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Abstract: Transfer learning (TL) is a popular phrase in deep learning (DL) domain. It is one of the latest artificial intelligence (AI) tech-
nologies that has a significant impact on big data analysis. Methods of traditional machine learning (ML) require the availability of an
adequate quantity of training data as well as similarity of characteristics among the feature spaces corresponding to training and test data
while performing supervised learning tasks. However, in real-life analytical problems, data scarcity often arises. In such scenarios, the TL
approach has shown effectiveness in transferring knowledge from the source tasks that had large training data to a target task that has less
training data. Basically, in TL, a model that has been trained on one task is essentially applied to a second related (but not exact) task. In this
way, the issue of distribution mismatch can also be addressed. TL is not like conventional machine learning algorithms that try to learn each
task starting from the beginning. Meteorological research is such an example of big data analysis which often faces the data scarcity issue.
The current study addresses the contemporary challenges in weather forecasting that can be solved (or better dealt with) using TL methods.
It presents a brief review of earlier research with the evolution of various technologies used since 1990s, followed by potential applications
of TL algorithms to several key challenges in weather prediction, which includes the prediction of air quality, thunderstorms, precipitation,
visibility, and cyclones, among others. Special emphasis is given to high-impact weather (HIW) prediction. These high-impact events are
extremely difficult to predict, and they can cause enormous property damage and fatalities around the world. TL techniques have shown
advantages in predicting HIW. Various challenging issues in implementing TL technology are then discussed. Finally, we address vari-
ous prospects associated with TL, propose new research directions, and more importantly mention some concerns for beginners in DL-TL
research. An extensive list of references is also provided.
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1. Introduction

Forecasting of weather and climate has been crucial for human-
ity.The significanceofweather forecasting lies in its ability to predict
future climatic expectations. Transitioning from personal planning
to extensive commercial development, agricultural activity, con-
struction, and infrastructure development, weather forecasting is an
essential tool that facilitates numerous aspects of human life and soci-
etal activities. The weather in any given area or location is a major
factoras it cansignificantly impactcropproductivity throughoutvari-
ousstagesofgrowthanddevelopment.Weathervariabilitythroughout
the crop season, such as onset of monsoon, early or delayed mon-
soon,heavyrainfallor floodcondition, insufficient rainfallordrought
condition, heat waves, and cold waves, can impact on crop produc-
tion.This in turn enhances agricultural productivitybydecreasing the
risks and losses and enhancing water usage efficiency. Prediction of
weatherassistspeoplespecially farmersandcommunities inplanning
for and responding to aforementioned weather-related occurrences.
In addition tominimizing property damage, this can assist save lives.
Precise weather forecasts are also necessary for decision-making in
sectors includingenergy, transportation,water, agriculture, andemer-
gency response.Weather predictions are also essential in aviation and
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marine operations, assisting pilots and ship captains in planning safe
routes. Ingeneral, sustainableenvironmentalpractices,economicsta-
bility, and public safety are enhanced by preciseweather forecasting.
But there is still a significant obstacle for scientists, particularly in
tropical areas for accurately predicting meteorological phenomena.
Thus, an accurate weather forecast is a crucial adaptationmeasure as
it is necessary to protect lives and livelihoods from occurrences of
high-impact weather (HIW).

HIW signifies extreme weather conditions that have the poten-
tial to cause significant disruption or damage to property and life.
Although we are unable to control these occurrences, we may
strengthen our resistance to these HIW by becoming more adept at
anticipating and improving the prediction system to forecast such
kinds of phenomena.Weather prediction or forecasting involves pre-
dicting the state of the land, ocean, and atmosphere, by analyzing the
change in meteorological variables for a specific location and time.
This process involves collection of quantitative data, a preprocess-
ing framework to address the quality issue of data and analysis of
data. For precise forecasts, meteorologists use atmospheric models.
These are a series of formulas that accurately depict the condition of
the atmosphere. The actual state of the atmosphere is determined by
combining the data obtained from the models with the information
gathered from various weather stations.

The present article deals with a state-of-the-art review on
weather prediction, with emphasis on HIW, in the framework of
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transfer learning (TL), which is an emerging technology in artifi-
cial intelligence (AI). Before we mention the scope and novelty of
the paper, we explain in brief the evolution of various technologies
including AI and TL since 19th century as used in weather predic-
tion and climate analytics problems.

The advent of modern technologies like the electronic com-
puter, remote sensing, and telegraph has completely changed the
platform of weather prediction. Plotting weather charts was made
possible by the telegraph in the middle of the 19th century, as
it allowed for the rapid transmission of weather observation data
across great distances. A century or so later, Charney et al. [1]
used the first general-purpose electronic computer, the ENIAC,
to successfully perform a computer simulation of the weather.
Using an IBM 701, one of the first mainframe computers, the U.S.
Joint Numerical Weather Prediction Unit began operational numer-
ical weather prediction (NWP) in 1955. Since then, the computer
industry has experienced fast growth, and NWP’s use of high-
performance computers (HPCs) has emerged as a critical technology
for weather forecasting. Satellite remote sensing was made possi-
ble in the 1970s by advancements in space exploration technology.
Since several weather satellites have been launched, it was impera-
tive to update NWP as quickly as possible with this new information.
The current weather forecast mostly uses satellite data and NWP
with HPCs [2].

In meteorology, statistical techniques are used as the pri-
mary method of weather prediction before the development of
computational models. Statistical prediction techniques are used
in data-driven weather predictions, both short-term and long-term
processes. Traditional statistical methods rely on the linear assump-
tion that is inconsistent with the nonlinear characteristics of reality,
thereby having some consequences. When it comes to the task of
meteorological forecasting, physical models are often found to be
more accurate than statistical ones. Physical models are based on a
fundamental set of concepts from physics, including Newton’s laws
of motion, the conservation of mass and energy, and the laws of ther-
modynamics. In meteorology, such physical models are particularly
based on NWP and climate modeling. The forecast of NWP ranges
from local to regional and global with a timescale of nowcasting to
long-range weather forecasting. Weather forecasting nowadays uses
the NWP. While aiming for extremely precise meteorological fore-
casts over a period of days or weeks, NWP is mostly concerned with
short-to-medium-range weather prediction. Though NWP provides
greater accuracy and reliability, one of the significant issues is the
initial state of the atmosphere, which is not fully understood. It faces
challenges such as errors due to the chaotic nature of the atmosphere.
Thus, the accuracy of the prediction decreases and the time gap
between actual and predicted enhances. Further, there are inherent
diversity and uncertainties present in the dataset limiting the perfor-
mance of NWP. Finally, the theory-based nonlinear equations that
are discussed can heavily depend on supercomputer performance.
Therefore, conventional methods have some limitations, highlight-
ing the requirement for novel approaches.

Around 2010, “Big data” drew the attention of applied
researchers and started revolutionizing the weather prediction once
more. Big data is mainly characterized by four Vs, viz., large vol-
ume, velocity, variety, and veracity. Since huge weather data are
available, meteorologists got engaged in using artificial intelligence
(AI) and machine learning (ML) techniques to predict weather
events. The predictions of these models are seen to be faster than
those of physical models and their outcomes are more precise than

those of statistical models. Besides, ML (learning the patterns from
previous data or examples) can be utilized for downscaling and cor-
rection of errors to improve weather and climate prediction. Thus,
AI-ML has great potential for improving prediction results and pro-
viding us with a thorough understanding of terrestrial, marine, and
atmospheric processes.

AI research deals with developing intelligent systems using a
set of algorithms that attempt to mimic human intelligence. ML, a
component (subset) of AI, deals with the tasks in which a computer
system or a machine can learn patterns from data and generate
predictions without the need for human intervention. These predic-
tions can be produced either by unsupervised learning, in which
algorithms learn patterns from unlabeled data, or supervised learn-
ing, in which algorithms discover general patterns in labeled data.
In real-life problems, data (or examples) may be labeled, unla-
beled, or both. Although the supervised learning techniques are
mainly used for regression and data classification for a range of
algorithms including random forest, k-nearest neighbors, decision
trees, support vector machines, and linear regression, they can also
be effective for data categorization. Unsupervised learning uses
unlabeled datasets, where the learning is mostly based on clus-
tering algorithms that categorize the training data depending on
their different characteristics. Artificial neural networks (ANNs)
are thought to be excellent candidates for ML since they can learn
the relationship between input and output from examples. ANNs
enjoy characteristics like adaptivity, speed, robustness/ ruggedness,
and optimality [3]. ANN models using interconnected layers are
designed to mimic the function and structure of the human brain.
ANN is trained with training data, and it is expected that the model
will behave accurately with the actual dataset in the concerned prob-
lem domain. Multilayer perceptron (MLP) is a complex-layered
architecture of feedforward ANN that uses a backpropagation algo-
rithm for training the model. It is capable of modeling/generating
nonlinear boundaries between classes depending on the number of
nodes and layers.

The development of deep learning (DL) was aided by several
advances in multilayered neural networks in the early 2000s. DL
refers to learning in depth in different stages. This is a specialized
and advanced version of ML. DL differs from conventional ML in
the sense that it primarily learns the data representation, unlike the
task-specific techniques as done in ML. Today, we have an abun-
dant supply of data, so DL becomes a natural andmeaningful choice.
Accordingly, DL has grown in prominence, as compared to ML, in
recent years as a powerful tool for accurately analyzing “Big data.”
Both ML and DL have proved their efficacy in various domains.
These include speech recognition [4], natural language processing
(NLP) [5], image classification [6], object detection and segmenta-
tion [7], video tracking [8], medical science [9, 10], classification of
plant diseases [11], and forecasting stock markets [12] and natural
hazards prediction [13], among others.

For accurate representation and prediction of weather phenom-
ena, advanced AI tools based onML-DL have recently been popular
owing to the identification of nonlinear relationships and improved
performance. Conventional neural network learning (shallow learn-
ing) was widely used in early attempts to simulate the physical
processes in meteorology while using less computational power.
Such investigations into the problem of weather forecasting include
those by Chaudhuri et al. [14, 15], Dutta and Chaudhuri [16], and
Bączkiewicz et al. [17]. Some researchers have used advanced DL
architectures like recurrent neural network or RNN [18], or long
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short-term memory (LSTM) [19], convolution neural network or
CNN [20], and gated recurrent units or GRU [21] to create more
accurate and reliable weather prediction models to predict various
weather phenomena.

Two key assumptions underpin the functioning of traditional
ML, especially DL-based models are that (1) both the training
and testing data are selected from the same distribution and (2)
DL models would be given a significant quantity of training data
to learn the latent patterns in the dataset. However, these criteria
may not always be valid in real-world situations. Here comes the
relevance of TL, which allows us to dissolve both the assump-
tions and becomes a good fit for many real-life applications that
have little training data. As the name suggests, TL involves apply-
ing knowledge from previously built models, that is, information
gained for one task as a foundation for another related task, hence
enhancing the predictability and learning processes in the latter
[22]. Accordingly, TL technology has advanced the DL models for
wider applications. Using deep models to learn high-level abstract
features is also seen to make the TL process considerably simpler
and more reliable [23].

The basic principle behind TL is to broaden the notion of a
domain and a task. The notion of a task and a domain is a fundamen-
tal component of TL. In particular, it focuses on a source domain, a
target domain, a source task, and a target task. Notably, the source
task is only evaluated as a supplementary assessment; the model
is evaluated exclusively for the target task. This indicates that the
generalization capability of the latter has been enhanced by pattern
classification. TL is different from conventional ML (or shallow
learning) algorithms which aim to learn a task from the beginning.
In TL, the information obtained from previous tasks is transferred to
a target task when the latter has less training data, i.e., data scarcity
arises.

1.1. Motivation behind applying ML-DL-TL in
weather prediction

For accurate prediction of weather phenomena, including HIW,
long-term data records are a more reliable source of information for
making decisions and studying the trend of different meteorological
variables that demonstrate the success of the forecast. Learning the
inherent patterns from the long-term data records by a computer is
called ML whose performance improves as the volume of the data
records used for training the machine (or learning the patterns by
machine) increases. This signifies the use of ML-DL for accurate
weather prediction including HIW, given that amounts of data are
available.

Further,ML-come-DL-based predictions, asmentioned before,
assume that the training and the testing data are from the same dis-
tribution. However, this assumption may not always be valid in
real-world meteorological, or satellite data as used in weather pre-
diction. This is what is called distribution mismatch problem. The
other two problems that ML-DL algorithms usually confront are
the inadequate training data and incompatible computation power.
For the problems of distribution mismatch and inadequate training
data, TL has been helpful and has emerged as an effective strat-
egy for improving prediction abilities in weather forecasting. The
TL model may also fine-tune its predictions for weather analysis
while reducing the computing cost by utilizing the information once
gathered from a big dataset. Similarly, in the data scarcity prob-
lem that makes the training of ML models difficult, TL has been
useful in maintaining the learning ability based on past knowledge

acquired in similar activities, even in the absence of a large amount
of data. For example, Dutta and Pal [24] recently provided a new
transfer learning-based framework for pollution analysis concerning
COVID-19. They used a DL model namely stacked-bidirectional
LSTM during the normal periods (when the data is abundant) and
reused it during the COVID-19 pandemic (when the data is scarce)
for the problem of forecasting the concentration of pollutants. Here,
the transfer of knowledge acquired from the previous one also
increases the accuracy of the forecast. In this work, the distribution
mismatch issue of data is also solved as the distribution of data is
different during pandemic situation owing to the fact that pollution
concentrations drastically changed during pandemic period. Addi-
tionally, TL by assisting the bidirectional LSTM model in learning
and storing knowledge from samples at smaller temporal resolutions
can enhance the prediction performance for samples at bigger tem-
poral resolutions [25].

In case of prediction of real-life HIW events, one may note that
the prediction becomes difficult not only by the nonavailability of
adequate data but also owing to the possibility of occurrence of haz-
ardous conditions and damage to the infrastructure of themonitoring
stations. These factors accordingly make the nowcast and short-
range weather forecasts very difficult. Thus, there is a necessity for
implementing more pragmatic, consistent real-time forecasting sys-
tems that will offer accurate weather conditions by considering a
range of weather variables and climatic factors.

There are many reviews available that focus on the usage of
ML and DL in predicting weather, such as bad air quality, cyclones,
thunderstorms, and tornadoes. For example, reviews emerging on
AI andML techniques for the prediction of air pollution are reported
[26–28]. A survey on DL-based weather prediction is provided by
Ren et al. [29]. A similar theoretical review can be found in Zhang
et al. [30], Abdalla et al. [31], and Liao et al. [32]. Wu et al. [33] pre-
sented an overview of DL algorithms in wind forecasting. Yang and
Ismail [34] review the application of DL TL methods in air quality
prediction. A general survey on TL is reported by Pan andYang [35].
TL is frequently utilized in classification [36], speech recognition
[37], natural language processing [38, 39], building utilization [40],
and medical science [41]. Although there have been many signifi-
cant studies using TL in weather forecasting available in different
journals and conference proceedings, very few reviews consoli-
dating this research under one umbrella have yet been reported.
Here comes the necessity of the present study that evaluates the
applications of TL algorithms, with a special emphasis on high-
impact weather forecasting, for the convenience of researchers. In
that sense, this evaluation is unique. It explains broadly—what is
TL, why and how it can be used in weather forecasting, what are
the merits, and what challenging issues need to be addressed to
improve the processing and performance further. These are followed
by some concerns for the beginners inML-Dl-TL research from pat-
tern recognition perspective.

The novelty of our study is as follows:

1) Our present research aims to give a systematic review of the
characteristics of different TL-based models that are being
extensively used in weather forecasting.

2) Applications using the latest models of ML, DL, and TL in pre-
dicting HIW such as bad air quality, cyclones, thunderstorms,
and tornados, among other HIW systems, are described.

3) The article evaluates the different TL approaches in terms
of accuracy and error metrics. The merits achieved are also
mentioned.
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4) This article finally addresses the research challenges with TL in
weather forecasting tasks, as well as some concerns for future
researchers in TL.

1.2. Review methodology

This subsection outlines the approach for conducting this
review, including identifying sources, keywords for searching,
establishing inclusion/exclusion criteria, and selecting papers.

The article provides a systematic review, and the study
draws from findings published in journals, conference proceedings,
and books. We mainly focus on the research papers during the past
ten years (2013–2023) in our survey. We consider different bib-
liographic databases as primary sources in this review, some of
them are listed as follows: (1) Springer, (2) ScienceDirect, (3) IEEE
Explore, (4) Wiley Online Library, (5) Google Scholar, (6) ACM
Digital Library, (7) Nature, (8) AMS Journals, (9) Scopus, and so
on. Preprint works, such as the ArXiv database, are not taken into
account when determining our selection criteria. Additionally, we
have discarded any duplicate publications that appeared repeatedly
in different literature sources.

The strategic keyword selection highlights the central investi-
gation of our study. The keywords for search criteria are provided
as follows: (“Deep Learning”), (“Machine Learning”), (“Trans-
fer learning”), (“Air pollution prediction”), (“Weather prediction”),
(“Data scarcity”), (“LCLU classification”), (“Rainfall prediction”),
and so on. During the review process, we examined some real-world
applications that are properly mentioned. We have considered 62
articles published in different years for showing the application of
TL in weather prediction and overall, 114 articles for conducting
this review.

The remainder of the article is structured as follows: The
details about TL with some definitions and various categorizations
are provided in Section 2. Section 3 describes various DL-TL mod-
els for weather prediction where different DL architectures with
their characteristics for building deep TL are explained. Various
evaluation metrics that were used to assess the performance of
different models are illustrated in Section 4. Section 5 provides a
brief overview of the application of deep transfer learning models
(Deep-TL) with their merits in the prediction of different HIW.
A comprehensive overview of different TL applications in the field
of weather prediction is illustrated in Section 6. The merits of TL
techniques in weather forecasting along with some of the chal-
lenges that lie ahead are briefly discussed in Section 7. Finally,
our work is concluded with Section 8 which delivers concluding
opinions on this survey, some challenges and directions for future
investigations, and certain concerns for the new researchers inter-
ested in applying TL.

2. Transfer Learning: Some Definitions and
Categorizations

TL is a strategy that enhances learning in a new task (called
target domain) by transferring previously learned knowledge from
a related task (referred to as source domain). The gain from such
transfer of knowledge is most notable whenever there is data abun-
dance in the source domain, while inadequate in the target domain.
The following definitions, which describe the TL, are provided in
this section:

Definition 1 [42]: (Domain) A domain, which is denoted by
D = {𝜒,P (X)}, is composed of two components:

1) Feature space 𝜒; and
2) Marginal probability distribution P (X), where

X = {x1, ..., xn) ∈ 𝜒.
Definition 2 [42]: (Task) A task, which is denoted by T = {Y, f (·)},
consists of two components:

1) label space Y = {y1, ..., ym}; and
2) An objective predictive function f (·) which is not observed and

needs to be learned by pairs {xi, yi} where xi ∈ X and yi ∈ Y

One can use the function f (·) to predict the corresponding label,
f (xi), of a new instance xi. From probabilistic point of view, f (xi)
can be represented as P (yi|xi).
Definition 3 [42]: (TL) Given a source domain Ds and learning
task Ts, and a target domain Dt and learning task Tt, the aim of TL is
to help improve the learning of the target predictive function f t (·)
in Dt using the knowledge in Ds and Ts where Ds ≠ Dt or Ts ≠ Tt.
Here, the condition Ds ≠ Dt refers to either 𝜒s ≠ 𝜒t or Ps (X) ≠
Pt (X), while the condition Ts ≠ Tt means either Ys ≠ Yt or
P (Ys|Xs) ≠ P (Yt|Xt).

These two conditionsmean, the source and target domains have
different feature spaces or marginal probability distributions, and
the source and target tasks have different label spaces or conditional
probability distributions.

If the TL improves the overall performance by using entirely
Dt and Tt, then it is termed a positive transfer. If the information
learned from a source domain has a detrimental effect on a target
learner, it is called negative transfer.

TL can be divided into inductive TL, transductive TL, and
unsupervised TL depending on the settings of the domain and task.
Such settings of the task and domain corresponding to (traditional)
ML and the said three kinds of transfer learning arementioned below
[35].

For Traditional ML: Source and target domains are the same, and
the source and target tasks are also the same.
For Inductive TL: Source and target domains are the same, while
the source and target tasks are different but related.
For Transductive TL: Source and target domains are different but
related, while the source and target tasks are the same.
For Unsupervised TL: Source and target domains are different but
related, and the same character holds for the source and target tasks.

2.1. Inductive transfer learning

In this case, the tasks in the source and target domains are
not the same, i.e., Ts ≠ Tt regardless of the domains are the same
or not. In most cases, well-labeled data are available in the tar-
get domain regardless well-labeled data are available or not in the
source domain as the former receives special attention. For exam-
ple, one of the most popular inductive TL approaches is zero-shot
learning.

2.2. Transductive transfer learning

In this case, the tasks of the source and target domains are
the same; however, the source and target domains are different,
i.e., Ts = Tt and Ds ≠ Dt. In this case, there are no labeled
data available in the target domain, but there are a lot of labeled
data available in the source domain. Due to unique circumstances in
the source and target domains, two additional settings arise in trans-
ductive TL. These are: (1) The feature spaces between the source
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and target domains are different, i.e., 𝜒s ≠ 𝜒t and (2) the fea-
ture spaces between domains are the same, i.e., 𝜒s = 𝜒t but the
marginal probability distributions of the input data are different, i.e.,
Ps (Xs) ≠ Pt (Xt). For instance, transductive TL is illustrated by
the use of a text classification model trained and tested on college
reviews to categorize food reviews.

2.3. Unsupervised transfer learning

Unsupervised TL is defined as the absence of labeled data
in both the source and target domains and the tasks in the source
and target domains being different. Unsupervised TL aims to help
improve the learning of the target predictive function f t (·) in Dt
using the knowledge in Ds and Ts, where Ts ≠ Tt and Ys and
Yt are not observable. Unsupervised TL emphasizes on completing
unsupervised learning tasks in the target domain, e.g., clustering,
dimensionality reduction, and estimation of density [35]. It is the
same as inductive TL, except for the absence of labeled data in both
the source and target domains.

Figure 1 adapted from Pan and Yang [35] depicts the taxonomy
of the aforementioned categories of TL.

According to the survey by Zhuang et al. [43], the TL tech-
nique is classified into four categories namely, instance-based,
feature-based, parameter-based, and relational-based approaches,
depending on the instance weighting strategy. Instance-based TL
techniques are based on using the selected parts (or all) of instances
in source data and applying different weighting strategies to be used
with the target data [44]. Feature-based techniquesmap instances (or
some features) from both source and target data into more homoge-
neous data [44]. This can be again classified into two subcategories,
namely, asymmetric and symmetric feature-based TL. Asymmetric

feature-based TL approaches transform the source features to match
the target ones. On the other hand, symmetric approaches aim to
identify a common latent feature space and thereafter convert both
the source and the target features into a new feature representation
[43]. The parameter-based (model-based) TL techniques transfer
the knowledge at the mode or parameter level. Relational-based
(adversarial-based) TL techniques primarily address the problems
in relational domains. The logical relationships or rules acquired in
the source domain are transferred to the target domain using these
kinds of techniques.

Another categorization namely, homogeneous and heteroge-
neous TL, depends on the consistent nature between the source and
the target feature spaces, and label spaces. In the case of homoge-
neous TL, the semantics and dimensions of the feature space in both
the source domain and the target domain are the same, i.e., 𝜒s = 𝜒t,
but the corresponding probability distributions (marginal probabil-
ity distribution) are not the same, i.e., Ps (X) ≠ Pt (X).

However, in heterogeneous TL, the semantics and dimensions
of the feature set in the source domain and the target domain dif-
fer, i.e., 𝜒s ≠ 𝜒t and the corresponding probabilistic distributions
are also not the same, i.e., Ps (X) ≠ Pt (X). It is more difficult than
homogeneous learning because it needs feature or label space adap-
tation in addition to distribution adaptation.

3. DL-TL Models for Weather Prediction

This section illustrates an overview of various DL models and
their attributes, which are used to build various deep TL-based
algorithms for weather prediction. These deep-TL algorithms use
labeled data in the source domain, while the target domain might be
labeled or unlabeled. TL typically involves twomain steps including

Figure 1
Subcategories of transfer learning
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Figure 2
Schematic diagram showing an example of deep transfer learning

feature extraction and fine-tuning. The fine-tuning requires a pre-
trainedmodel and utilizing it for a new task by further training it on a
task-specific dataset. Fine-tuning involves adjusting the weights of
the pretrained model to acquire task-specific patterns while keeping
general information from the fresh dataset. In feature extraction, we
use the pretrained model as a fixed feature extractor. The final lay-
ers responsible for classification are removed and replaced with new
layers that are specific to our task. Only the weights of the pretrained
model are frozen, while the weights of the newly added layers are
trained on the smaller dataset. Thus, with the help of TL, a machine
utilizes the knowledge gained from a previous task to improve gen-
eralization about another. The TL-basedDL network is trained using
data from the source domain on a problem that is being solved, and,
then reused in a newmodel to be trained on a related problem to pre-
dict the labels of the target domain. Figure 2 depicts deep TL with
fine-tuning.

Climatological data are classified under “big data” and can be
better analyzed by DL. Yet, most of the ANN-based techniques are
unable to enhance the temporal lag of meteorological variables or
create long-term dependencies. A number of research have been
done using advanced DL techniques such as recurrent neural net-
work (RNN), LSTM, and convolutional neural network (CNN) to
model the time series data to deal with this issue [45–47]. Follow-
ing are some DL models that are employed to design the TL-based
framework in predicting HIW.

3.1. Deep neural networks (DNNs)

DNNs are extensively utilized for data-driven modeling. Sim-
ilar to ANN, DNNs constitute a class of ML paradigms that aims

Figure 3
Diagram showing the basic architecture of DNN

to mimic the information processing of the brain. There are several
hidden layers in DNNs situated between the input and output lay-
ers (Figure 3). Chai et al. [48] applied a DNN phase picker trained
on local seismic data to mesoscale hydraulic fracturing experiments
that performed on par with or marginally better than a human expert,
thereby resulting in better event locations.

3.2. Long short-term memory (LSTM)

LSTM is a type of supervised DNN that is built using ANN and
RNN. LSTMs offer good solutions to a variety of sequence learn-
ing problems, including prediction of time series. Figure 4(a) shows
the structure of an LSTM memory cell. The memory cell of LSTM
has three gates: namely, forget gate, input gate, and output gate.
The input gate accepts the current input xt and decides whether the
LSTM takes into account its current input. On the other hand, the
forget gate permits the LSTM to forget its previous memory Ct−1,
which is essential for solving the gradient problems. The output gate
determines how much of the memory is transferred to the hidden
state, ht, and hence selects what should be the output. Because of its
architecture, LSTM is very good at keeping long-term sequences,
which are effective for climate modeling and long-term weather
forecasting. The outputs of each step in the network are calculated
using Equations (1)−(6)

f t = 𝜎 (W f • [ht−1, xt] + b f ) (1)

it = 𝜎 (Wi • [ht−1, xt] + bi) (2)

C̃t = tanh (Wc • [ht−1, xt] + bc) (3)

Ct = f t∗Ct−1 + it∗C̃t (4)

ot = 𝜎 (Wo • [ht−1, xt] + bo) (5)

ht = ot∗tanh (Ct) (6)

where ht−1 is the hidden state of LSTM, ht is the new hidden state,
Ct and ht are the output and cell state vectors at time t, it is the input
gate, ot is the output gate, f t is forget gate, and 𝜎(.) is the sigmoid
activation function.
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Figure 4
Diagram showing basic architectures of (a) LSTM block, (b) basic structure of CNN, and

(c) fully connected autoencoder architecture

Ma et al. [49] suggested a transfer learned stacked bidirec-
tional long short-term memory (TLS-BLSTM) network to increase
the forecast accuracy having transferred knowledge from the cur-
rent air quality stations to new stations with insufficient data. TL
network was useful during the time of data scarcity in the COVID-
19 pandemic to predict the concentration of pollutants [24]. Here,
a pretrained DL model, viz, Stacked-BDLSTM, incorporating TL
was used. The resulting network formed after transfer learning con-
sists of 5 layers, each with two BDLSTM, two dropout layers, and
a dense layer. The TL-based model outperformed both single-step
and multistep forecasting of pollutant concentrations as compared
to other approaches.

3.3. Convolution neural network (CNN)

As mentioned before, DL techniques based on ANNs have
grown in prominence in recent years in different ML-driven appli-
cation domains. Even though computer hardware is becoming more
capable nowadays, ANN models are still unable to perform tasks
involving images that demand high accuracy due to the fact that
each pixel in an image function as a separate input and has a
weight assigned to it. ANN-based models for these tasks demand
very high processing power, which is beyond the capabilities of
existing computer technology. CNN has been useful in such cases.
The fundamental distinction between CNN-based ML approaches
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from conventional ML approaches is that CNN has convolution
layers that automatically extract features. CNN models consist fun-
damentally of convolution, pooling, and fully connected layers
(Figure 4(b)). An essential part of the CNN architecture is the con-
volution layer, which carries out feature extraction. Typically, this
involves combining linear and nonlinear processes, such as the
activation function and the convolution operation. Typical down
sampling is provided by a pooling layer. It calculates the final
classification or regression task based on the input from the previ-
ous layer. Fully connected layers handle the final classification or
regression task using the input from the preceding layer. The out-
put of each class is then converted into a probability score using
a logistic function, such as the sigmoid or softmax, using the fully
connected layers’ output.

CNN-TL was used in time-series flood predictions by Kimura
et al. [50]. CNN with TL was used in this work as a technique for
converting time-series data to image data. Boonyuen et al. [51] pre-
sented a TL-based rainfall forecast using CNNwith an Inception-v3
model that could estimate rainfall for the next three days without
requiring the experts to analyze the satellite images.

3.4. Encoder–decoder model

The encoder–decodermodel is a technique of employingRNNs
to predict sequences. The three components of the generally used
sequence-to-sequence model are the encoder, the intermediate vec-
tor, and the decoder (Figure 4(c)). At each stage, the encoder selects
a single data element from the input sequence, analyses it, gath-
ers information about it, and forward it. The intermediate vector is
the final state generated from the encoder part and comprises infor-
mation about the complete input sequence to assist the decoder in
providing correct predictions. The decoder provides the entire sen-
tence and forecasts an outcome at each stage. For the prediction of
personal air quality, Zhao and Zettsu [52] proposed a TL approach
based on an encoder–decoder structure that incorporated the idea of
generative adversarial networks (GANs) providing higher accuracy.

3.5. Generative adversarial network (GAN)

These are a class of DL models having two neural networks
namely a Generator and a Discriminator. The Generator’s job is
to produce data that closely resembles a genuine data distribution.
On the other hand, the discriminator tries to distinguish between
real and generated data. These play a sort of “cat-and-mouse” game
while on training, always adapting and getting better in order to pro-
duce generated data so convincing that the Discriminator can no
longer tell it apart from real data. Zhao and Zettsu [52] introduced
a unique decoder TL (DTL) system that includes the concept of
GANs which increases the accuracy of the model. They employed
an encoder layer similar toGANs tomatch feature distributions from
both the source and target domains simultaneously.

3.6. Hybrid forecasting models with TL

So far, we have discussed the basic models for weather fore-
casting, hybrid forecasting systems use data-driven methods such
as statistical, ML or DL to integrate a wide range of predictions
into a final prediction product. They are considered as a poten-
tial method for improving the predictability of a meteorological
prediction. The use of hybrid forecasting techniques is becoming
more popular as a result of improvements in subseasonal to decadal
weather and climate prediction systems, a greater understanding of
artificial intelligence’s advantages, and easier access to computing

tools and resources. Gilik et al. [53] provided air quality prediction
using CNN+LSTM-based hybrid DL architecture. By using TL, net-
work weights have been transferred from the source city to the target
city, and thus, prediction accuracy improves. One may note that uti-
lizing complex hybridmodelsmay increase both computational time
and cost. Finding an optimal balance between resource capacity and
model complexity requires further effort and investigation. In this
context, investigation is required to demonstrate the usefulness of
hybrid techniques in diverse areas of weather forecasting to enhance
model performance and optimize for specific tasks.

3.7. Hybrid forecasting models based on ensemble
learning with TL

An ensemble weather forecast is a collection of forecasts that
provide a range of future weather possibilities. Ensemble learning
involves training many base learners and combining their predic-
tions using a hybrid technique to get the final outcome. Given that
ensemble learning involves combining the skills of several distinct
learners, it can outperform single models in most situations in terms
of accuracy, robustness, andgeneralization. In conjunctionwithother
methods, ensemble learning has been widely used in HIW predic-
tion. The method’s distinctiveness comes from pretraining models
with the same architecture on several source datasets before utilizing
the normalized weighted algorithm to ensemble and fine-tune them
on the target dataset. For example, Kong et al. [54] suggested an
ensemble-based real-timeprediction technique formultivariate time-
series data to predict air pollution. For both short-term and long-term
prediction tasks, they found that the suggested approach for air pollu-
tion prediction performed consistently well. A significant number of
researchhaveattemptedtodevelopensembleframeworksthatinclude
different methods of TL such as domain adaptation that run a num-
ber of times from slightly different starting atmospheric conditions.
Developing these ensemble models aims primarily at successfully
addressing the shortcomings of pre-trained methods. This strategy
reduces the domain mismatch and negative transfer risk by improv-
ing the pretrained model’s robustness and efficacy, adaptability, and
generalizability across domains to various target domains.

3.8. Multi-source transfer learning

The primary goal of the multi-source domain adaptive method
is to enable the target domain to acquire rich feature information.
The strategy involves learning from several source domains and
effectively predicting the target domain data. Multi-source isomor-
phic transfer learning is the type where the feature space of the
various source and target domains is the same. Furthermore, the
source domain data are derived from various fields and has the same
feature space as the target domain data. Dhole et al. [55] proposed
multiSource spatial transfer learning to address the issue of data
inadequacy that DL systems face and enhance prediction accuracy.
Traditional time series prediction techniques rely on a consistent
distribution of training and testing data in a big dataset. Time series
data are challenging to analyze due to its time-varying nature,
resulting in inconsistencies between new and old data. Gu et al.
[56] introduce a new multi-source active-metric transfer learning
(MS-AMTL) approach to tackle this issue.

4. Evaluation Metrics of the Models

Weather forecasting algorithms anticipate future occurrences,
and there are several methodologies available. Each of these meth-
ods has advantages and disadvantages. There are various models
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accessible in real time, making it difficult to choose the best one for
our needs. In order to provide accurate prediction, the model must
precisely fit our dataset. The performance the model is assessed
using the evaluation metrics. Some of the well-known evaluation
metrics are listed below. The predicted, observed, and mean values
of the parameter are denoted by ŷ, y, and y, respectively, and n is
the number of cases (observations).

4.1. R-squared (R2)/ coefficient of determination

This evaluates the proportion of variance in the response vari-
able that is assessed by the forecast and determines the prediction
performance of a model. This represents the accuracy of a model.
When the value is higher, this gives better forecast.

R2 = 1 − ∑n
i=1 (yi− ŷi)2

∑n
i=1 (yi − y)2

(7)

4.2. Root mean square error (RMSE)

The standard deviation between the actual and the predicted
values of the forecast is assessed using root mean square error
(RMSE). Lower RMSE indicates high model efficiency. It can be
computed as follows:

RMSE =√√√√1
n

n∑
i=1

(ŷi − yi)2 (8)

4.3. Mean absolute error (MAE)

It represents the deviation between predicted and the measured
actual output. It is used to check errors in time series forecasting.
It is less sensitive to outliers. A lower mean absolute error (MAE)
indicates a greater model effectiveness. It can be computed as fol-
lows:

MAE = 1
n

n∑
i=1

||yi − ŷi
|| (9)

4.4. Mean absolute percentage error (MAPE)

It is the percentage equivalent of MAE as stated earlier. It can
be computed as follows:

MAPE = 100%
n

n∑
i=1

||| yi − ŷi

yi

||| (10)

4.5. Mean square error (MSE)

It represents the square error average that is used as the loss
function for the regression of the least squares. It is the sum of
the variance between the actual and the predicted variables. RMSE,
as discussed earlier, is the square root of MSE. It is calculated
as follows:

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (11)

4.6. Accuracy

The percentage of correct predictions made out of all the obser-
vations is known as accuracy. A model that produces more accurate
predictions has a higher accuracy score. It is represented as follows:

Accuracy = TP + TN
TP + TN + FP + FN

∗ 100% (12)

Here, true positives (TP) and true negatives (TN) are the correct
predictions, while false negatives (FN) and false positives (FP) are
the incorrect predictions.

4.7. Precision

It is a performance statistic that measures a model’s ability to
accurately forecast positive classes. Amodel with a higher precision
score produces fewer errors while making positive predictions. It is
represented as follows:

Precision = TP
TP + FP

(13)

4.8. Recall

It measures how often a model correctly identifies positive
instances (true positives) from all the actual positive samples in the
dataset. It can be represented as follows:

Recall = TP
TP + FN

(14)

4.9. F1 score

It is a measure of the harmonic mean of precision and recall.
F1 score integrates precision and recall into a single metric to gain
a better understanding of model performance. It is represented as
follows:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(15)

4.10. ROC curve

A receiver operating characteristic (ROC) curve is a graphical
depiction of a classificationmodel’s performance at different thresh-
old values. This plots the true positive rate (TPR) against the false
positive rate (FPR) at various classification thresholds. The formula
of TPR and FPR are as follows:

TPR = TP
TP + FN

(16)

FPR = FP
FP + TN

(17)

The area under the curve (AUC) is a measurement of the two-
dimensional area beneath the entire ROC curve. A model’s predic-
tion improves as its AUC increases. It ranges from 0 to 1, with
0 indicating perfectly inaccurate prediction, and a value of 1 indi-
cates a perfectly accurate prediction.

Pdf_Fol io:332332



Journal of Computational and Cognitive Engineering Vol. 3 Iss. 4 2024

5. Applications of Transfer Learning in Predicting
HIW

Here we describe the various attempts made in applying TL in
deep networks for different HIW prediction problems, such as air
pollution, tropical cyclones, rainfall, flood and drought earthquakes,
and LCLU classification. The associated merits exhibited in terms
of accuracy and learning time are also mentioned.

5.1. Air pollution

Prediction of air quality has become an important way of man-
aging and preventing pollution, especially in developing countries.
Predicting air pollution is a common use of TL, particularly when
data are scarce. Incorporating TL into the pretrainedmodel enhances
the skill of forecasting. Fong et al. [57] employed LSTM-RNNs for
the prediction of future conc. of air pollutants in Macau where cer-
tain air quality monitoring stations with less observed data in terms
of quantity and type. The results showed greater prediction accuracy
with reduced training time by LSTM RNNs having TL methods. To
predict air quality for the new stations having data scarcity, Ma et al.
[25] developed TLS-BLSTM network that helped to enhance the
prediction skill by information transfer from existing air quality sta-
tions to new stations (resulting in 35.21% reduction in RMSE). To
address the problem of data inadequacy, Dhole et al. [55] described
an ensemble strategy for Multi-Source TL. The result provided a
cumulative prediction by transferring the knowledge learned from
multiple source stations to a specific target station, thereby provid-
ing greater use of readily accessible data from neighboring stations
to enhance the forecast skill. In predicting pollutant conc., Gilik et al.
[53] used a hybrid CNN+LSTM model. For the purpose of weight
transfer between cities, the TL approach was used. The said model
with the TL approach enhanced the accuracy in terms of RMSE
by 11–53% for PM, 20–31% for O3, 9–47% for NO2, and 18–46%
for SO2. Zhao and Zettsu [52] used a TL framework based on an
encoder–decoder structure for the prediction of personal air quality.
For the purpose of predicting air quality in China, DL-based stack-
ing bidirectional long short-term memory was utilized to transfer
the information acquired from lower temporal resolutions to higher
temporal resolutions, where the model’s performance increases in
increasing time-based resolutions [25]. Ma et al. [58] developed a
unique model for predicting tropospheric ozone (O3) pollution con-
centrations in China by combining a long short-termmemory neural
network with TL (TL-LSTM). Sonawani and Patil [59] used the TL
approach to solve the data insufficiency problem in the new air qual-
ity monitoring (AQM) system. Forecasting of ambient air pollutants
conc. generated during the COVID-19 using TL [60]. Deng et al.
[61] proposed transferred CNN long short-term memory (TL-CNN-
LSTM) model for the forecast of O3 conc. In this study, prediction
over a large time scale required more data; however, the scarcity
of data prevented the CNN-LSTM model from making an accurate
prediction. TL-based models reduced the forecast errors (RMSE is
reduced by 21%, and the correlation coefficient is enhanced by 13%)
and shortened the computational time, thereby improving model
prediction accuracy. Njaime et al. [62] presented a data cleaning
technique with satellite images and applied TL to estimate NO2
conc. at Luxembourg with high spatial resolutions based on a pre-
trained Residual Network 50.

Dutta and Pal [24] used a TL-based stacked-deep architecture
to demonstrate the effect of COVID-19 on the concentration of pol-
lutants over Kolkata. Here both the issues of distribution mismatch
and scarcity of data are addressed. They first used a bidirectional

long short-term memory to predict the concentrations of particu-
late matter or PM over Kolkata during normal periods. Then using
TL approach, this model was re-trained on the data of complete
lockdown and partial lockdown periods. Here the distribution of
the data during pandemic period is different from that in normal
period because of the drastic change in concentration of pollutants
due to pandemic situation. This TL-based model is validated during
the complete lockdown due to COVID second wave when data are
scarce.

Tariq et al. [63] described a TL-based residual neural network
architecture for sequence-based prediction of health risk levels
measured using subway platform PM2.5 levels. Utilizing the TL
framework, there was an improvement of 42.84% of R2, and the
reduction of RMSE was up to 40%. Using TL approaches, Yuan
et al. [64] used large-scale stationary and local mobile observa-
tions to predict hyperlocal long-term air pollution. Based on a TL
approach, Honarvar and Sami [65] proposed a model comprised of
numerous components that integrate heterogeneous diverse sources
of urban data and forecast PM. Yadav et al. [66] trained a DL
model that can map satellite imagery to air quality in high-income
countries with adequate ground data, and the model was then mod-
ified using TL to learn meaningful air quality estimates in low- and
middle-income countries cities. Yang et al. [67] proposed a modi-
fied hybrid DL model under the architecture of TL that performed
with higher precision and reliability, particularly the forecast of
the sites with the scarcity of data in the precise forecast of PM2.5
concentration as compared to classical DL models, hybrid DL
models, and the most recent TL approaches.

5.2. Tropical cyclone (TC)

In the precise forecast of tropical cyclones (TC), which is cru-
cial to preventing and minimizing the effect of natural disasters,
Pang et al. [68] proposed novel detection techniques from pictures
of meteorological satellites integrating the deep convolutional gen-
erative adversarial networks (DCGAN) and You Only Look Once
(YOLO) v3 model. The novel detection technique comprised three
primary components: data augmentation, a pretraining phase, and
TL. Experimentally, this technique outperformed the YOLOv3 hav-
ing an accuracy and average precision of 97.78%, 81.39%, and
93.96%, 80.64%, respectively. In Combinido et al. [69], TL exper-
iments were performed using a Visual Geometry Group 19-1ayer
CNN (VGG19) model for the detection of the intensity of TC. Here,
VGG19 was pretrained on ImageNet using grayscale IR images of
TCs which were collected from different geostationary satellites
in the Western North Pacific region (1996–2016). Pan et al. [70]
described an architecture of TL-based unbalanced severe typhoon
formation prediction (USFP) that used prior knowledge as learned
from a constructed balanced dataset. To compensate for the scarcity
of seasonal TC observation records, Fu et al. [71] used a TL tech-
nique for training an ensemble of CNNs.

5.3. Rainfall, temperature, and wind speed

Prediction of rainfall is crucial due to irregular and heavy
rainfall can have a variety of consequences, including widespread
damage to farms and crops, damage to infrastructure due to floods,
and destruction of property. A better forecasting model is required
for early warnings that mitigate flood risk, reduce threats to life
and property, and manage agricultural operations. Notarangelo et al.
[72] used a TL-based CNN for the detection of rainfall. Taking
category-wise ground-based cloud images as input, Ambildhuke
and Banik [73] predicted the estimated rainfall. The TL technique
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provided the maximum prediction accuracy with a small dataset.
Boonyuen et al. [51] described a method to forecast the daily rainfall
by using CNNs taking satellite images of the areas in Asia as input.
Two training methods were used: the former was TL, and the sec-
ond was training from the beginning. They found that the training
from the beginning produced greater accuracy than the TL strategy.
This occurred because when training was executed from the start,
the model trained all of the layers, but in the TL approach, just the
last fully connected layer was trained. Furthermore, while utilizing
TL, the batch size could be increased to more than 10 images, when
working with the scratch model, the batch size was set at 10 images
due to the hardware capability. The TL approach took around 0.3 s
to complete one training step, whereas the scratch model took 0.8
s. Liu et al. [74] proposed a TL-based approach for improving pre-
cipitation estimation in limited-data areas that would help regional
water-related catastrophe prevention and water resource manage-
ment.

The inhabitants’ productivity, well-being, and general health
are all impacted by the quality of their indoor environment. When
occupants lack sufficient interior thermal comfort, their decision-
making and/or professional task execution skills will likely decline,
leading to a decline in their performance. To solve the inadequacy
in thermal comfort parameters and modeling data, Hu et al. [75]
presented a heterogeneous transfer learning (HTL) based intelligent
thermal comfort neural network (HTL-ITCNN). In an attempt to
lessen the laborious effort of gathering large labeled datasets for
every new user, Natarajan and Laftchiev [76] used a transfer active
learning framework.

For the purpose of allocating, scheduling, maintaining, and
planning wind energy conversion systems, an accurate wind speed
forecast is essential. Hu et al. [77] employed deep TL network from
data-rich farms to extract the patterns of wind speed and then reused
it for newly built farms.

5.4. Flood and drought

Owing to changing climatic scenarios, flood prediction is a crit-
ical factor to address. Kimura et al. [50] adopted TL-based CNN
to forecast time-series water levels in flood occurrences across
domains by applying knowledge of a certain domain. The model
with TL in the target domain effectively lowered the training time
by one-fifth and the mean error difference by 15% compared to
the model without transfer learning. TL approach was applied by
Zhao et al. [78] for flood susceptibility mapping highlighting that
a pretrained CNN model enhanced the mapping’s accuracy for
data-scarce areas. TL helped increase the model performance by
10%-25%. Likewise, Muñoz et al. [79] adopted the same approach
and illustrated that an inundation model trained on a local scale
could be applied to broader scales. Tian et al. [80] used feature-based
TL for the prediction of drought in Haihe River Basin.

5.5. Atmospheric visibility

Atmospheric visibility is a crucial factor in determining trans-
parency of the atmosphere, and it is affected by weather and
climatic conditions. The scarcity of observational data and unpre-
dictable weather conditions make visibility forecasts challenging.
TL approach is utilized to solve the problem while simultaneously
improving the quality of the model. In Li et al. [81], a TL algorithm
was proposed for predicting atmospheric visibility based on image
feature fusion. Here visibility was measured based on data process-
ing and feature extraction in selected subregions of the entire image,
resulting in lower computing load and greater efficiency (more than

90%). The article by Li et al. [82] proposed a visibility estima-
tion framework focusing on TL-based DCNN with the scarcity of
enough visibility data. The results suggested the detection accu-
racy surpasses 90% demonstrating that it meets the requirements
of daily observation applications. Lo et al. [83] presented a modi-
fied approach of the particle swarm optimization (PSO) based TL
approach to provide visibility prediction. Gray averaging and the
adaptive threshold segmentation method were applied to find the
effective subregions. PSO optimized the selection of feature values
at the ANN’s output layer. Finally, the feature vectors were incorpo-
rated into SVR models and overall visibility was evaluated through
the fusionmethod. Lu et al. [84] provided an intelligent offshore vis-
ibility prediction approach using a temporal convolutional network
and TL (TCN_TL). By using TL, forecast error decreased and with
24 h forecast, the forecast score improved by 0.11 within the 0–1
km level.

5.6. Ocean parameters

Forecasting of ocean parameters is crucial to identify changes
in weather patterns. Obara and Nakamura [85] investigated signif-
icant wave height (SWH) prediction using LSTM. The findings of
the study demonstrated that TL can predict SWH more accurately
even with a small amount of training data. In this study, a hybrid
model was developed that combines a CNN model with TL to pre-
dict SSTA and SSHA on a monthly scale, making full use of the
data resources generated by delayed gridding reanalysis products
and real-time satellite remote sensing observations. A hybrid model
was developed that combines a CNNmodel with TL to predict SSTA
and SSHA byMiao et al. [86]. This could capture the changes in the
spatial characteristics of SSTAs and SSHAs over a 30-day period
having minimum prediction errors. In the paper of Kumar et al. [87],
deep belief networks (DBN) were utilized to transfer learn wave
characteristic representations, enabling predictions in new areas of
interest.

5.7. ENSO

El Niño and Southern Oscillation (ENSO) is linked to a num-
ber of regional climate variability and natural disasters, so, accurate
long-range forecasting is crucial for minimizing the economic losses
from natural disasters and mitigating more dangerous aspects of cli-
mate variability. Hu et al. [88] demonstrated how to predict ENSO
using a deep Residual CNN (Res-CNN) model. They noticed that
the efficiency of the prediction might be increased by utilizing TL
and dropout techniques. TL is utilized for the prediction of ENSO
events using historical simulations from CMIP5 and reanalysis data
in Ham et al. [89]. Mu et al. [90] employed DL techniques to han-
dle spatiotemporal information while also utilizing TL to transfer
knowledge from the dynamical model namely Zebiak–Cane model
data to the forecast of realistic El Niño. By applying TL techniques
to historical simulations fromCMIP5 (CoupledModel Intercompar-
ison Project phase 5, Bellenger et al. [91] and reanalysis data with
a CNN model, Ham et al. [89] were able to forecast ENSO events
more precisely than current numerical predictions. The forecast was
robust and long- term, with a maximum duration of 1.5 years.

5.8. Earthquake

Earthquake prediction is crucial to give early warning of poten-
tially destructive earthquakes to provide an effective response to
the disaster, enabling people to reduce loss of life and property.
Jozinović et al. [92] demonstrated that CNNs applied to network
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seismic traces for forecasting earthquake peak ground motion inten-
sity measures (IMs) at distant stations. It was observed that using
TL helped to enhance the results in terms of outliers, bias, and vari-
ability of the residuals between predicted and true IM values. The
application of inductive TL (ITL) was described by Titos et al. [93]
as a knowledge basis from which to create dependable and effective
volcano-seismic categorization systems. TL methods demonstrate
high generalization ability (properly classifying roughly 94% of
occurrences) even though using less computation time. Chai et al.
[48] applied a DNN phase picker trained on local seismic data to
mesoscale hydraulic fracturing experiments. The phase choices gen-
erated by the TL model performed similarly to or slightly better
than a human expert, resulting in improved event locations. In their
study,Wang et al. [94] described a TL technique that used numerical
simulations to train a convolutional encoder–decoder for predicting
fault-slip behavior in laboratory testing. The model was generalized
to yield precise predictions of laboratory fault friction. Maya and Yu
[95] used meta-learning and TL to enhance the prediction of earth-
quakes.

5.9. LCLU classification

Land use and land cover (LCLU) characterize both human
activity and the aspects of the plane. The local, regional, and global
land use and cover have a significant influence on natural dis-
asters, such as forest fires, calamities, seismic hazards, erosion,
floods, and so on. In Alem and Kumar [96], LCLU classifica-
tion was performed in data-poor cases using two TL frameworks,
namely, the Visual Geometry Group (VGG16) and Wide Residual
Networks-50 (ResNet-50), on the red–green–blue (RGB) version of
the EuroSAT dataset. The model effectiveness and operational effi-
cacy were boosted with the help of model enhancement techniques.
A novel approach, namely, Transfer-Ensemble Learning, was used
for mapping the urban land use/cover of the Indian metropolitans
by Barman et al. [97]. Using TL, the LCLU classification prob-
lems were addressed by many researchers [98–105]. Qian et al.
[106] proposed an innovative method that combines backdating and
TL into an object-based framework. TL is used to choose train-
ing samples for classification while backdating optimizes the target
region to be categorized. An approach for the automated process
of extracting very-high-resolution (VHR) multiclass LC maps from
historical orthophotos in the lack of target-specific ground truth
annotations was described by van den Broeck et al. [107]. By uti-
lizing domain adaptation and TL, the approach was developed on
top of the most recent developments in deep learning. By utilizing
transfer learning, Siddamsetty et al. [108] reused the labeled datasets
for different regions and thereby minimized the manual annotation
costs. The deep TL method of Huang et al. [109] could transfer
information from a similarly annotated remote sensing dataset with
excellent efficacy and could perform consistently on highly imbal-
anced classes. It also alleviated the overfitting issue brought on by
label noise.

6. Summary of Different TL Approaches
in Weather Prediction

This section provides a comprehensive view of different appli-
cations of TL in the field of weather prediction with DL models,
hybrid DL models, traditional statistical methods, and ML algo-
rithms. These applications have shown the significance of TL in
weather prediction. Tables 1–6 depict a list of investigations that
utilized TL approaches for the prediction of different HIW tasks.
Different features/factors/ parameters such as field of application,
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year, place of study, method and model involved, assessment met-
rics, evaluation metrics using TL, and time granularity of the
prediction, are also mentioned. In the table, the “Place” column
denotes the area on which the research has been done. The column
“Methods and Models” indicates the training model and method
used in the concerned research. “Evaluation Metrics Using TL”
describes the respective evaluation metrices used for predicting
weather events. “Target of the prediction or detection” indicates the
primary component for which different techniques were applied in
order to monitor and measure, and in the final step, to predict the
HIW. It varies with respect to the nature and task of HIW. “Time
Granularity” means the time resolution which is considered as the
prediction interval. The time granularity of the prediction is cate-
gorized as -nowcast (up to 6 hours), short range forecast (up to 3
days), medium range forecast (4 to 7 days), extended range forecast
(a period extending 10 days to 30 days), or seasonal forecast (from
30 days up to one season) in the future. Some predictions involve
multistep predicting a sequence of values in a time series [23, 65, 80,
85, 87]. One may note that in predicting HIW in regional or global
scale, different kinds of data are used for analysis. These are, for
example, air quality data specially concentration of air pollutants,
meteorological data of temperature, pressure and wind speed data,
satellite-based image data, and model-based reanalysis data. It may
be interesting to investigate how the technologies used in the algo-
rithms varied over time given the distribution of publications, as
well as the growing tendency in using ensemble models and hybrid
models in recent years.

Figure 5 depicts the evolution of research publications with TL
for predicting HIW over the years from 2013 to 2023. This is drawn
based on the publications collected in our Reference list. One can see
a noticeable increase in publication in the year 2021 and an increas-
ing overall trend.

7. Challenges and Opportunities

TL research has delivered advanced results in a number of
domains in meteorology thus far. However, there are still several
unresolved TL issues that need to be addressed. The following
provides a brief overview of such challenges that TL techniques
may need to address for better performance in the field of weather
prediction.
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Table 1
Details of features of different investigations for the prediction of air quality using transfer learning

Authors Region Methods and Models
Evaluation
Metrics Using TL

Target of the
Prediction

Time
Granularity

Fong et al. [57] Macau LSTM-RNNs with TL MSE PM 2.5, PM10,
NO2

1 day

Ma et al. [49] Anhui, China TLS-BLSTM RMSE PM2.5, NO2, and
O3

N/S

Dhole et al. [55] Beijing, China CNN-GRU and CNN-
LSTM with TL

RMSE, MAPE,
MAE

PM2.5 conc. hourly

Gilik et al. [53] Barcelona,
Kocaeli, and
İstanbul

Hybrid CNN+LSTM with
TL

RMSE PM, O3, NO2,
SO2

N/S

Zhao and Zettsu
[52]

Kyushu, Japan
and 33
coastal cities
in eastern
Asia

Convolutional recurrent
neural networks

(D-CRNN)

SMAPE and accu-
racy

Air quality index
of PM2.5

6 hours

Ma et al. [25] Guangdong,
China

Transferred bi-directional
long short-term memory
(TL-BLSTM)

RMSE, MAE,
MAPE

PM2.5 N/S

Ma et al. [58] China TL-LSTM R2 and MSE Tropospheric
ozone (O3)
pollution conc.

1 h to 40 h

Sonawani and
Patil [59]

Pune in India, CNN-GRU with TL RMSE, MSE, MAE O3 conc. Hourly

Chen et al. [60] Wuhan, China Gaussian mixture model
(GMM) with TL

MSE, MAE, EVS,
and R2_score

Ambient air pol-
lutants conc.

7 days

Deng et al. [61] Eisenhut-
tenstadt,
Germany

TL-CNN-LSTM RMSE and Pearson
correlation coeffi-
cient, Time

O3 conc. Daily

Njaime et al. [62] Luxembourg Residual Network 50 RMSE, MAE, R2 NO2 conc. N/S

Dutta and Pal [24] Kolkata stacked-BDLSTM with TL RMSE, MAE, R2 PM10 and PM2.5 24 h,48 h,72
h,96–120 h

Tariq et al. [63] Korea TL-based residual neural
network

R2, RMSE PM2.5 conc.

Yuan et al. [64] Amsterdam,
Netherlands,
Europe

Global2Local- TrAdaBoost R2, MAE, RMSE NO2 24 h

Honarvar and
Sami [65]

Aarhus, in
Denmark

Predictive model with TL RMSE, MAE PM10 3, 6, 12, and
24 hours

Yadav et al. [66] Accra in
Ghana,
Africa

CNN-based Generative
Adversarial (GAN)

nrmse, R2 NO2 N/S

Yang et al. [67] Beijing and
Hengshui

TL-GRU, TL-LSTM,
TL-CNN-LSTM,
TL-Modified Model

RMSE, MAE, MSE PM2.5 conc. N/S

1) At the outset, the challenges lie in the computational complex-
ity of exhaustively investigating TL algorithms to choose the
optimal one. The majority of TL algorithms in use today mostly
depend on human guidance. In real-world problems in meteo-
rology, we expect (desire) that models will be able to learn an
unknown task on their own. Further, in existing TL models, the
training often takes a significant amount of time involving com-
putation power. Incorporating human expertise (pre-experience)
and encoding domain knowledge into TL models may reduce

that time drastically. Such a human-guided TL is seen to enhance
the effectiveness of TL algorithms [110]. In this context, one
may refer to the hybrid multilayer perceptron model [111] where
extracting the domain knowledge as rough rules (reducts) and
encoding them as link weights during the formation of the neu-
ral architecture was found to enhance the network performance
with reduced learning time greatly.

2) In a variety of real-world problems in meteorology, transfer
learning has improved prediction efficiency despite having a
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Table 2
Details of features of different investigations for the prediction of tropical cyclones and rainfall using transfer learning

Authors Region
Methods and
Models

Evaluation Metrics
Using TL

Target of the
Prediction

Time
Granularity

Pang et al. [68] Southwest Pacific area
(China)

(DCGAN) and You
Only Look Once
(YOLO) v3 model

Accuracy, precision,
recall

Accurate detec-
tion of tropical
cyclones

N/S

Combinido
et al. [69]

Western North Pacific
basin

CNN with TL RMSE Tropical cyclone
(TC) intensity

6 h

Pan et al. [70] typhoons in the West-
ern Pacific (WP),
Eastern Pacific (EP),
and North Atlantic
(NA) regions

ConvLSTM with TL Accuracy,
ROC_AUC,
PR_AUC, F1

Unbalanced severe
typhoon formation
prediction (USFP)

24 h

Fu et al. [71] North Atlantic (NAT),
eastern North
Pacific (ENP), west-
ern North Pacific
(WNP), North Indian
Ocean (NIO), South
Indian Ocean (SIO),
South Pacific Ocean
(SPO), and South
Atlantic (SAT)

Ensemble of CNNs
with TL

RMSE Seasonal tropical
cyclone activity

N/S

Notarangelo
et al. [72]

Japan TL-based convo-
lutional neural
network

Receiver operating
characteristic
(ROC) curve, F1
score, accuracy

Rainfall N/S

Boonyuen
et al. [51]

Thailand Convolutional neural
networks (CNN)

Accuracy Rainfall 1–3 days

Liu et al. [74] China Domain-adversarial
neural network
(DANN) with TL

RMSE and MAE Precipitation daily

shortage of training data. However, negative transfer occurs
when information gained in the source domain has a negative
impact on the task in the target domain due to dissimilarity of
data, or the transfer method is unable to identify the transfer-
able components. To mitigate the effect of negative transfer, the
transferability of the source task to the target task, as well as the
similarity of domains or tasks, should be thoroughly assessed
prior to the construction of successful models. Improving the
data quality from coarse to fine-grained at the domain, instance,
or feature level may enhance the transferability of the source
domain [112]. For this purpose, one can choose a subset of
source domains or weight them when there are multiple source
domains present at the domain level. The source instances can
be selected or weighted at the instance level. We can boost the
transferability at the feature level by transforming the original
features into a common latent space.

3) Another drawback of Tl approach is the risk of domain mis-
match. This issue arises due to differences in domain data
or divergence in domain data distributions. This issue affects
knowledge transfer efficiency and negatively impacts the per-
formance of target domain models. It is a major factor that
contributed to the negative transfer that occurred in the pretrain-
ing model. Therefore, when transferring pretrained models to
new environment, it is necessary to design and customize appro-
priate models, structures, and approaches that can handle these
issues efficiently.

4) Similar to “Black Box,” ML or DL models are created by algo-
rithms that are incomprehensible to the users and developers.
Due to the intrinsic intricacy of the two-stage training process,
pretraining approaches in the models having TL worsen [113].
As a result, there is uncertainty about how target models use
acquired knowledge and its influence on the decision-making
process leading to the failure of the transfer learning process and
the addition of time costs for the users. This creates difficulties in
acquiring and implementing TL technologies. In order to gener-
ate predictions from a set of input variables, users or even those
who develop the model have no knowledge of how variables
are combined or interact. Because of the lack of interpretability,
the TL technique’s trustworthiness is hampered and its practical
applications are questioned, necessitating more research in this
area.

5) Another shortcoming of the TL method is label space shifts.
This refers to the differences in available labels between the
source and target domains. Researchers often avoid utilizing
heterogeneous data for knowledge transfer, preferring to use
labels that are comparable across domains. Though in some
cases this restricts the efficacy of the model resulting in negative
transfer.

6) Another issue that arises is the problem of overfitting which is a
major shortcoming of practically all prediction methods. More-
over, it is one of the common biases in big data. However, in
case a newmodel learns details and noises from the training data

Pdf_Fol io:337 337



Journal of Computational and Cognitive Engineering Vol. 3 Iss. 4 2024

Table 3
Details of features of different investigations for the prediction of thermal

comfort, drought, and flood using transfer learning

Authors Region Methods and Models
Evaluation
Metrics Using TL

Target of the
Prediction

Time
Granularity

Hu et al. [75] N/S Heterogeneous trans-
fer learning (HTL)
based intelligent
thermal comfort
neural network
(HTL-ITCNN)

Accuracy, Macro-
F1, MCC

Thermal comfort N/S

Natarajan and
Laftchiev [76]

N/S Regression with TL RMSE Thermal comfort N/S

Hu et al. [77] N/S N/S N/S Flood Predictions N/S
Kimura et al. [50] Japan Transfer learning-

based CNN
RMSE Time-series water

levels in flood
occurrences

hourly

Zhao et al. [78] Dahongmen,
Qinghe, and
Bahe in Beijing
in China

CNN with TL N/S Flood susceptibility
assessment

N/S

Muñoz et al. [79] Southeast Atlantic
coast of the U.S

Convolutional neural
networks (CNNs)
and data fusion (DF)
with TL

High water marks
(HWMs) and
the advanced
fitness index
(AFI), overall
accuracy, f1-
scores, Cohen’s
kappa

Flood mapping up to 7 days

Tian et al. [80] China CNN, RF, LSTM,
WNN, SVR

With TL

MAPE, SMAPE,
MAE, MSE, R2

Prediction of drought 3, 6, 9,
and 12
months

Table 4
Details of features of different investigations for the prediction of atmospheric visibility, ocean parameters, and

ENSO using transfer learning

Authors Region
Methods and
Models

Evaluation Metrics
Using TL

Target of the
Prediction

Time
Granularity

Li et al. [81] China Support vector
regression
(SVR) with
TL

Accuracy Atmospheric
visibility

Hourly

Li et al. [82] China TL-based DCNN Test time, detection
accuracy

Visibility 2 and 16 h

Lo et al. [83] China Particle swarm
optimization
(PSO) based
TL approach

Accuracy Visibility N/S

Lu et al. [84] Qiongzhou
Strait,Chaina

Temporal con-
volutional
network and
TL (TCN_TL)

RMSE, MAE, Threat
score (TS)

Offshore
visibility

24 h

Obara and
Nakamura
[85]

Japan LSTM with TL RMSE and R2 Significant wave
height (SWH)

6-, 12-, and 24-h

(Continued)

Pdf_Fol io:338338



Journal of Computational and Cognitive Engineering Vol. 3 Iss. 4 2024

Table 4
(Continued)

Authors Region
Methods and
Models

Evaluation Metrics
Using TL

Target of the
Prediction

Time
Granularity

Miao et al. [86] South China
Sea

CNN model with
TL

Correlation coeffi-
cient (CC) and root
mean squared error
(RMSE)

SSTA and
SSHA

30 days

Kumar et al.
[87]

Bohai Sea,
Yellow
Sea, and
East China
Sea

Deep belief net-
works (DBN)
with TL

Bias, scatter index
(SI), correla-
tion coefficient
(CORR), and root
mean square error
(RMSE).

Wave char-
acteristic
representa-
tions

Hourly

Hu et al. [88] China Deep Residual
CNN (Res-
CNN) with TL

Accuracy ENSO 3, 6, 9, 12, 18,
23 months

Ham et al. [89] N/S CMIP5 and
CNN with TL

Hit rate ENSO Up to one and a
half years

Mu et al. [90] N/S ConvLSTM
(Convolutional
Long Short-
Term Memory
Network)
with TL

Correlation r, MSE,
RMSE

Realistic El
Niño

3 to 12 months

Table 5
Details of features of different investigations for the prediction of earthquake using transfer learning

Authors Region Methods and Models
Evaluation
Metrics Using TL

Target of the
Prediction

Time
Granularity

Wang et al. [94] Cascadia and the
San Andreas
Fault

Convolutional
encoder–decoder
(CED) with TL

MAPE Fault-slip
behavior

N/S

Jozinović et al.
[92]

Central western
Italy

CNNs Number of outliers,
mean, median,
standard devia-
tion

Earthquake peak
ground motion
intensity mea-
sures (IMs)

N/S

Titos et al. [93] Colima (Mexico) CNN with TL Accuracy, speed up Isolated volcano-
seismic events

N/S

Chai et al. [48] N/S DNN phase picker
with TL

Accuracy Mesoscale
hydraulic
fracturing
experiments

N/S

Maya and Yu
[95]

N/S MLP with meta-
learning and transfer
learning

MSE Earthquakes N/S

Wang et al. [94] Cascadia and the
San Andreas
Fault

Convolutional
encoder–decoder
(CED)

MAPE Fault-slip
behavior

N/S

Wang et al. [94] N/S Convolutional
encoder–decoder
with TL

Accuracy Fault-slip
behavior

N/S
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Table 6
Details of features of different investigations for LULC classification using transfer learning

Authors Region Methods and Models
Evaluation
Metrics Using TL

Target of the
Prediction

Time
Granularity

Alem and Kumar
[96]

Two TL frameworks,
namely, the Visual Geom-
etry Group (VGG16) and
Wide Residual Networks-
50 (ResNet-50)

LULC classification N/S

Barman et al. [97] Kolkata
Metropolitan
Area (KMA),
India

SVM, RF with TL Precision, recall,
F-score, overall
accuracy, and
Kappa coeffi-
cient

Urban land use/cover N/S

Naushad et al. [98] Many CNN with TL Accuracy LCLU classification N/S
Dastour and
Hassan [100]

Canada CNN with TL Precision, Recall,
F1

LCLU classification N/S

Wu et al. [101] China With TL Accuracy LCLU classification N/S
Li et al. [102] China Iterative reweighting hetero-

geneous transfer learning
(IRHTL)

Accuracy LCLU classification N/S

Demir et al. [103] China Change-detection-driven TL Accuracy LCLU classification N/S
Lin et al. [104] China TL, Clustering Accuracy LCLU classification N/S
Yifter et al. [105] Moscow region,

Russia
CNN with TL Accuracy LCLU classification N/S

Qian et al. [106] China Classification and change
analysis with TL

Accuracy LCLU classification N/S

van den Broeck
et al. [107]

Turkey Fully convolutional networks
(FCN) with TL

Accuracy Multiclass land
cover mapping

N/S

Siddamsetty et al.
[108]

Different N/S Precision, Recall,
F2 score

LCLU classification N/S

Huang et al. [109] N/S CNN with TL Overall accuracy,
F1 score

LCLU classification N/S

that adversely affect its outputs, overfitting arises in the context
of TL.

One may note that every algorithm or technology has its own
pros and cons according to the task at hand and the environment. The
advantages of TL techniques in predicting HIW are listed below.

1) The fundamental benefit of TL approach is its capacity to deal
with data scarcity issue. Data scarcity is a significant difficulty
in ML-DL models, which can lead to overfitting, performance
deterioration, and thus hinder the advancement of DL applica-
tions. Our systematic review acknowledges many TL solutions
specifically designed to mitigate this problem. TL approaches
reduce the need for large-scale data, making them essential for
applying DL to real-world scenarios.

2) The TL approaches have the benefit of improving the perfor-
mance of target model. Positive knowledge transfer enhances the
target model’s ability to build networks with deeper layers and
more parameters without requiring considerable training data.
Experimental findings of different applications reveal that TL
approaches significantly improve model performance not only
single step but also in multistep weather prediction.

3) The other benefit of TL approaches is their high level of gen-
eralizability. These techniques extract generalized features from

one task to another. Building reusable models may significantly
reduce the time and computing resources required for DL train-
ing, resulting in considerable cost savings. Researchers aspire
for their trained models to be usable in a wider number of disci-
plines and scenarios, maximizing their usefulness and relevance.

4) The fourth advantage of TL techniques is their ability to speed
up the convergence speed of the target model. This approach also
reduces the processing expenses, making it useful for real-world
applications.

5) TL approaches help models learn from simulations. This helps
the model to gather valuable experience and learn optimum
actions without the hazards of real-world testing. When a model
performs well in simulation, it may be confidently applied in
real-world applications.

8. Conclusions, Future Scope, and Some Concerns

In this review, we have described various methods and tactics
of TL from both the data and model perspectives, and its application
in HIW prediction. The objective is to make the climate analytics
researchers aware of the emerging TL technology in AI, viz, what
it is, why and how it can be applied in prediction problem, and
what are the future scope. The article includes precise definitions
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Figure 6
Evolution of disciplines from the mother subject “Pattern

recognition” over six decades since 1960s

of TL, relevance of TL to weather prediction, and provides several
examples of TL approaches and related literature. A comparative
study of various applications in HIW, during the past ten years
(2013–2023), assessing the methodologies adopted, performance
metrics used for the prediction, study area considered, target of the
prediction, etc. is provided. The primary conclusions of the current
study are as follows:

1) TL algorithms are widely used in predicting HIWs such as air
pollution, tropical cyclones, rainfall, flood and drought earth-
quakes, and LCLU classification.

2) TL mechanism when embedded into DL makes the deep model
possess some merits, such as lesser dependency on data labels
and size, saving training time and storage space, and improving
the effectiveness of the model. TL approaches enable the adap-
tion of advanced ML-DL models for specific applications and
settings.

3) The TL approach has a number of benefits including eliminating
the scarcity of data and distributionmismatch issues, minimizing
overfitting, and saving training time. By using TL, lower train-
ing time has been required to get the output of the model, and
the generalization capability of the model is increased. All these

characteristics make the TL a significant component in ML-DL-
based real-life applications. For example, consider the pollution
estimation during COVID-19 pandemic period in Kolkata, India.
Here the DL model [24] designed during normal period hav-
ing abundant data was retrained using TL during the complete
lockdown and partial lockdown period. This was achieved by
transferring the knowledge acquired during the normal period to
the pandemic situation. Here the distribution of data was differ-
ent from the normal period as a drastic change in concentration
of pollutants obtained due to pandemic situation. This new TL-
based model validated during the complete lockdown period of
COVID second wave where the data was scarce. In this prob-
lem, both the data scarcity and distribution mismatch issue are
addressed.

4) Drawbacks of TL methods include domain mismatch, negative
knowledge transfer, and label shift. Interpretability of the model
is necessary for understanding decision making of the model in
handling extreme weather events.

One may note that we only considered HIW related to atmo-
spheric phenomena including tropical cyclone, doughts, flood,
visibility that are natural or indirectly influenced by man. We have
not considered here the HIW directly induced by man. Further,
the study is based on the results reported in journals, conferences
proceedings, and books, published only over the past decade, 2013–
2023. Some important papers might have been overlooked/ omitted
inadvertently from inclusion in the study.

Future studies using TL may proceed in several distinct fields
as follows:

In the area of weather forecasting, a greater range of appli-
cations for TL approaches can be investigated and implemented.
To tackle knowledge transfer issues in more intricate applications,
novel methodologies are required for development. For instance, it
is crucial to determine the best way to quantify the transferability
between domains while preventing the negative transfer. Despite
a few research, one still needs a more systematic analysis to fully
understand the principle of negative transfer. Determining the inter-
pretability of TL is another crucial issue that constitutes a scope of
future research. It means, making TL models more interpretable,
transparent, and explainable so that the users and readers may com-
prehend the decision-making process of the model in generating the
output.

We have discussed a comprehensive analysis of TL designed
for and used in predicting weather phenomena. There are several
areas in meteorology where the method of TL is awaited to gen-
eralize. These are forecasting of tornado, lightning, thunderstorm,
straight-line wind, hail, heatwave, and multi hazard prediction,
among others.

More theoretical research needs to be done to offer theoretical
background to understand the functioning of TL and for justifica-
tion of its enhanced efficacy and applicability. In this context, there
is a need to research in insecurity aspects of transfer learning, espe-
cially vulnerabilities and attacks specific to these methodologies.
Further, instead of generating a single forecast, an ensemble forest
utilizing TL approaches may provide an indication of the probable
future states of the atmosphere.

Moving future, heterogeneous TL systems will become
increasingly significant due to the diversity in data acquisition.
The availability of “Big data” demonstrates the possibility of
implementing deep learning alongside the existing TL techniques.
In meteorology or atmospheric sciences, there is a chance of
having both labeled and unlabeled source, and unlabeled tar-
get data. Unfortunately, not many TL techniques are there that
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can deal with the situation of unlabeled source and unlabeled
target data. This is undoubtedly a topic that needs more
investigation.

In conclusion, we believe the present review will enable
the readers, particularly in climate analytics and data science, to
have a more thorough grasp of the concepts and current status of
research concerning the theory of TL and its applicability in weather
prediction.

Finally, we mention some concerns for beginners in DL and
data science research. While trying to develop AI- and DL-based
approaches for different applications in data analytics, one may note
the observation made by Pal et al. [22] concerning the evolution of
the discipline from the mother subject “Pattern recognition” over six
decades since the 1960s approximately as shown in Figure 6 [22].

At every evolution from the mother subject [114], new
approaches, theories, and technologies were developed, and new
terms were coined with big expectations to deal with the varying
nature of data, as well as the decision-making tasks. Still, a beginner
should avoid diving headfirst into new technologies before knowing
adequately the basic theories. As an instance, to understand the func-
tioning of deep learning including TL, one should know the same
for shallow learning (viz, ML and ANNs). For knowing the ML and
ANNs, one should have full knowledge of pattern recognition. If
not, it can quickly result in dissatisfaction by criticizing the DL-TL
approaches and its existingmodels. This is what we hadwitnessed in
ANN research which experienced a revitalization in the 1980s with
a big expectation, but the field nearly lost interest within a period
of about 12 to 15 years. One of the reasons for this was a paucity of
scientific research into the operation of the “black box” (neural net-
work) systems and designing new application-specific architectures
[22].

“Knowing & learning ancestors makes one’s knowledge
mind development better.”
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Appendix

AI -Artificial intelligence
ANN- Artificial neural network
BLSTM/ BDLSTM - Bi-Directional LSTM
CNN Convolutional Neural Network
CNN-LSTM Convolutional Neural Network-LSTM
Conc. Concentration
D-CRNN-Convolutional recurrent neural networks
DBN - Deep belief networks
DL - Deep learning
DNN - Deep Neural Network
ENSO - El Niño-Southern Oscillation
EVS - Explained variance score
GANs - Generative adversarial networks
GRU - Gated recurrent unit
HIW - High-impact weather
LCLU - land cover land use
LSTM - long short-term memory
MAE - Mean Absolute Error
MAPE- Mean Absolute Percent Error
MSE - Mean square Error
ML- Machine learning
MLP - Multilayer Perceptron
nRMSE - normalized root mean squared error
NO2 - Nitrogen dioxide
NWP - Numerical Weather Prediction
O3 - Ozone
PM- Particulate matter
PM2.5 - Particulate matter less than 2.5 µm in diameter
PM10 - Particulate matter less than 10 µm in diameter
RF - Random Forest
RMSE - Root Mean Squared Error
RNN - Recurrent Neural Network
RGB - Red–Green–Blue
SMAPE - Symmetric mean absolute percentage error
SO2 - Sulfur dioxide
SSTA - Sea surface temperature anomalies
SSHA - sea surface height anomalies
SVR - Support vector regression
TC - Tropical cyclone
TL - Transfer Learning
USFP - Unbalanced severe typhoon formation prediction
VHR - Very-high-resolution
R2 - Coefficient of determination
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