each
node represents a domain and edges represent
similarity between them. Then, clustering or
community detection algorithms can be applied
to identify groups of domains that are likely to
be generated by the same DGA.

[46, 70–73] Scalability, data quality

Time series analysis The idea is to monitor the domains generated over
time and look for patterns such as sudden spikes in
the number of domains generated in a short time, or
patterns in the way the domains change over time.

[74–77] Collecting time series data, preprocessing the
data

Supervised learning The basic idea is to train a machine learning model
on labeled data that consists of both benign and
malicious domains. The model is then used to
predict the label (malicious or benign) of new,
unseen domains, for example, DT, RF, and
HMM.

[78–80] No enough labeled data available, Evolving
nature of DGAs, Feature engineering

Unsupervised
learning

A machine learning technique that does not require
labeled data. Instead, the algorithm tries to learn the
underlying structure of the data without any prior
knowledge, for example, K-means, and RBM.

[74, 81, 82] Reliance on patterns in the data, number of
clusters, limited interoperability, difficulty of
evaluation

Semi-supervised
learning

A type of machine learning that involves training a
model on both labeled and unlabeled data. This
approach can be useful for detecting DGAs, as it
allows the model to learn from a combination of
labeled data as well as unlabeled data that may
contain similar patterns or characteristics.

[73, 83, 84] Reliance on patterns in the data, number of
clusters, limited interoperability, difficulty of
evaluation

Reinforcement
learning

A type of machine learning technique where an
agent learns to make decisions by taking actions in
an environment to maximize a reward signal, for
example, Q-learning, DQN, and Actor-Critic (AC).

[85–88] The complexity of implementation, difficulty in
defining the reward function, sensitivity to
choice of algorithm, not enough labeled data
available

Ensemble learning A machine learning technique that combines the
predictions of multiple individual models to
produce a more accurate overall prediction, for
example, RF, bagging, and boosting.

[50, 89–92] Computational complexity, overfitting, model
interpretability, difficulty in selecting
individual models

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

220

address these scalability challenges and engineer graph-based
techniques for DGA detection that are more adept and scalable.

4) Data quality and availability: The quality and accessibility of data
wield substantial influence over its accuracy, presenting a notable
challenge. Continuous and meticulous data collection regarding
DGAs is essential, necessitating researchers to perpetually refine
and update the dataset to remain at the forefront of the evolving
DGA landscape.

5) Feature engineering: Feature engineering poses a significant
challenge as it involves extracting pertinent features from
domains. The selection of features holds considerable sway
over the model’s performance.

6) Reliance on patterns in the data: Unsupervised learning relies
on the discovery of patterns within data without the need for prior
knowledge or guidance, which can be difficult in the context of
DGAs as the algorithms used to generate the domains are often
dynamic and evolving.

7) Model interpretability: Because it is more challenging to
pinpoint the causes of individual predictions when using
multiple models in an ensemble, the overall solution may be
more challenging to interpret and comprehend.

8) Overfitting: It is where the model performs poorly on unseen data
because it is too closely fitted to the training data. Researchers and
practitioners need to address these overfitting challenges and
develop more efficient techniques for DGA detection.

9) Sensitivity to choice of algorithm: Ensemble learning and
reinforcement learning are sensitive to the choice of algorithm
and may require significant tuning to achieve good performance.

4. Detailed Comparison of Some Selected DGA
Detection Works

It is not possible to give a thorough and detailed summary of all
works in the field due to the vast amount. However, in Section 3.4,
we have summarized the detection work of DGAs by methods and

not by works without indicating details concerning the algorithm,
data, features, type of classification, real-time detection (RTD),
and outcome of each work.

The approach in this section aims to select publications from the
methods presented in Section 3.4, provide a detailed analysis of their
key aspects, and then compare their respective methodologies. In all
the comparisons we make, we deem weak results whenever the
findings presented in the works are with an accuracy below 75%,
average if accuracy below 85%, accuracy good below 95%, and
excellent above 95%. The results of this comparison are presented
in Table 5.

5. Summary of the Main Research Issues and
Future Direction

Our research has pinpointed various challenges and research
domains in the realm of malware-based DGA detection using data
science, aimed at extracting invaluable insights from pertinent
data. These endeavors are instrumental in fostering intelligent
decision-making for robust cybersecurity solutions. Identified
challenges span data collection, preprocessing, feature extraction,
and machine and deep learning. The most pivotal directions for
exploration by researchers are succinctly outlined below:

1) Direction 1: Source datasets play a critical role. However, most
existing domain name datasets are outdated and may not provide
a complete understanding of the current behavioral patterns of
various malware-based DGAs. Although the existing DGAs data
can be processed to a meaningful level, there are still problems in
the data as we have presented in the subsection 3.1.2.

2) Direction 2: DGAs data could be inconsistent with a certain
DGA-based malware, noisy, incomplete, insignificant,
unbalanced, or incomplete. Such flaws in a DGAs dataset
could harm the learning process and hinder the effectiveness of
models as we presented in subsection 3.3.2. As a result, it is

Table 5
Comparison of selected works

References Algorithms used Related methods RTD Features Data collection Classification Results

[90] DBSCA, HMM, DNN Ensemble learning, time series
analysis

Yes Aware and
free

DNS records Binary Excellent

[89] CNN-LSM-ANN Ensemble leaning Yes No Existing datasets Binary Excellent
[75] DT Supervised learning, time series

analysis
Yes Aware DNS records Multiclass Good

[95] RF, SVM, NB, XGB,
DNN

Supervised leaning, NLP Yes Free Existing datasets Multiclass Excellent

[96] LSTM, neural
embeddings

Unsupervised learning, NLP No No DNS records Binary and
multiclass

Excellent

[73] LSTM, neural
embeddings

Semi-supervised learning, graph
analysis, NLP

Yes Free DNS records Multiclass Excellent

[72] Word graph Graph analysis, NLP Yes Free Existing datasets Binary Excellent
[78] ResNets Supervised leaning Yes No Existing datasets Binary and

multiclass
Excellent

[50] LSTM-CNN- SVM-RF Ensemble leaning, NLP Yes Aware and
free

Existing datasets Binary Excellent

[91] RF-LSTM Ensemble leaning Yes Aware and
free

Passive data
collection

Binary Excellent

[82] Auto encoder Unsupervised leaning Yes No OSINT, existing
datasets

Binary Excellent

[85] Monte Carlo search,
LSTM, CNN

Reinforcement learning Yes No Existing datasets Multiclass Excellent

[97] HMM Supervised leaning No Free DNS records Multiclass Good

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

221

critical to comprehend these issues with cyber data and
successfully address them using both current algorithms and
recently developed algorithms for particular malware based on
DGAs. This might be yet another crucial area for research in
data science for cybersecurity.

3) Direction 3: As malware authors adapt and evolve their
techniques, the features that are effective at detecting DGAs
can also change; therefore, it is vital to employ multiple
features and keep updating the extraction of DGAs features
presented in Section 3.2 because not all DGAs use the same
features and some DGAs are more advanced than others.

4) Direction 4: Detecting DGA using ML and deep learning
methods poses several challenges such as presented in Section
3.4, and researchers must address these issues to improve the
accuracy and reliability of the detection process.

6. Conclusion

In this article, we highlighted the mutually beneficial relationship
between data science and malware-based DGA detection and talked
about a few problems that call for the cooperation of various
research communities. It has become essential to combine data
science and cybersecurity to identify malware based on DGAs. This
cutting-edge method has demonstrated impressive potential for
spotting malicious activities, even those that are complex and well-
hidden. The complexity of the algorithms, the requirement for
frequent updates, and the need for enormous amounts of data present
significant development and implementation challenges, but the
advantages are obvious. The cybersecurity sector must keep
innovating and evolving in order to keep up with society’s growing
reliance on technology and the threat landscape. The accuracy and
efficiency of malware detection systems can be further increased by
utilizing the most recent developments in data science and ML,
providing enhanced protection to businesses, organizations, and
individuals alike. In the end, this survey emphasizes the need for
ongoing research and development in this area to keep up with the
malware and cyberattacks constant evolution. Furthermore, the
methodologies and techniques presented in this study can be adapted
and integrated into existing cybersecurity frameworks to strengthen
defenses against emerging threats. Overall, our research underscores
the importance of leveraging data science in cybersecurity to stay
ahead of cyber adversaries and safeguard digital assets and
infrastructure in an increasingly interconnected world.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

References

[1] Tissir, N., El Kafhali, S., &Aboutabit, N. (2021). Cybersecurity
management in cloud computing: Semantic literature review
and conceptual framework proposal. Journal of Reliable

Intelligent Environments, 7(2), 69–84. https://doi.org/10.
1007/s40860-020-00115-0

[2] Moşolea, V., &Oprişa, C. (2023). Detecting domain generation
algorithms in malware traffic using constrained resources. In
2023 IEEE 19th International Conference on Intelligent
Computer Communication and Processing, 195–202. https://
doi.org/10.1109/ICCP60212.2023.10398684

[3] Zhao, D., Li, H., Sun, X., & Tang, Y. (2023). Detecting DGA-
based botnets through effective phonics-based features. Future
Generation Computer Systems, 143, 105–117. https://doi.org/
10.1016/j.future.2023.01.027

[4] Hassaoui, M., Hanini, M., & El Kafhali, S. (2024).
Unsupervised clustering for a comparative methodology of
machine learning models to detect domain-generated
algorithms based on an alphanumeric features analysis.
Journal of Network and Systems Management, 32(1), 18.
https://doi.org/10.1007/s10922-023-09793-6

[5] Hassaoui, M., Hanini, M., & El Kafhali, S. (2023). A
comparative study of neural networks algorithms in cyber-
security to detect domain generation algorithms based on
mixed classes of data. In International Conference on
Advanced Intelligent Systems for Sustainable Development,
240–250. https://doi.org/10.1007/978-3-031-35251-5_23

[6] Yadav, V. K., Agarwal, S., Uprety, J., & Batham, S. (2014).
SRTS: A novel technique to generate random text. In 2014
International Conference on Computational Intelligence and
Communication Networks, 268–272. https://doi.org/10.1109/
CICN.2014.68

[7] Frankenberg-Garcia, A. (2020). Combining user needs,
lexicographic data and digital writing environments.
Language Teaching, 53(1), 29–43. https://doi.org/10.1017/
S0261444818000277

[8] Jiao, H., Wang, Q., Fan, Z., Liu, J., Du, D., Li, N., & Liu, Y.
(2022). DGGCN: Dictionary based DGA detection method
based on DomainGraph and GCN. In 2022 International
Conference on Computer Communications and Networks,
1–10. https://doi.org/10.1109/ICCCN54977.2022.9868932

[9] Naik, R. B., & Singh, U. (2024). A review on applications of
chaotic maps in pseudo-random number generators and
encryption. Annals of Data Science, 11(1), 25–50. https://
doi.org/10.1007/s40745-021-00364-7

[10] Ryan, C., Kshirsagar, M., Vaidya, G., Cunningham, A., &
Sivaraman, R. (2022). Design of a cryptographically secure
pseudo random number generator with grammatical
evolution. Scientific Reports, 12(1), 8602. https://doi.org/10.
1038%2Fs41598-022-11613-x

[11] Yang, C., Taralova, I., El Assad, S., &Loiseau, J. J. (2022). Image
encryption based on fractional chaotic pseudo-random number
generator and DNA encryption method. Nonlinear Dynamics,
109(3), 2103–2127. https://doi.org/10.1007/s11071-022-07534-z

[12] Hasan, H. A., Al-Layla, H. F., & Ibraheem, F. N. (2022). A
review of hash function types and their applications. Wasit
Journal of Computer and Mathematics Science, 1(3), 75–88.
https://doi.org/10.31185/wjcm.52

[13] Plohmann, D., Yakdan, K., Klatt, M., Bader, J., & Gerhards-
Padilla, E. (2016). A comprehensive measurement study of
domain generating malware. In Proceedings of the 25th
USENIX Conference on Security Symposium, 263–278.
https://dl.acm.org/doi/10.5555/3241094.3241115

[14] Wang, S., Zhao, H., Wang, Y., Huang, J., & Li, K. (2022).
Cross-modal image–text search via efficient discrete class
alignment hashing. Information Processing & Management,
59(3), 102886. https://doi.org/10.1016/j.ipm.2022.102886

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

222

https://doi.org/10.1007/s40860-020-00115-0
https://doi.org/10.1007/s40860-020-00115-0
https://doi.org/10.1109/ICCP60212.2023.10398684
https://doi.org/10.1109/ICCP60212.2023.10398684
https://doi.org/10.1016/j.future.2023.01.027
https://doi.org/10.1016/j.future.2023.01.027
https://doi.org/10.1007/s10922-023-09793-6
https://doi.org/10.1007/978-3-031-35251-5_23
https://doi.org/10.1109/CICN.2014.68
https://doi.org/10.1109/CICN.2014.68
https://doi.org/10.1017/S0261444818000277
https://doi.org/10.1017/S0261444818000277
https://doi.org/10.1109/ICCCN54977.2022.9868932
https://doi.org/10.1007/s40745-021-00364-7
https://doi.org/10.1007/s40745-021-00364-7
https://doi.org/10.1038%2Fs41598-022-11613-x
https://doi.org/10.1038%2Fs41598-022-11613-x
https://doi.org/10.1007/s11071-022-07534-z
https://doi.org/10.31185/wjcm.52
https://dl.acm.org/doi/10.5555/3241094.3241115
https://doi.org/10.1016/j.ipm.2022.102886

[15] Almutiri, T., & Nadeem, F. (2022). Markov models applications
in natural language processing: A survey. International Journal
of Information Technology and Computer Science, 14(2), 1–16.
https://doi.org/10.5815/ijitcs.2022.02.01

[16] Chandra, A., Bongulwar, A., Jadhav, A., Ahire, R., Dumbre,
A., Ali, S., : : : , & Bhatti, S. (2022). Survey on randomly
generating English sentences. EasyChair Preprint: 7655.

[17] Chen, J., Wu, Y., Jia, C., Zheng, H., & Huang, G. (2020).
Customizable text generation via conditional text generative
adversarial network. Neurocomputing, 416, 125–135. https://
doi.org/10.1016/j.neucom.2018.12.092

[18] Assael, Y., Sommerschield, T., Shillingford, B., Bordbar, M.,
Pavlopoulos, J., Chatzipanagiotou, M., : : : , & de Freitas, N.
(2022). Restoring and attributing ancient texts using deep
neural networks. Nature, 603(7900), 280–283. https://doi.
org/10.1038/s41586-022-04448-z

[19] Fatima, N., Imran, A. S., Kastrati, Z., Daudpota, S.M.,&Soomro,
A. (2022). A systematic literature review on text generation using
deep neural network models. IEEE Access, 10, 53490–53503.
https://doi.org/10.1109/ACCESS.2022.3174108

[20] Kwon, H., & Lee, S. (2022). Ensemble transfer attack targeting
text classification systems. Computers & Security, 117,
102695. https://doi.org/10.1016/j.cose.2022.102695

[21] El-Kassas,W. S., Salama, C. R., Rafea, A. A., &Mohamed, H. K.
(2021). Automatic text summarization: A comprehensive survey.
Expert Systems with Applications, 165, 113679. https://doi.org/
10.1016/j.eswa.2020.113679

[22] Jain, A., Arora, A., Morato, J., Yadav, D., & Kumar, K. V.
(2022). Automatic text summarization for Hindi using real
coded genetic algorithm. Applied Sciences, 12(13), 6584.
https://doi.org/10.3390/app12136584

[23] Sordo, M., & Zeng, Q. (2005). On sample size and
classification accuracy: A performance comparison. In
Biological and Medical Data Analysis: 6th International
Symposium, 193–201. https://doi.org/10.1007/11573067_20

[24] Maher, N. A., Senders, J. T., Hulsbergen, A. F., Lamba, N.,
Parker, M., Onnela, J. P., : : : , & Broekman, M. L. (2019).
Passive data collection and use in healthcare: A systematic
review of ethical issues. International Journal of Medical
Informatics, 129, 242–247. https://doi.org/10.1016/j.ijmedinf.
2019.06.015

[25] Xiao, C., Lee, I., Dai, B., Schuurmans, D., & Szepesvari, C. (2022).
The curse of passive data collection in batch reinforcement learning.
In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, 151, 8413–8438.

[26] Roh, Y., Heo, G., & Whang, S. E. (2021). A survey on data
collection for machine learning: A big data-AI integration
perspective. IEEE Transactions on Knowledge and Data
Engineering, 33(4), 1328–1347. https://doi.org/10.1109/TKDE.
2019.2946162

[27] Elliott, K. (2009). The who, what, where, when, and why of
WHOIS: Privacy and accuracy concerns of the WHOIS
database. SMU Science and Technology Law Review, 12(2),
141–172.

[28] Kanta, A., Coisel, I., & Scanlon, M. (2020). A survey exploring
open source intelligence for smarter password cracking.
Forensic Science International: Digital Investigation, 35,
301075. https://doi.org/10.1016/j.fsidi.2020.301075

[29] Suryotrisongko, H., Musashi, Y., Tsuneda, A., & Sugitani, K.
(2022). Robust botnet DGA detection: Blending XAI and
OSINT for cyber threat intelligence sharing. IEEE Access,
10, 34613–34624. https://doi.org/10.1109/ACCESS.2022.
3162588

[30] Akiyama, M., Yagi, T., Yada, T., Mori, T., & Kadobayashi, Y.
(2017). Analyzing the ecosystem of malicious URL redirection
through longitudinal observation from honeypots. Computers &
Security, 69, 155–173. https://doi.org/10.1016/j.cose.2017.01.003

[31] Divya, T., Amritha, P. P., & Viswanathan, S. (2022). A model
to detect domain names generated by DGA malware. Procedia
Computer Science, 215, 403–412. https://doi.org/10.1016/j.pro
cs.2022.12.042

[32] Lee, S., Abdullah, A., & Jhanjhi, N. Z. (2020). A review on
honeypot-based botnet detection models for smart factory.
International Journal of Advanced Computer Science and
Applications, 11(6), 418–435.

[33] Sanjeev, K., Janet, B., & Eswari, R. (2020). Automated cyber
threat intelligence generation from honeypot data. In Inventive
Communication and Computational Technologies:
Proceedings of ICICCT 2019, 591–598. https://doi.org/10.
1007/978-981-15-0146-3_56

[34] Tong, Y., Zhou, Z., Zeng, Y., Chen, L., & Shahabi, C. (2020).
Spatial crowdsourcing: A survey. The VLDB Journal, 29,
217–250. https://doi.org/10.1007/s00778-019-00568-7

[35] Lomborg, S., & Bechmann, A. (2014). Using APIs for data
collection on social media. The Information Society, 30(4),
256–265. https://doi.org/10.1080/01972243.2014.915276

[36] Englehardt, S., & Narayanan, A. (2016). Online tracking: A
1-million-site measurement and analysis. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 1388–1401. https://doi.org/10.
1145/2976749.2978313

[37] Patel, J. M. (2020). Getting structured data from the internet:
Running web crawlers/scrapers on a big data production scale.
USA: Apress.

[38] Zago, M., Pérez, M. G., & Pérez, G. M. (2020). UMUDGA: A
dataset for profiling DGA-based botnet.Computers & Security,
92, 101719. https://doi.org/10.1016/j.cose.2020.101719

[39] Plohmann, D., Yakdan, K., Klatt, M., Bader, J., & Gerhards-
Padilla, E. (2016). A comprehensive measurement study of
domain generating malware. In 25th USENIX Security
Symposium, 263–278.

[40] Schiavoni, S., Maggi, F., Cavallaro, L., & Zanero, S. (2014).
Phoenix: DGA-based botnet tracking and intelligence. In
Detection of Intrusions and Malware, and Vulnerability
Assessment: 11th International Conference, 192–211. https://
doi.org/10.1007/978-3-319-08509-8_11

[41] Schüppen, S., Teubert, D., Herrmann, P., & Meyer, U. (2018).
Feature-based automated NXDomain classification and
intelligence. Retrieved from: https://www.usenix.org/sites/de
fault/files/conference/protected-files/security18_slides_schu
ppen.pdf

[42] Bisio, F., Saeli, S., Lombardo, P., Bernardi, D., Perotti, A., &
Massa, D. (2017). Real-time behavioral DGAdetection through
machine learning. In International Carnahan Conference on
Security Technology, 1–6. https://doi.org/10.1109/CCST.
2017.8167790

[43] Hamroun, C., Amamou, A., Haddadou, K., Haroun, H., &
Pujolle, G. (2022). A review on lexical based malicious
domain name detection methods. In 2022 6th Cyber Security
in Networking Conference, 1–7. https://doi.org/10.1109/
CSNet56116.2022.9955618

[44] Upadhyay, S., & Ghorbani, A. (2020). Feature extraction
approach to unearth domain generating algorithms (DGAS).
In 2020 IEEE International Conference on Dependable,
Autonomic and Secure Computing, International Conference
on Pervasive Intelligence and Computing, International

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

223

https://doi.org/10.5815/ijitcs.2022.02.01
https://doi.org/10.1016/j.neucom.2018.12.092
https://doi.org/10.1016/j.neucom.2018.12.092
https://doi.org/10.1038/s41586-022-04448-z
https://doi.org/10.1038/s41586-022-04448-z
https://doi.org/10.1109/ACCESS.2022.3174108
https://doi.org/10.1016/j.cose.2022.102695
https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/10.3390/app12136584
https://doi.org/10.1007/11573067_20
https://doi.org/10.1016/j.ijmedinf.2019.06.015
https://doi.org/10.1016/j.ijmedinf.2019.06.015
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1016/j.fsidi.2020.301075
https://doi.org/10.1109/ACCESS.2022.3162588
https://doi.org/10.1109/ACCESS.2022.3162588
https://doi.org/10.1016/j.cose.2017.01.003
https://doi.org/10.1016/j.procs.2022.12.042
https://doi.org/10.1016/j.procs.2022.12.042
https://doi.org/10.1007/978-981-15-0146-3_56
https://doi.org/10.1007/978-981-15-0146-3_56
https://doi.org/10.1007/s00778-019-00568-7
https://doi.org/10.1080/01972243.2014.915276
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1016/j.cose.2020.101719
https://doi.org/10.1007/978-3-319-08509-8_11
https://doi.org/10.1007/978-3-319-08509-8_11
https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_schuppen.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_schuppen.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/security18_slides_schuppen.pdf
https://doi.org/10.1109/CCST.2017.8167790
https://doi.org/10.1109/CCST.2017.8167790
https://doi.org/10.1109/CSNet56116.2022.9955618
https://doi.org/10.1109/CSNet56116.2022.9955618

Conference on Cloud and Big Data Computing, and
International Conference on Cyber Science and Technology
Congress, 399–405. https://doi.org/10.1109/DASC-PICom-
CBDCom-CyberSciTech49142.2020.00077

[45] Satoh, A., Nakamura, Y., Nobayashi, D., & Ikenaga, T. (2018).
Estimating the randomness of domain names for DGA bot
callbacks. IEEE Communications Letters, 22(7), 1378–1381.
https://doi.org/10.1109/LCOMM.2018.2828800

[46] Dong, Z., Chen, X., Zhao, J., Zhao, S., & Wu, J. (2022).
Malicious domain name detection based on knowledge
graph. In 2022 IEEE International Conference on Sensing,
Diagnostics, Prognostics, and Control, 251–256. https://
doi.org/10.1109/SDPC55702.2022.9915824

[47] Peng, H., Ma, Y., Poria, S., Li, Y., & Cambria, E. (2021).
Phonetic-enriched text representation for Chinese sentiment
analysis with reinforcement learning. Information Fusion, 70,
88–99. https://doi.org/10.1016/j.inffus.2021.01.005

[48] Manikandan, N., Ruby, D., Murali, S., & Sharma, V. (2022).
Performance analysis of DGA-driven botnets using artificial
neural networks. In 2022 10th International Conference on
Reliability, Infocom Technologies and Optimization (Trends
and Future Directions), 1–6. https://doi.org/10.1109/
ICRITO56286.2022.9965044

[49] Coates, P., &Breitinger, F. (2023). Identifying document similarity
using a fast estimation of the Levenshtein Distance based on
compression and signatures. arXiv Preprint:2307.11496. https://
doi.org/10.48550/arXiv.2307.11496

[50] Hassaoui, M., Hanini, M., & El Kafhali, S. (2023). Domain
generated algorithms detection applying a combination of a
deep feature selection and traditional machine learning
models. Journal of Computer Security, 31(1), 85–105.
https://doi.org/10.3233/JCS-210139

[51] Wang, Z., & Guo, Y. (2021). Neural networks based domain
name generation. Journal of Information Security and
Applications, 61, 102948. https://doi.org/10.1016/j.jisa.2021.
102948

[52] Cucchiarelli, A., Morbidoni, C., Spalazzi, L., & Baldi, M.
(2021). Algorithmically generated malicious domain names
detection based on n-grams features. Expert Systems with
Applications, 170, 114551. https://doi.org/10.1016/j.eswa.
2020.114551

[53] Li, X., Li, Z., Xie, H., & Li, Q. (2021). Merging statistical
feature via adaptive gate for improved text classification.
Proceedings of the AAAI Conference on Artificial
Intelligence, 35(15), 13288–13296. https://doi.org/10.1609/
aaai.v35i15.17569

[54] Ahluwalia, A., Traore, I., Ganame, K., & Agarwal, N. (2017).
Detecting broad length algorithmically generated domains. In
Intelligent, Secure, and Dependable Systems in Distributed
and Cloud Environments: First International Conference,
19–34. https://doi.org/10.1007/978-3-319-69155-8_2

[55] Patsakis, C., & Casino, F. (2021). Exploiting statistical and
structural features for the detection of domain generation
algorithms. Journal of Information Security and
Applications, 58, 102725. https://doi.org/10.1016/j.jisa.2020.
102725

[56] Yang, J., & Wang, H. H. (2010). Text classification algorithm
based on hidden Markov model. Journal of Computer
Applications, 30(9), 2348–2350.

[57] Maharana, K., Mondal, S., & Nemade, B. (2022). A review:
Data pre-processing and data augmentation techniques.
Global Transitions Proceedings, 3(1), 91–99. https://doi.org/
10.1016/j.gltp.2022.04.020

[58] Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data
cleaning: Overview and emerging challenges. In Proceedings
of the 2016 International Conference on Management of
Data, 2201–2206. https://doi.org/10.1145/2882903.2912574

[59] Ilyas, I. F., & Rekatsinas, T. (2022). Machine learning and data
cleaning: Which serves the other? Journal of Data and
Information Quality, 14(3), 13. https://doi.org/10.1145/
3506712

[60] Singh, D., & Singh, B. (2020). Investigating the impact of data
normalization on classification performance. Applied Soft
Computing, 97, 105524. https://doi.org/10.1016/j.asoc.2019.
105524

[61] Tang, L., Li, J., Du, H., Li, L., Wu, J., & Wang, S. (2022). Big
data in forecasting research: A literature review. Big Data
Research, 27, 100289. https://doi.org/10.1016/j.bdr.2021.
100289

[62] Namey, E., Guest, G., Thairu, L., & Johnson, L. (2008). Data
reduction techniques for large qualitative data sets. In G. Guest
& K. M. MacQueen (Eds.), Handbook for team-based
qualitative research (pp. 137–161). Rowman & Littlefield
Publishing Group.

[63] Dhal, P., & Azad, C. (2022). A comprehensive survey on
feature selection in the various fields of machine learning.
Applied Intelligence, 52(4), 4543–4581. https://doi.org/10.
1007/s10489-021-02550-9

[64] Venkatesh, B., & Anuradha, J. (2019). A review of feature
selection and its methods. Cybernetics and Information
Technologies, 19(1), 3–26. https://doi.org/10.2478/cait-2019-
0001

[65] Bagui, S., & Li, K. (2021). Resampling imbalanced data for
network intrusion detection datasets. Journal of Big Data,
8(1), 6. https://doi.org/10.1186/s40537-020-00390-x

[66] Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S.,
Mitamura, T., & Hovy, E. (2021). A survey of data
augmentation approaches for NLP. arXiv Preprint:2105.03075.
https://doi.org/10.48550/arXiv.2105.03075

[67] Isaac, N. J., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-
Supan, P. H., Browning, E., : : : , & O’Hara, R. B. (2020).
Data integration for large-scale models of species
distributions. Trends in Ecology & Evolution, 35(1), 56–67.
https://doi.org/10.1016/j.tree.2019.08.006

[68] Balyan, R., McCarthy, K. S., & McNamara, D. S. (2020).
Applying natural language processing and hierarchical
machine learning approaches to text difficulty classification.
International Journal of Artificial Intelligence in Education,
30(3), 337–370. https://doi.org/10.1007/s40593-020-00201-7

[69] Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020).
Natural language processing (NLP) in management research:
A literature review. Journal of Management Analytics, 7(2),
139–172. https://doi.org/10.1080/23270012.2020.1756939

[70] Aravind, M., Sujadevi, V. G., Krishnan, M. R., AU, P. S., Pal,
S., Vazhayil, A., : : : , & Poornachandran, P. (2022). Malicious
node identification for DNS data using graph convolutional
networks. In 2022 IEEE 7th International Conference on
Recent Advances and Innovations in Engineering, 104–109.
https://doi.org/10.1109/ICRAIE56454.2022.10054347

[71] Deng, Z., Sun, C., Zhong, G., & Mao, Y. (2022). Text
classification with attention gated graph neural network.
Cognitive Computation, 14(4), 1464–1473. https://doi.org/10.
1007/s12559-022-10017-3

[72] Pereira,M., Coleman, S., Yu, B., DeCock,M.,&Nascimento, A.
(2018). Dictionary extraction and detection of algorithmically
generated domain names in passive DNS traffic. In Research

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

224

https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00077
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00077
https://doi.org/10.1109/LCOMM.2018.2828800
https://doi.org/10.1109/SDPC55702.2022.9915824
https://doi.org/10.1109/SDPC55702.2022.9915824
https://doi.org/10.1016/j.inffus.2021.01.005
https://doi.org/10.1109/ICRITO56286.2022.9965044
https://doi.org/10.1109/ICRITO56286.2022.9965044
https://doi.org/10.48550/arXiv.2307.11496
https://doi.org/10.48550/arXiv.2307.11496
https://doi.org/10.3233/JCS-210139
https://doi.org/10.1016/j.jisa.2021.102948
https://doi.org/10.1016/j.jisa.2021.102948
https://doi.org/10.1016/j.eswa.2020.114551
https://doi.org/10.1016/j.eswa.2020.114551
https://doi.org/10.1609/aaai.v35i15.17569
https://doi.org/10.1609/aaai.v35i15.17569
https://doi.org/10.1007/978-3-319-69155-8_2
https://doi.org/10.1016/j.jisa.2020.102725
https://doi.org/10.1016/j.jisa.2020.102725
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1016/j.gltp.2022.04.020
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/3506712
https://doi.org/10.1145/3506712
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.bdr.2021.100289
https://doi.org/10.1016/j.bdr.2021.100289
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1186/s40537-020-00390-x
https://doi.org/10.48550/arXiv.2105.03075
https://doi.org/10.1016/j.tree.2019.08.006
https://doi.org/10.1007/s40593-020-00201-7
https://doi.org/10.1080/23270012.2020.1756939
https://doi.org/10.1109/ICRAIE56454.2022.10054347
https://doi.org/10.1007/s12559-022-10017-3
https://doi.org/10.1007/s12559-022-10017-3

in Attacks, Intrusions, and Defenses: 21st International
Symposium, 295–314. https://doi.org/10.1007/978-3-030-
00470-5_14

[73] Yan, F., Liu, J., Gu, L., & Chen, Z. (2020). A semi-supervised
learning scheme to detect unknown DGA domain names based
on graph analysis. In 2020 IEEE 19th International Conference
on Trust, Security and Privacy in Computing and
Communications, 1578–1583. https://doi.org/10.1109/Trust
Com50675.2020.00218

[74] Bäßler, D., Kortus, T., & Gühring, G. (2022). Unsupervised
anomaly detection in multivariate time series with online
evolving spiking neural networks. Machine Learning, 111(4),
1377–1408. https://doi.org/10.1007/s10994-022-06129-4

[75] Bonneton, A., Migault, D., Senecal, S., & Kheir, N. (2015).
DGA bot detection with time series decision trees. In 2015
4th International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security, 42–53.
https://doi.org/10.1109/BADGERS.2015.016

[76] Cook, A. A., Mısırlı, G., & Fan, Z. (2020). Anomaly detection
for IoT time-series data: A survey. IEEE Internet of Things
Journal, 7(7), 6481–6494. https://doi.org/10.1109/JIOT.
2019.2958185

[77] Schmidl, S., Wenig, P., & Papenbrock, T. (2022). Anomaly
detection in time series: A comprehensive evaluation.
Proceedings of the VLDB Endowment, 15(9), 1779–1797.
https://doi.org/10.14778/3538598.3538602

[78] Drichel, A., Meyer, U., Schüppen, S., & Teubert, D. (2020).
Analyzing the real-world applicability of DGA classifiers. In
Proceedings of the 15th International Conference on
Availability, Reliability and Security, 15. https://doi.org/10.
1145/3407023.3407030

[79] Jyothsna, P. V., Prabha, G., Shahina, K. K., & Vazhayil, A.
(2019). Detecting DGA using deep neural networks (DNNs).
In Security in Computing and Communications: 6th
International Symposium, 695–706. https://doi.org/10.1007/
978-981-13-5826-5_55

[80] Tuan, T. A., Long, H. V., & Taniar, D. (2022). On detecting and
classifying DGA botnets and their families. Computers &
Security, 113, 102549. https://doi.org/10.1016/j.cose.2021.
102549

[81] Gong, D., Liu, L., Le, V., Saha, B., Mansour,M. R., Venkatesh,
S., & van den Hengel, A. (2019). Memorizing normality to
detect anomaly: Memory-augmented deep autoencoder for
unsupervised anomaly detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
1705–1714.

[82] Park, K. H., Song, H. M., Do Yoo, J., Hong, S. Y., Cho, B.,
Kim, K., & Kim, H. K. (2022). Unsupervised malicious
domain detection with less labeling effort. Computers &
Security, 116, 102662. https://doi.org/10.1016/j.cose.2022.
102662

[83] Cruciani, F., Moore, S., Quigley, B., Nugent, C. D., & Sani, S.
(2021). Semi-supervised detection of algorithmically generated
domains using neural network-based autoencoders. In
AI-CyberSec Workshop 2021: Workshop on Artificial
Intelligence and Cyber Security, 1–9.

[84] Yu, B., Pan, J., Gray, D., Hu, J., Choudhary, C., Nascimento,A. C.,
& de Cock, M. (2019). Weakly supervised deep learning for the
detection of domain generation algorithms. IEEE Access, 7,
51542–51556. https://doi.org/10.1109/ACCESS.2019.2911522

[85] Cheng, H., Fang, Y., Chen, L., & Cai, J. (2019). Detecting
domain generation algorithms based on reinforcement

learning. In 2019 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery,
261–264. https://doi.org/10.1109/CyberC.2019.00051

[86] dos Santos, R. R., Viegas, E. K., Santin, A. O., & Cogo, V. V.
(2023). Reinforcement learning for intrusion detection: More
model longness and fewer updates. IEEE Transactions on
Network and Service Management, 20(2), 2040–2055.
https://doi.org/10.1109/TNSM.2022.3207094

[87] Landen, M., Chung, K., Ike, M., Mackay, S., Watson, J. P., &
Lee, W. (2022). DRAGON: Deep reinforcement learning for
autonomous grid operation and attack detection. In
Proceedings of the 38th Annual Computer Security
Applications Conference, 13–27. https://doi.org/10.1145/
3564625.3567969

[88] Nguyen, T. T., & Reddi, V. J. (2023). Deep reinforcement
learning for cyber security. IEEE Transactions on Neural
Networks and Learning Systems, 34(8), 3779–3795. https://
doi.org/10.1109/TNNLS.2021.3121870

[89] Highnam, K., Puzio, D., Luo, S., & Jennings, N. R. (2021).
Real-time detection of dictionary DGA network traffic using
deep learning. SN Computer Science, 2(2), 110. https://doi.
org/10.1007/s42979-021-00507-w

[90] Li, Y., Xiong, K., Chin, T., & Hu, C. (2019). A machine
learning framework for domain generation algorithm-based
malware detection. IEEE Access, 7, 32765–32782. https://
doi.org/10.1109/ACCESS.2019.2891588

[91] Sivaguru, R., Peck, J., Olumofin, F., Nascimento, A., & de
Cock, M. (2020). Inline detection of DGA domains using
side information. IEEE Access, 8, 141910–141922. https://
doi.org/10.1109/ACCESS.2020.3013494

[92] Zhou, Y., Yang, L., Wang, Z., Li, G., & Ning, X. (2022). DNS
attack detection based on multi-dimensional fusion model. In
2022 International Conference on Networking and Network
Applications, 74–81. https://doi.org/10.1109/NaNA56854.2022.
00021

[93] Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., & Feris,
R. (2019). SpotTune: Transfer learning through adaptive fine-
tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4805–4814.

[94] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., : : : , &
He, Q. (2021). A comprehensive survey on transfer learning.
Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.
1109/JPROC.2020.3004555

[95] Wang, T., Chen, L. C., & Genc, Y. (2021). A dictionary-based
method for detecting machine-generated domains. Information
Security Journal: A Global Perspective, 30(4), 205–218.
https://doi.org/10.1080/19393555.2020.1834650

[96] Morbidoni, C., Spalazzi, L., Teti, A., & Cucchiarelli, A. (2022).
Leveraging n-gram neural embeddings to improve deep
learning DGA detection. In Proceedings of the 37th ACM/
SIGAPP Symposium on Applied Computing, 995–1004.
https://doi.org/10.1145/3477314.3507269

[97] Fu, Y., Yu, L., Hambolu, O., Ozcelik, I., Husain, B., Sun, J.,
: : : , & Brooks, R. R. (2017). Stealthy domain generation
algorithms. IEEE Transactions on Information Forensics
and Security, 12(6), 1430–1443. https://doi.org/10.1109/
TIFS.2017.2668361

How to Cite: Hassaoui, M., Hanini, M., & El Kafhali, S. (2024). Data Science in
Cybersecurity to Detect Malware-Based Domain Generation Algorithm:
Improvement, Challenges, and Prospects. Journal of Computational and Cognitive
Engineering, 3(3), 213–225. https://doi.org/10.47852/bonviewJCCE42022875

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

225

https://doi.org/10.1007/978-3-030-00470-5_14
https://doi.org/10.1007/978-3-030-00470-5_14
https://doi.org/10.1109/TrustCom50675.2020.00218
https://doi.org/10.1109/TrustCom50675.2020.00218
https://doi.org/10.1007/s10994-022-06129-4
https://doi.org/10.1109/BADGERS.2015.016
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.1109/JIOT.2019.2958185
https://doi.org/10.14778/3538598.3538602
https://doi.org/10.1145/3407023.3407030
https://doi.org/10.1145/3407023.3407030
https://doi.org/10.1007/978-981-13-5826-5_55
https://doi.org/10.1007/978-981-13-5826-5_55
https://doi.org/10.1016/j.cose.2021.102549
https://doi.org/10.1016/j.cose.2021.102549
https://doi.org/10.1016/j.cose.2022.102662
https://doi.org/10.1016/j.cose.2022.102662
https://doi.org/10.1109/ACCESS.2019.2911522
https://doi.org/10.1109/CyberC.2019.00051
https://doi.org/10.1109/TNSM.2022.3207094
https://doi.org/10.1145/3564625.3567969
https://doi.org/10.1145/3564625.3567969
https://doi.org/10.1109/TNNLS.2021.3121870
https://doi.org/10.1109/TNNLS.2021.3121870
https://doi.org/10.1007/s42979-021-00507-w
https://doi.org/10.1007/s42979-021-00507-w
https://doi.org/10.1109/ACCESS.2019.2891588
https://doi.org/10.1109/ACCESS.2019.2891588
https://doi.org/10.1109/ACCESS.2020.3013494
https://doi.org/10.1109/ACCESS.2020.3013494
https://doi.org/10.1109/NaNA56854.2022.00021
https://doi.org/10.1109/NaNA56854.2022.00021
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1080/19393555.2020.1834650
https://doi.org/10.1145/3477314.3507269
https://doi.org/10.1109/TIFS.2017.2668361
https://doi.org/10.1109/TIFS.2017.2668361
https://doi.org/10.47852/bonviewJCCE42022875

	Data Science in Cybersecurity to Detect Malware-Based Domain Generation Algorithm: Improvement, Challenges, and Prospects
	1. Introduction
	2. Construction of Domain Generation Algorithms
	3. DGA Detection Methods Using Data Science
	3.1. Data science methods
	3.1.1. Summary of collection methods
	3.1.2. Discussion and challenges

	3.2. Features extracted from DGAs
	3.3. Data preprocessing
	3.3.1. Summary of data preprocessing
	3.3.2. Discussion: Challenges and prospects in data preprocessing

	3.4. Summary of DGA detection methods
	3.4.1. Natural language processing (NLP)
	3.4.2. Graph-based techniques
	3.4.3. Time series analysis
	3.4.4. Supervised learning
	3.4.5. Unsupervised learning
	3.4.6. Semi-supervised learning
	3.4.7. Reinforcement learning
	3.4.8. Ensemble learning

	3.5. Discussion: Challenges and prospects in DGA detection

	4. Detailed Comparison of Some Selected DGA Detection Works
	5. Summary of the Main Research Issues and Future Direction
	6. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

