
Received: 8 March 2024 | Revised: 27 April 2024 | Accepted: 14 May 2024 | Published online: 23 May 2024

RESEARCH ARTICLE

Deterministic Versus Nondeterministic
Optimization Algorithms for the Restricted
Boltzmann Machine

Gengsheng L. Zeng1,*

1Department of Computer Science, Utah Valley University, USA

Abstract: A restricted Boltzmann machine is a fully connected shallow neural network. It can be used to solve many challenging optimization
problems. The Boltzmann machines are usually considered probability models. Probability models normally use nondeterministic algorithms to
solve their parameters. The Hopfield network which is also known as the Ising model is a special case of a Boltzmann machine, in the sense that
the hidden layer is the same as the visible layer. The weights and biases from the visible layer to the hidden layer are the same as the weights and
biases from the hidden layer to the visible layer.When theHopfield network is considered a probabilisticmodel, everything is treated as stochastic
(i.e., random) and nondeterministic. An optimization problem in the Hopfield network is considered searching for the samples that have higher
probabilities according to a probability density function. This paper proposes amethod to consider the Hopfield network as a deterministicmodel,
in which nothing is random, and no stochastic distribution is used. An optimization problem associated with the Hopfield network thus has a
deterministic objective function (also known as loss function or cost function) that is the energy function itself. The purpose of the objective
function is to assist the Hopfield network to reach a state that has a lower energy. This study suggests that deterministic optimization algorithms
can be used for the associated optimization problems. The deterministic algorithm has the same mathematical form for the calculation of a
perceptron that consists of a dot product, a bias, and a nonlinear activation function. This paper uses some examples of searching for stable
states to demonstrate that the deterministic optimization method may have a faster convergence rate and smaller errors.

Keywords: restricted Boltzmann machine, Hopfield network, deterministic optimization, nondeterministic optimization

1. Introduction

A restricted Boltzmann machine (RBM) is a fully connected
neural network consisting of two layers: the visible layer and
hidden layer, respectively, as shown in Figure 1 [1–8]. The neurons
in the visible layer are labeled as v1; v2; . . . ; vm, and the neurons in
the hidden layer are labeled as h1; h2; . . . ; hn. All neurons are fully
connected between the two layers. However, the neurons are not
connected within each layer, which is an additional requirement
dictated by the word “restricted.” In unrestricted Boltzmannmachines,
on the other hand, we allow connections between the neuron connec-
tions in the hidden layer [9–11].

A common RBM is binary valued. In other words,
v1; v2; . . . ; vm; h1; h2; . . . ; hn 2 0; 1f g or v1; v2; . . . ; vm; h1; h2; . . . ;
hn 2 {−1, 1}. An RBM is associated with an energy function, which
is a quadratic form. To use an RBM, a problem is formulated as an
energy function (also known as, an objective function, a cost function,
or a loss function). This energy function is formed according to the task
to be performed [12–17].

A unique feature of the RBMs is their parallel implementations
by, for example, using the Field Programmable Gate Array (FPGA)
technology [18–23]. Therefore, they can be used to solve the
NP-hard problems once the NP-hard problems are represented by

well-defined energy functions. Many NP-hard problems can be
formulated in a combinatorial nature.

In most machine learning tasks, input data and desired output
data (known as targets or labels) are given to train the neural
network parameters (known as weights and biases), according to a
user-specified cost function, which defines the distance between
the desired target and the model produced result. However, in a
typical RBM application, we do not use the input data and the
desired output data to train the network parameters. The network
parameters are calculated through a design procedure. If there is
no training, there is no need for an objective function.

Figure 1
A restricted Boltzmann machine (RBM) consists of two layers:

the visible layer v and the hidden layer h

h2 hn

v1 v2 vm

h
1

*Corresponding author: Gengsheng L. Zeng, Department of Computer Science,
Utah Valley University, USA. Email: larry.zeng@uvu.edu

Journal of Computational and Cognitive Engineering
2024, Vol. 00(00) 1–8

DOI: 10.47852/bonviewJCCE42022789

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://orcid.org/0000-0003-0790-6043
mailto:larry.zeng@uvu.edu
https://doi.org/10.47852/bonviewJCCE42022789
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

The energy function in the context of Boltzmann machines is
inherent to the network weights and biases; the weights connect the
visible layer and the hidden layer. The energy function can be used
as an objective function. However, this objective function is not
quite the same as the objective function that is used commonly in
machine learning. The common objective function in machine
learning is used for network training to find the weights and biases.
On the other hand, the energy function of a Boltzmann machine
indicates the stability of the state of the machine. In a binary
Boltzmann machine, the neurons store a {−1, 1} string, which is
referred to as a state. Each state is associated with a value of the
energy function. If the Boltzmann machine is initialized with a
random state, the tendency of the Boltzmann machine is to move
from the current state to a new state that has a lower energy.

A Boltzmann machine is considered already trained or already
designed. The weights and biases are fixed. This machine
“remembers” some “good” stable states. The “bad” states are
unstable, and the Boltzmann machine tries to avoid them. The
machine will transition to a stable state every time the current state
somehow becomes unstable. In this sense, the energy function for a
Boltzmann machine is an objective function, which pushes the
neuron state to the closest local minimum. This point will be
illustrated by examples later in this paper.

Let us consider a special case of the RBM, in which the visible
layer and the hidden layer are the same, that is, h ¼ v. This special
case is referred to as the Hopfield network [24] or the Ising model
[20] as shown in Figure 2, where the visible layer and the hidden
layer merge into one layer. The Hopfield network is fully intercon-
nected, meaning that each neuron (i.e., unit) is connected to every
other neuron (unit). These connections have values of wij from unit
i to unit j. The weights typically have the following restrictions:

wii ¼ 0; (1)

wij ¼ wji: (2)

In other words, no unit has a connection with itself, and connections
are symmetric. Each neuron has its own bias and an activation
function. We can use a symmetric matrix W to represent the
weights in (1) and (2). The diagonal elements of W are zeros.

The network is continuously updating itself. The value of each
unit vj is determined by the current values of other units. Unlike a
usual perceptron, in which the output is evaluated as an activation
function of the inner product of the neuron values from the previous
layer and the layer weights plus a bias, the next value of a particular
neuron is updated by a not-so-easy algorithm that will be discussed in
the next section of this paper. The aim of this algorithm is to select the
neuron value such that the energy function of the network is reduced.

For each set of weightswij and biases bi, an energy function E is
defined as

E ¼ � 1
2

X
i;j

wijvivj �
X
i

bivi (3)

When the weights and biases are given and fixed, the neuron values
will get updated by an algorithm, and the network will eventually
converge to a local minimum of the energy function E. In a Hopfield
network, we do not see the usual activation functions; instead, we use
an algorithm to generate a new state of the neurons.

When we say that the network will converge to a lower-energy
state, we do not mean to update the weights and biases. The network
reaches a lower-energy state by updating the values of the neurons.
The weights and biases cannot be changed. The determination
(i.e., training) of the weights and biases is not easy and is beyond
the scope of this paper [25].

2. Methods

AHopfield network is fully determined by the weights and biases.
Theweights and biases then uniquely determine an energy functionE as
given by (6). The local minima of the energy function E are the stable
“solutions” that are stored in the Hopfield network [26, 27]. After
Hopfield network neurons are initialized by a random binary string,
the network will gradually converge to its closest local “solution” by
an algorithm. We are now deriving such an algorithm as follows.
This algorithm is going to be nondeterministic.

Traditionally, finding a local minimum in a Hopfield network is
first to represent its energy function E as a joint probability density
function of a certain stochastic distribution, which is called
Boltzmann probability distribution as

P stateð Þ ¼ 1
Z
e�E

T ; (4)

where T is the “temperature” and Z is a normalization constant so that
the sum ofP(state) is 1 for all possible states. The term “temperature”
is a parameter that is used in some optimization algorithms related to
the Boltzmann distribution and artificial annealing. This term is
borrowed from thermal dynamics. A higher “temperature”
indicates a parameter that encourages randomness. The function
defined in (4) is monotonically decreasing. It is important to
notice that a large E value corresponds to a small P value and a
small E value corresponds to a large P value. In other words,
minimizing E is equivalent to maximizing P. A state is a possible
binary string of V ¼ v1; v2; . . . ; vm½ �. If E is a non-negative real
number, then P(state) is in 0; 1ð � and

X
state

P state Vð Þ ¼ 1: (5)

It is thus justified to treatP as a probability density function of a certain
stochastic distribution. Every state is assigned a P value, which is a
probability. Minimizing the energy function E is equivalent to finding
a state that maximizes the probability density function P locally.

Let vþk denote the state which is equal toV in all positions except
at position k (i.e., vi with i 6¼ kÞ and equal to +1 at position k
(i.e., vk ¼ þ1Þ:

vþk ¼ v1; . . . ; vk�1; 1; vkþ1; . . . ; vmð Þ: (6)

Similarly, v�k is defined as

Figure 2
A Hopfield network consists of only one layer

v1 v2 vm

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

02

v�k ¼ v1; . . . ; vk�1;�1; vkþ1; . . . ; vmð Þ: (7)

We now define the ratio p of two probabilities as,

p ¼ P vþk
� �

P v�k
� � ¼ e�E vþ

kð Þ
e�E v�kð Þ ¼ e�E vþ

kð ÞþE v�kð Þ: (8)

Here, the uppercaseP is a probability, and the lowercase p is the ratio of
two probabilities. Let us consider the following conditional probability
of neuron vk being +1 given the current state of other neurons:

P vk ¼ 1jvi6¼k

� �

¼ P vþk
� �

P vi6¼k

� �

¼ P vþk
� �

P v�k
� �þ P vþk

� �

¼ P vþk
� �

=P v�k
� �

1þ P vþk
� �

=P v�k
� �

¼ p
1þ p

¼ e�E vþ
kð ÞþE v�kð Þ

1þ e�E vþ
kð ÞþE v�kð Þ

¼ e�E vþkð ÞþE v�kð Þ
1þ e�E vþkð ÞþE v�kð Þ : (9)

If we introduce the logistic sigmoid function ϕ zð Þ as

ϕ zð Þ ¼ 1
1þ e�z ; (10)

then

P vk ¼ 1jother vi 6¼k

� � ¼ ϕ E v�k
� �� E vþk

� �� �
: (11)

Consequently, the conditional probability of neuron vk being −1 is
given as

P vk ¼ �1jother vi6¼k

� � ¼ 1� ϕ E v�k
� �� E vþk

� �� �
: (12)

Clearly, according to (10), the values of the logistic sigmoid function are
between 0 and 1. A plot of the logistic sigmoid function is shown in
Figure 3. It is reasonable to treat P vk ¼ 1jvi6¼k

� �
as a probability.

It is straightforward to observe that if P vk ¼ 1jother vi6¼k

� �
> 0.5,

then P vk ¼ �1jother vi6¼k

� �
< 0.5. In this case, the network has a

higher tendency to choose vk = 1 than to choose vk = −1. According
to Figure 3 and (10), P vk ¼ 1jother vi6¼k

� �
> 0.5 implies that

E vþk
� �

< E v�k
� �

. Therefore, the choice of vk = 1 reduces the energy E.
The nondeterministic algorithm can be explained with a small

example as follows. We are trying to update the value of the kth
neuron vk. We first calculate P vk ¼ 1jother vi6¼k

� �
according to

(11). Let us assume that this value happens to be 0.7. We then run a
random number generator that generates a random number uniformly
distributed on [0, 1]. If this random number is< 0.7, we set vk ¼ 1;
otherwise, we set vk ¼ �1. The nondeterministic nature of this algo-

rithm is created by the [0, 1] uniformnumber generator. It allows a prob-
ability of 0.7 to set vk to be 1 and a probability of 0.3 to set vk to be−1.

In fact, we do not have to convert the energy function E into a
Boltzmann distribution (4). Then we can stay away from any random
variables. The updating algorithm will become deterministic as
explained as follows.

We now explain the deterministic algorithm using the same
small example as above. We are still trying to update the value of
the kth neuron vk. We first calculate the energy values E vþk

� �
and

E v�k
� �

according to (3), where the exponential function is never used
and the energy is never converted into the Boltzmann distribution. If
E vþk
� �

< E v�k
� �

, we set vk ¼ 1; otherwise, we set vk ¼ �1.
As a matter of fact, there is an easier way. It can be shown that

the energy difference can be easily calculated as [27]

E v�k
� �� E vþk

� � ¼ 2ðWkV þ BÞ (13)

where, using an N-neuron Hopfield network example,

V ¼
v1
v2
..
.

vN

2
664

3
775 (14)

B ¼
b1
b2
..
.

bN

2
664

3
775 (15)

W ¼
0 w12 � � � w1N
w12

..

.
0
..
.

� � �
. .
.

w2N

..

.

w1N w2N � � � 0

2
664

3
775 (16)

and Wk is the kth row of W. The deterministic algorithm can be
readily written as

vk ¼ σ
X
i

wikvi þ bj

 !
(17)

where σ is an activation sign function:

Figure 3
The logistic sigmoid function

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

03

σ xð Þ ¼ 1 if x > 0
�1 if x � 0:

�
(18)

It is interesting to notice that the deterministic algorithm (17)
happens to be the usual expression for a perceptron, which involves
a dot product and bias term and a nonlinear activation function.

The experiment details are given in Tables 1 and 3, which show
the logical relationship between the inputs and the output. The inverse
solutions (i.e., the inputs) for a given output in general is not unique.
Mathematically speaking, the inverse function really does not exist
because the function value is not unique. If the “inverse function”
has three values, these three values should have an equal chance to
reach. The multiple solutions are the local minima of an objective
function which is defined by the matrices W and B. The proposed
deterministic optimization algorithm is iteratively updating the
variables (v1 and v2, in our examples) according to (17).

Instead of using (17), an alternative way to update a variable vk
is the direct usage of the objective function E as follows:

vk ¼ 1 if E vk ¼ 1ð Þ < E vk ¼ �1ð Þ
�1 if E vk ¼ 1ð Þ > E vk ¼ �1ð Þ

�
(19)

where the objective function E is evaluated using the current variable
values other than vk.

In the deterministic algorithm, the concept of the probability
distribution is never used. The entire Hopfield network updating
procedure is deterministic. Some numeric examples are presented
to compare these two methods in the next section.

3. Results

This section uses two examples to illustrate the performance
differences between a nondeterministic algorithm and a
deterministic algorithm in Hopfield network applications. In these
two examples, the Hopfield networks are assumed to be already
designed. In other words, the weights W and biases B are given.
The goal is to find the closest local minimum of the energy function.

In the first example, we use a Hopfield network to remember the
stable OR gate states using {−1, 1} as variables. The logic OR gate
relations are defined in Table 1.

The four stable states listed in Table 1 are the four lower-energy
stateswith negative energy values in an energy functionE defined in (3),

where the weights and biases are the elements of W and B given
as

W ¼
0 �1 2
�1 0 2
2 2 0

2
4

3
5 (20)

and

B ¼
�1
�1
2

2
4

3
5 (21)

The stable states are (−1, −1, −1), (�1, 1, 1), (1, −1, 1), and
(1, 1, 1).

We now verify that the energy function defined by (20) and (21)
indeed has the local minima for the desired stable OR gate states and
has unstable larger energy values for the states that do not satisfy the
OR gate relationship. There are eight possible states. Four of the
states are stable, and the other four states are unstable as listed in
Table 2, as calculated by using (3).

We first clamp the value of v3 to +1. In this case, according to
Table 1, there are three solutions for v1; v2ð Þ; they are
�1; 1ð Þ; 1; �1ð Þ, and 1; 1ð Þ. With v3 clamped as +1, we generate
100,000 random initial values of v1; v2ð Þ and run the two energymin-
imization algorithms (one deterministic and one nondeterministic),
respectively. For each algorithm, we obtain 100,000 converged states.
The converged states are summarized in a histogram. The histogram
results are shown in Figures 4 and 5, respectively. The ideal result
should show the equal likelihood of the solutions of
�1; 1ð Þ; 1; �1ð Þ, and 1; 1ð Þ. There should be very little occurrence
elsewhere. It can be observed that the deterministic algorithm gives
much better results than the nondeterministic algorithm. In the figures,
“−1” is labeled as “0” along the horizontal axes, and v1v2v3 is labeled
as ABC with A ¼ v1, B ¼ v2, and C ¼ v3.

Next, we clamp the value of v3 to −1. In this case, according to
Table 1, there is only one solution for v1; v2ð Þ, that is, �1; �1ð Þ.
With v3 clamped to −1, we generate 100,000 random initial values
of v1; v2ð Þ and run the two energy minimization algorithms (one
deterministic and one nondeterministic), respectively. The histogram

Table 1
The logic OR gate in {−1, 1}

v1 v2 v3
−1 −1 −1
−1 1 1
1 −1 1
1 1 1

Table 2
The energy values for all possible states by using

the logic OR gate relationship in {−1, 1}

v1 v2 v3 E

An OR gate state −1 −1 −1 −3 Stable
An OR gate state −1 1 1 −3 Stable
An OR gate state 1 −1 1 −3 Stable
An OR gate state 1 1 1 −3 Stable
A non-OR gate state −1 −1 1 1 Unstable
A non-OR gate state −1 1 −1 1 Unstable
A non-OR gate state 1 −1 −1 1 Unstable
A non-OR gate state 1 1 −1 9 Unstable

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

04

results are shown in Figures 6 and 7, respectively. The ideal result
should only show �1; �1ð Þ with nothing elsewhere. Once again,
the deterministic algorithm gives much better results than the
nondeterministic algorithm.

We can repeat the same studies for the logic AND gate using
{−1, 1}. The AND gate logic relationships are listed in Table 3.

The four stable states listed in Table 3 are the four lower-energy
states with negative energy values in an energy function E defined in
(3) whose W and B are given as

W ¼
0 �1 2
�1 0 2
2 2 0

2
4

3
5 (22)

and

B ¼
1
1
�2

2
4

3
5 : (23)

The stable states are (−1, −1, −1), (�1, 1, 1), (1, −1, 1), and
(1, 1, 1).

It is interesting to notice that theWmatrices in (20) and (22) are
the same. However, the B vector for the AND gate is the negative
counterpart of the B vector for the OR gate.

We now verify that the energy function defined by (22) and (23)
indeed has the local minima for the desired stable AND gate states
and has unstable larger energy values for the states that do not satisfy
theANDgate relationship. There are eight possible states. Four of the
states are stable, and the other four states are unstable as listed in
Table 4, as calculated by using (3).

Similar to the OR gate study, we first clamp the value of v3 to
−1. In this case, according to Table 3, there are three solutions for
v1; v2ð Þ; they are �1; �1ð Þ; 1; �1ð Þ, and �1; 1ð Þ. With v3
clamped to �1, we generate 100,000 random initial values of

Figure 7
The histogram of the Hopfield network converged
states for the OR gate model with v3 clamped to �1

using the nondeterministic algorithm

Figure 4
The histogram of the Hopfield network converged
states for the OR gate model with v3 clamped to +1

using the deterministic algorithm

Figure 5
The histogram of the Hopfield network converged
states for the OR gate model with v3 clamped to +1

using the nondeterministic algorithm

Figure 6
The histogram of the Hopfield network converged
states for the OR gate model with v3 clamped to �1

using the deterministic algorithm

Table 3
The logic AND gate in {−1, 1}

v1 v2 v3
−1 −1 −1
−1 1 −1
1 −1 −1
1 1 1

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

05

v1; v2ð Þ and run the two energy minimization algorithms (one deter-
ministic and one nondeterministic), respectively. The histogram
results are shown in Figures 8 and 9, respectively. The ideal result
should show the equal likelihood of the solutions of
�1;� 1ð Þ; 1; �1ð Þ, and �1; 1ð Þ. There should be very little occur-
rence elsewhere. The deterministic algorithm gives much better
results than the nondeterministic algorithm.

Next, we clamp the value of v3 to +1. In this case, according to
Table 2, there is only one solution for v1; v2ð Þ, that is, 1; 1ð Þ. With v3
clamped as +1, we generate 100,000 random initial values of
v1; v2ð Þ and run the two energy minimization algorithms (one deter-
ministic and one nondeterministic), respectively. The histogram
results are shown in Figures 10 and 11, respectively. The ideal result
should only show 1; 1ð Þ with nothing elsewhere. Once again, the
deterministic algorithm gives much better results than the nondeter-
ministic algorithm.

4. Discussion

This paper focuses on the theoretical problem of local optimization.
In the two examples, we have two problems. One problem is to find the
inverse function of an AND gate logic. The other problem is to find the
inverse function of an OR gate logic. These two inverse functions are
used to form two objective functions, which have multiple local
minima. These two objective functions are distinct, and their local
minima are different. Our computer simulations demonstrate that for
an objective function with multiple local minima, the proposed
method is not biased if the initial condition is uniformly sampled.

Figure 10
The histogram of the Hopfield network converged

states for the AND gate model with v3 clamped to +1
using the deterministic algorithm

Figure 8
The histogram of the Hopfield network converged

states for the AND gate model with v3 clamped to �1
using the deterministic algorithm

Figure 9
The histogram of the Hopfield network converged

states for the AND gate model with v3 clamped to �1
using the nondeterministic algorithm

Table 4
The energy values for all possible states by using

the logic AND gate relationship in {−1, 1}

v1 v2 v3 E

An AND gate state −1 −1 −1 −3 Stable
An AND gate state −1 1 −1 −3 Stable
An AND gate state 1 −1 −1 −3 Stable
An AND gate state 1 1 1 −3 Stable
A non-AND gate state −1 −1 1 9 Unstable
A non-AND gate state −1 1 1 1 Unstable
A non-AND gate state 1 −1 1 1 Unstable
A non-AND gate state 1 1 −1 1 Unstable

Figure 11
The histogram of the Hopfield network converged states for the

AND gate model with v3 clamped to +1 using the
nondeterministic algorithm

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

06

An NP-hard problem is to search for the global solution. Our
method is a greedy method, which looks for the nearest local
minimum. In this paper, both deterministic and nondeterministic
methods are greedy methods. To search for the local minimum,
the iterative algorithms (similar to the gradient descent algorithms)
take many steps to reach the local minimum. Since the
nondeterministic algorithm allows a percentage of the total
number of steps to move in the uphill direction, it will take more
steps to converge. An error in the context of the current paper is
referred to the situation where the algorithm converges to a local
minimum that is not the nearest one.

The implementation of the proposed deterministic algorithm is
fairly straightforward for a binary problem, in which the variables
can only take two values. On the other hand, in an optimization
algorithm with continuous variables, the update step size is tricky
to select. If the step size is too large, the algorithm may diverge.
If the step size is too small, the algorithm may take too long to
converge. For a binary optimization algorithm, a variable may
stay at its current value or change to the other value. The most
difficult part of using an RBM to solve a practical problem is to
set up the objective function.

For deterministic optimization, the objective function is the
same as the energy function. No conversion is needed. On the
other hand, for the nondeterministic optimization, the energy
function must be mapped to the range of [0,1] to treat it as a
probability distribution.

For any discrete problem, for example, integer programming
and binary programming, a local minimum is perfectly reached.
However, to find the global minimum requires a brute-force
search and is well-known to be NP-hard.

The deterministic optimization finds the nearest local minimum
from the initial condition. In order to find the global optimum, one
must start with a large number of different initial conditions and
compare their results.

For binary Boltzmannmachines, the variables can only take two
values. Therefore, the activation function can only take two values.
Thus, the step function is a natural choice for the activation function.

5. Conclusions

An RBM is a fully connected neural network consisting of two
layers: the visible layer and the hidden layer, respectively. A
common RBM is binary valued and associated with an energy
function, which is a quadratic form. When these two layers are
the same, the RBM is reduced to a Hopfield network. In this
paper, we consider a binary Hopfield network, where the neurons
take the values of {−1, 1}. However, the weights and biases can
take any real numbers.

In a Hopfield network, the weights and biases are designed by a
problem at hand. The Hopfield network is not trained. For example,
the weights can be calculated by the Hebbian learning rule [28]. Once
the Hopfield network is designed, it can remember some good stable
solutions. Algorithms are available to update the state of the Hopfield
network so that a random state can converge to a local minimum of
the energy function.

The traditional method is to represent this energy function as a joint
probability distribution by using an exponential function conversion.
Minimizing the energy function is equivalent to iteratively increasing
the conditional probability for each unit (i.e., neuron).

For a binary Hopfield network, at each iteration step, a unit has a
probability, say q, to change to 1. The state of a unit is a random
variable, and its update procedure is implemented randomly

according to the conditional probability q. Therefore, the iterative
algorithm is nondeterministic.

This paper uses a different method to update a binary Hopfield
network’s neuron value.We do not convert the energy function into a
joint probability distribution. We use the original definition of the
network energy. The optimization of the energy function is now a
deterministic problem. The optimization procedure is still iterative
but no longer nondeterministic. The proposed deterministic
procedure has advantages over the nondeterministic procedure:
faster convergence and smaller errors. Best of all, the
deterministic update algorithm is in the standard form of a typical
perceptron, which consists of a dot product, a bias, and a
nonlinear activation function.

Themain goal of aHopfield network is to search for localminimaof
an energy function. Finding the local minima of an energy function is a
mathematical problem. In our manuscript, the proposed deterministic
method is applied to four problems: an inversion of the AND gate
function with the output clamped to 1, an inversion of the AND gate
function with the output clamped to −1, an inversion of the OR gate
function with the output clamped to 1, and an inversion of the OR
gate function with the output clamped to −1. The proposed
deterministic method is compared with the more popular
nondeterministic method using these four applications in the form of
histograms in the “Results” section. The deterministic method can be
applied to many other optimization problems, especially the NP-hard
problems, such as number partition, graph partitioning, cliques,
satisfiability, minimal maximal matching, graph coloring, tree
problems, knapsack with integer weights, and binary integer linear
programming, to name a few [25]. This paper presents some computer
simulations to compare these two methods. The deterministic
algorithm demonstrates more advantages than the nondeterministic
algorithm.

Funding Support

This work is sponsored in part by a grant from the National
Institutes of Health 2R15EB024283.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The author declares that he has no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

References

[1] Alphonse, A. S., Shankar, K., Jeyasheela Rakkini, M. J.,
Ananthakrishnan, S., Athisayamani, S., Robert Singh, A., &
Gobi, R. (2021). A multi-scale and rotation-invariant phase
pattern (MRIPP) and a stack of restricted Boltzmann machine
(RBM) with preprocessing for facial expression classification.
Journal of Ambient Intelligence & Humanized Computing,
12(3), 3447–3463. https://doi.org/10.1007/s12652-020-02517-7

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

07

https://doi.org/10.1007/s12652-020-02517-7

[2] Aslan, N., Dogan, S., & Koca, G. O. (2023). Automated
classification of brain diseases using the restricted Boltzmann
machine and the generative adversarial network. Engineering
Applications of Artificial Intelligence, 126, 106794. https://
doi.org/10.1016/j.engappai.2023.106794

[3] Biamonte, J. D. (2008). Nonperturbative k-body to two-body
commuting conversion Hamiltonians and embedding
problem instances into Ising spins. Physical Review A, 77(5),
052331. https://doi.org/10.1103/PhysRevA.77.052331

[4] Fischer, A., & Igel, C. (2012). An introduction to restricted
Boltzmann machines. In Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications: 17th
Iberoamerican Congress, 14–36. https://doi.org/10.1007/978-
3-642-33275-3_2

[5] Kirubahari, R., & Amali, S. M. J. (2024). An improved restricted
Boltzmann Machine using Bayesian Optimization for
Recommender Systems. Evolving Systems, 15, 1099–1111.
https://doi.org/10.1007/s12530-023-09520-1

[6] Patel, S., Canoza, P., & Salahuddin, S. (2022). Logically
synthesized and hardware-accelerated restricted Boltzmann
machines for combinatorial optimization and integer
factorization. Nature Electronics, 5(2), 92–101. https://doi.
org/10.1038/s41928-022-00714-0

[7] Savitha, R., Ambikapathi, A., & Rajaraman, K. (2020). Online
RBM: Growing restricted Boltzmann machine on the fly for
unsupervised representation. Applied Soft Computing, 92,
106278. https://doi.org/10.1016/j.asoc.2020.106278

[8] Zhang, N., Ding, S., Zhang, J., & Xue, Y. (2018). An overview
on restricted Boltzmann machines. Neurocomputing, 275,
1186–1199. https://doi.org/10.1016/j.neucom.2017.09.065

[9] Berrones-Santos, A., & Bagnoli, F. (2023). Biologically
plausible Boltzmann machine. Informatics, 10(3), 62. https://
doi.org/10.3390/informatics10030062

[10] Chowdhury, S., Niazi, S., & Camsari, K. Y. (2024). Mean-field
assisted deep Boltzmann learning with probabilistic computers.
arXiv Preprint: 2401.01996. https://doi.org/10.48550/arXiv.
2401.01996

[11] Viteritti, L. L., Ferrari, F., & Becca, F. (2022). Accuracy of
restricted Boltzmann machines for the one-dimensional J1−J2
Heisenberg model. SciPost Physics, 12(5), 166. https://doi.
org/10.21468/SciPostPhys.12.5.166

[12] Dixit, V., Selvarajan, R., Alam, M. A., Humble, T. S., & Kais,
S. (2021). Training restricted Boltzmann machines with a
d-wave quantum annealer. Frontiers in Physics, 9, 589626.
https://doi.org/10.3389/fphy.2021.589626

[13] Fernandez-de-Cossio-Diaz, J., Hardouin, P., duMoutier, F. X. L.,
Di Gioacchino, A., Marchand, B., Ponty, Y., : : : , & Cocco, S.
(2024). Designing molecular RNA switches with restricted
Boltzmann machines. bioRxiv Preprint. https://doi.org/10.1101/
2023.05.10.540155

[14] Feng, Z., Winston, E., & Kolter, J. Z. (2023). Monotone deep
Boltzmann machines. arXiv preprint arXiv:2307.04990.

[15] Gu, J., & Zhang, K. (2022). Thermodynamics of the Ising
model encoded in restricted Boltzmann machines. Entropy,
24(12), 1701. https://doi.org/10.3390/e24121701

[16] He, F., Huang, X., Wang, X., Qiu, S., Jiang, F., & Ling, S. H.
(2021). A neuron image segmentation method based Deep
Boltzmann machine and CV model. Computerized Medical

Imaging and Graphics, 89, 101871. https://doi.org/10.1016/j.
compmedimag.2021.101871

[17] Revathi, A., & Santhi, S. G. (2023). Routing-based restricted
Boltzmann machine learning and clustering algorithm in
wireless sensor network. In Proceedings of Emerging Trends
and Technologies on Intelligent Systems, 341–357. https://
doi.org/10.1007/978-981-19-4182-5_28

[18] Cipra, B. A. (2000). The Ising model is NP-complete. SIAM
News, 33(6), 1–3.

[19] Mondal, A., & Srivastava, A. (2020). Ising-FPGA: A
spintronics-based reconfigurable Ising model solver. ACM
Transactions on Design Automation of Electronic Systems,
26(1), 4. https://doi.org/10.1145/3411511

[20] Singh, S. P. (2020). The Ising model: Brief introduction and
its application. In S. Sivasankaran, P. K. Nayak & E. Günay
(Eds.), Solid state physics-metastable, spintronics
materials and mechanics of deformable bodies – Recent
progress. IntechOpen. https://doi.org/10.5772/intechopen.
90875

[21] Matveev, A. A., Safin, A. R., & Nikitov, S. A. (2023).
Exceptional points in coupled vortex-based spin-torque
oscillators. Physical Review B, 108(17), 174443. https://doi.
org/10.1103/PhysRevB.108.174443

[22] Yasudo, R., Nakano, K., Ito, Y., Katsuki, R., Tabata, Y.,
Yazane, T., & Hamano, K. (2022). GPU-accelerated scalable
solver with bit permutated cyclic-min algorithm for quadratic
unconstrained binary optimization. Journal of Parallel and
Distributed Computing, 167, 109–122. https://doi.org/10.
1016/j.jpdc.2022.04.016

[23] Yasudo, R. (2023). Bandit-based variable fixing for binary
optimization on GPU parallel computing. In 31st Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing, 154–158. https://doi.org/10.
1109/PDP59025.2023.00031

[24] Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M.,
Adler, T., : : : , & Hochreiter, S. (2020). Hopfield networks
is all you need. arXiv Preprint:2008.02217. https://doi.org/
10.48550/arXiv.2008.02217

[25] Lucas, A. (2014). Ising formulations of many NP problems.
Frontiers in Physics, 2, 5. https://doi.org/10.3389/fphy.2014.
00005

[26] Camsari, K. Y., Faria, R., Sutton, B. M., & Datta, S. (2017).
Stochastic p-bits for invertible logic. Physical Review X,
7(3), 031014. https://doi.org/10.1103/PhysRevX.7.031014

[27] Christianb93. (2018). The Ising model and Gibbs sampling.
Retrieved from: https://leftasexercise.com/2018/03/12/the-isi
ng-model-and-gibbs-sampling/

[28] Widrow, B., Kim, Y., Park, D., & Perin, J. K. (2024). Nature’s
learning rule: The Hebbian-LMS algorithm. In R. Kozma, C.
Alippi, Y. Choe & F. C. Morabito (Eds.), Artificial
intelligence in the age of neural networks and brain
computing (pp. 11–40). Academic Press. https://doi.org/10.
1016/B978-0-323-96104-2.00012-9

How to Cite: Zeng, G. L. (2024). Deterministic Versus Nondeterministic
Optimization Algorithms for the Restricted Boltzmann Machine. Journal of
Computational and Cognitive Engineering. https://doi.org/10.47852/
bonviewJCCE42022789

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

08

https://doi.org/10.1016/j.engappai.2023.106794
https://doi.org/10.1016/j.engappai.2023.106794
https://doi.org/10.1103/PhysRevA.77.052331
https://doi.org/10.1007/978-3-642-33275-3_2
https://doi.org/10.1007/978-3-642-33275-3_2
https://doi.org/10.1007/s12530-023-09520-1
https://doi.org/10.1038/s41928-022-00714-0
https://doi.org/10.1038/s41928-022-00714-0
https://doi.org/10.1016/j.asoc.2020.106278
https://doi.org/10.1016/j.neucom.2017.09.065
https://doi.org/10.3390/informatics10030062
https://doi.org/10.3390/informatics10030062
https://doi.org/10.48550/arXiv.2401.01996
https://doi.org/10.48550/arXiv.2401.01996
https://doi.org/10.21468/SciPostPhys.12.5.166
https://doi.org/10.21468/SciPostPhys.12.5.166
https://doi.org/10.3389/fphy.2021.589626
https://doi.org/10.1101/2023.05.10.540155
https://doi.org/10.1101/2023.05.10.540155
https://doi.org/10.3390/e24121701
https://doi.org/10.1016/j.compmedimag.2021.101871
https://doi.org/10.1016/j.compmedimag.2021.101871
https://doi.org/10.1007/978-981-19-4182-5_28
https://doi.org/10.1007/978-981-19-4182-5_28
https://doi.org/10.1145/3411511
https://doi.org/10.5772/intechopen.90875
https://doi.org/10.5772/intechopen.90875
https://doi.org/10.1103/PhysRevB.108.174443
https://doi.org/10.1103/PhysRevB.108.174443
https://doi.org/10.1016/j.jpdc.2022.04.016
https://doi.org/10.1016/j.jpdc.2022.04.016
https://doi.org/10.1109/PDP59025.2023.00031
https://doi.org/10.1109/PDP59025.2023.00031
https://doi.org/10.48550/arXiv.2008.02217
https://doi.org/10.48550/arXiv.2008.02217
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevX.7.031014
https://leftasexercise.com/2018/03/12/the-ising-model-and-gibbs-sampling/
https://leftasexercise.com/2018/03/12/the-ising-model-and-gibbs-sampling/
https://doi.org/10.1016/B978-0-323-96104-2.00012-9
https://doi.org/10.1016/B978-0-323-96104-2.00012-9
https://doi.org/10.47852/bonviewJCCE42022789
https://doi.org/10.47852/bonviewJCCE42022789

	Deterministic Versus Nondeterministic Optimization Algorithms for the Restricted Boltzmann Machine
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

