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Abstract: Recently, networks are moving toward automation and getting more and more intelligent. With the advent of big data and cloud
computing technologies, lots and lots of data are being produced on the internet. Every day, petabytes of data are produced from websites,
social media sites, or the internet. As more and more data are produced, a continuous threat of network attacks is also growing. An intrusion
detection system (IDS) is used to detect such types of attacks in the network. IDS inspects packet headers and data and decides whether the
traffic is anomalous or normal based on the contents of the packet. In this research, ML techniques are being used for intrusion detection
purposes. Feature selection is also used for efficient and optimal feature selection. The research proposes a hybrid feature selection technique
composed of the Pearson correlation coefficient and random forest model. For the machine learning (ML) model, decision tree, AdaBoost,
and K-nearesrt neighbor are trained and tested on the TON_IoT dataset. The dataset is new and contains new and recent attack types and
features. For deep learning (DL), multilayer perceptron (MLP) and long short-term memory are trained and tested. Evaluation is done on the
basis of accuracy, precision, and recall. It is concluded from the results that the decision tree for ML and MLP for DL provides optimal
accuracy with fewer false-positive and false-negative rates. It is also concluded from the results that the ML techniques are effective for

detecting intrusion in the networks.
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1. Introduction

A network intrusion detection system (NIDS) is used to detect
unwanted or malicious traffic in the network. An intrusion detection
system (IDS) detects anomalies or attacks in real time. Nowadays,
mostly applications are moving to the cloud. Due to rapid and fast
growth of network devices, security risks got increased. For that
reason, the security of cloud infrastructure and network resources is
the main priority in the modem world. Therefore, IDS should be
accurate, error-free, and efficient. Due to the advent of cloud
computing, the Internet of Things (IoT) and quantum computing
huge amount of data are being created every day, which are known
as big data. This big data also helps in training the machine
learning (ML) model for security purposes. Network security is a
challenging field nowadays. IDS provides promising results in
determining the intrusion in the network.

IDS mainly consists of two types: anomaly-based and signature-
based. Anomaly-based IDS used ML or deep learning (DL) techniques
to detect data patterns. Signature-based IDS works on predefined
attacks and rules. IDS detects threats by monitoring traffic data in
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computer networks and issues alert after detecting threats. IDS can
be passive or active depending on its alert system.

Today, many researchers are working in the field of IDS. ML and
DL techniques are used to detect network anomalies by using historical
data and standard datasets. Alkhatib et al. (2021) proposed ML
algorithms for intrusion detection purposes. Naive Bayes algorithm
is used in the research. The results obtained from Naive Bayes
algorithm are compared with support vector machines (SVM). Tao
et al. (2018) used SVM and a genetic algorithm for attack detection.
Detection accuracy is increased by optimizing the selection
parameters and weights. Kim et al. (2014) used K-nearesrt neighbor
(KNN) and K-means for intrusion detection purposes. The detection
accuracy got increased in this research. Shapoorifard (2017)
proposed a novel technique to detect the attacks. First, data are
segmented into smaller clusters using C 4.5 algorithm, and then
multiple SVM models are created from the subset of the data. This
technique reduces the time complexity of the model. Zhao et al.
(2017) proposes a work based on deep belief networks. The
dimensionality of data is reduced by using probabilistic models.
The probabilistic neural network is used for the classification of data.

However, several problems exist in the IDS domain like
low accuracy, high false-positive rates, and relevant feature
selection problem. The contributions of this research article
described below:
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1. It provides a ML algorithm for the purpose of detecting intrusion
in the network.

2. It provides an efficient and effective feature selection technique
based on the correlation among features.

3. It provide comparative analysis with other ML techniques.

4. It increase the detection accuracy of the ML model.

The paper is organized as follows: Section 2 presents the literature
review and related work, Section 3 is dedicated to methodology, and
Sections 4 and 5 presents results and conclusion, respectively.

2. Related Work

According to Bashir and Chachoo (2014), organizations are
facing security threats every day in the form of malware and
cyberattacks. IDS and intrusion prevention system detect
and prevent the network from these malwares. Raghunath and
Mahadeo (2008) propose a NIDS that detects the attacks in the
network by using ML techniques and associated pattern analysis
technique to detect anomaly in the network.

Gadze et al. (2021) proposes IDS for software-defined networks
and detecting distributed denial-of-service (DDoS) attack in the
network. DL-based convolutional neural networks (CNN) and
long short-term memory (LSTM) models are presented and
evaluated. Overall, 89.63% accuracy is achieved in this research.
The performance of the model is also compared with other
state-of-the-art ML algorithms. Maseer et al. (2021) use the
CICIDS 2017 dataset for making of IDS. This is one of the new
and flow-based dataset with new attack categories. The authors
utilized DL and proposed a new technique, namely AIDS. The
researcher in this study evaluates the performance by using
true-positive and true-negative rates. KNN-AIDS and decision tree
(DT)-AIDS obtain the best results in this research.

Wang etal. (2020) uses the NSL-knowledge data discovery (KDD)
dataset for IDS. Several ML algorithms are used in the study. A new
framework named SHAP is proposed in the research. This algorithm
combines local and global explanations for IDS. Vinayakumar et al.
(2019) use the DL approach along with KDD CUP 99 datasets for
the making of IDS. In this research, 1,000 epochs are set for each
experiment. This model is also applied to different datasets like
NSL-KDD, UNSW-NB 15, and CICIDS 2017 to measure the
performance. In this research, high-dimensional features are also
learned by the model. This model also provides optimal accuracy.

Rajagopal et al. (2021) uses Azure ML platform for IDS. Meta-
classification approach is used for both binary and multi-classification
purposes. Three datasets are used in the research such as UNBSW,
CICIDS, and CICDOS. 99.8% accuracy is achieved on UNSW,
whereas 99% on CICIDS and 98% on CICDOS. Train and test split
ratio of 40:60 is used in the research Ahmed et al. (2020). The DL
technique is used for IDS. UNSW-NB 15 dataset is used for training
and testing purposes. In this research, CNN is used with regularized
multilayer perceptron (MLP) instead of fully connected layers. Keras
library is used for development purposes. The model is trained on
GPU. Early stopping is also used to prevent the model from overfitting.

Saranyaa etal. (2019) uses KDD CUP 99 datasets with several ML
algorithms like linear discriminate analysis (LDA), classification and
regression tree (CART), and random forest. Random forest achieves
the highest accuracy with 99.8%, LDA with 98%, and CART with
98.1%. Zhang and Ran (2021) uses DL for IDS. CNN algorithm is
proposed in this research along with Google Net inception to detect
network packets binary problem. Overall, 99.63% accuracy is
achieved. Gao et al. (2019) use NSL-KDD dataset. A new ML
model called the adaptive ensemble learning model is proposed.

Multi-tree algorithm is proposed to increase the overall performance
of the algorithm. 84.2% accuracy is achieved in this research.

Ring et al. (2021) proposed host-based IDS. In this research, the
DL model is presented. A new algorithm called ALAD is also
proposed in this research. This new model detects application-level
attacks in the network. Optimal accuracy is achieved through this
model. This model is also compared against other state-of-the-art
algorithms. Devarakonda et al. (2022) use the NSL-KDD dataset in
the research. In this DL model, the autoencoder is proposed. Both
NIDS and host-based IDS are proposed in this research.

The application of DL is widely used in the field of IDS. DL
provides promising results when there is a huge amount of data
which need to be processed. In the security field, an enormous
amount of data is sometimes received from different sources and
there is a need to process that data quickly or efficiently.

Ashiku and Dagli (2021) proposes DL-based IDS to detect
network attacks. They developed a flexible IDS which also detects
zero-day attacks. UNSW-NB 15 dataset is used for this purpose.
Overall, 95.4% accuracy is achieved in this research. Tang et al.
(2020) used IDS 2018 dataset for research purposes. In their
study, a novel attention-based CNN-LSTM model is proposed
which is based on DL. Several experiments are performed, and
optimal accuracy is achieved in this research

Vladimir (1967) used NSL-KDD and UNSW-NB 15 datasets are
used for training. The deep reinforcement learning approach is used.
The new type of network traffic attack is detected automatically.
The proposed model can process a million records of network
traffic. Paper et al. (2016) proposes a new DT technique called self-
taught learning. This technique leamns features automatically from
the data and feeds them to the model. They used NSL-KDD dataset
for training. Optimal accuracy is achieved in this research.

Faker and Dogdu (2019) uses three classifiers to detect
anomalies in the network. One is deep feed forward neural
network (DNN), and the other is an ensemble technique based on
random forest and gradient boosting. UNSW-NB and CICIDS
2017 datasets are used. Five cross-fold validation is also used for
evaluation purposes. Experimentation is done using the spark
library. 99.16% accuracy is achieved on the UNSW-NB dataset
and 99.99% on the CICIDS dataset. Park et al. (2021) proposes a
technique called HIIDS, which is hybrid intelligent IDS. This
technique learns important and most relevant features from the
dataset. LSTM and autoencoder are used. ISCX-UNB dataset is
used for training. 97.52% accuracy is achieved in this research.

Istiaque et al. (2021) uses KDD CUP 99 datasets for training.
Fifteen features are used along with the MLP algorithm. 95%
accuracy is achieved in this research. 95% accuracy is achieved in
this research. Alkhatib et al. (2021) uses the recurrent neural
networks (RNN) model, which is based on the sequence model.
They used their own generated dataset. Area under the curve
(AUC) value of greater than 0.8 is achieved in this research.

Fu et al. (2022) used ML techniques for the IDS. Information
gain and gain ratios are used for the selection of features.
I0TID20 and NSL-KDD datasets are used in the research. Several
ML algorithms like MLP, J48, IBK, and bagging are used in the
research. 99% accuracy is achieved in the research. Tang et al.
(2022) used DL in the research. NSL-KDD dataset is used in
the research. Stacking-based model is used in the study which is
the combination of various classification models to improve the
accuracy. 86.8% accuracy is achieved in the research. The results
of the research were also compared with four ML algorithms.
This technique improves the overall detection accuracy of the
detection model. Ullah et al. (2022) used DL to improve the
accuracy of the intrusion detection model. CIC-IDS, CIC-DOS,
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and CSE-CIC-IDS 2018 datasets are used in the research. LSTM and
GRU are used in the research. Overall, 99% accuracy is achieved in
the research. Albulayhi et al. (2022) proposed an ML-based model to
detect zero-day attacks in the network. A DL-based model consisting
of CNN, autoencoder, and LSTM is proposed. CSE-CIC-IDS 2018
dataset is used in the research. The principal component analysis
technique is used to select relevant features from the dataset.
Better accuracy is achieved in the research. Halbouni et al. (2022)
proposed the ML and DL models for intrusion detection purposes.
The authors reviewed several approaches used for intrusion
detection purposes. Recent ML and DL algorithms are also
discussed by the authors which are used for IDS purposes. Kim
and Pak (2022) proposed an ML model for intrusion detection
purposes. Several algorithms are used, like AdaBoost, random
forest, ELM, DNN, CNN, and XGBoost. 95% accuracy is
achieved in the research.

3. Materials

Research methodology is discussed in this section. The
effectiveness of using the ML technique is also discussed in this
section.

3.1. Proposed framework

In ML model, we have a block or model diagram for
development purposes. The methodology proposed for making an
IDS is discussed below:

Figure 1 represents the proposed methodology of the ML
model. In ML model, firstly, we take data from a source and then
apply preprocessing techniques to that data. The data collected
from different sources are not clean and sometimes may include
null values, so in preprocessing, we remove null values and
replace them with suitable ones. After null values removal, data
need standardization and normalization. The standardization and
normalization techniques put data in the range between 0 and 1.
Step-by-step discussion about the model is discussed below.

Figure 2 represents the proposed model for the project. First step
is the collection of the relevant data where data for the development
of the proposed model is collected. Second step is the standardization
of the data where mean is set to zero and standard deviation to one.
Normalization is the process where all the values in the data are
getting scaled to a certain range. In feature selection relevant

features are getting selected for the development of the model.
Training and testing is performed after the selection of the
relevant features. Most effective features are get selected to train
or test the performance of the ML model.

3.1.1. Dataset

The TON_IoT dataset used in the study is new dataset and
includes all the latest network attacks. TON_IoT contains features
related to the IoT traffic.

These are all the features which are present in the TON_IoT
dataset. Not all these features are used for training purposes
because not all are necessary for predicting attacks. For that
purpose, a feature selection technique is used to select relevant
features from the data. In feature selection techniques, relevant and
most important features are selected, and the rest of the features are
removed for training the model.

Table 1 represents the features of the dataset used for the model
development. These are the standard features used for the
development of the ML model. ts, date, time all features are
collected from the real traffic and saved in the form CSV format
for ML models. The features are captured in the form of packets
and saved in the excel format to use by the ML model.

3.2. Preprocessing

The data which are collected for model training and testing
purpose contain outliers and null values. These values need to be
removed for the efficient working of the ML model.

The data contain categorical values and numerical values. The data
are collected from real-time environments and saved as a comma
separated values (CSV) to use for model-building purposes.
Preprocessing  involves  several steps like  normalization,
standardization, label encoding, one-hot encoding, and feature
scaling. All these steps are necessary for the development of the ML
model. The details about these steps are described below

3.3. Data standardization

Data standardization is one of the most important parts of
preprocessing. Standardization rescales the data so that its
standard deviation becomes 1 and the mean becomes O.
Standardization brings down all features of the data to the
common scale. The dataset which we used in ML mostly has

Figure 1
General framework for IDS

Dataset

Y

Preprocessing
Null Values Removal
Standardization
Normalization

FeatureSelectionH Model Training H Model Testing ]—»[ Evaluation
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Figure 2

Proposed methodology

Y

Dataset

Standardization

!

Normalization

!

Feature Scaling

!

Feature Selection

many features. The value of these features lies on a different scale.
Consider an example of house price prediction in which the area of
the house is 200 square meters, and the number of rooms is 1, 2, or 3.
If we use this data without scaling, then ML gives more importance to
the features with high values. ML models will learn faster when the
data are on the same scale. One solution in ML for this problem is
standardization. In standardization, mean value of the column is
subtracted from each value and then divided by the standard
deviation. In this way, data are normally distributed. In our work,
we also do standardization. The resultant data obtained by
standardization is shown below:

X =x—pjo (1)

Equation (1) is the standard equation of standardization, where p is
the mean of the data and o is the standard deviation of the data.

3.4. Data normalization

Normalization is the second step in the process. The main purpose
of normalization is to transform data in such a manner that the data are
either dimensionless or similar distribution. Due to normalization,
equal weight is given to each of the variables in the dataset:

X[:,i] = x[:y i] — min(x[:, i]) /max(x[:, i]) — min(x[:,i])  (2)

In equation (2), min is the minimum absolute value of @, whereas
max is the maximum absolute value of a.

3.5. Label encoding

The label encoder technique is used to convert categorical
features to numerical. This technique converts each and every
categorical value present in dataset to a number.

!

Model Training

!

Model Testing

!

Evaluation
Table 1
Dataset features
Feature Description
Ts Timestamp
Date Date of logging sensor data
Time Time of logging sensor data

Fridge_temperature

Temp_condition
Label

Type

Src_ip
Src_port
Dst_ip
Dst_port
Proto

Duration
Src_bytes
Dst_bytes
Conn_state
Missed_bytes
Src_pkts
Src_ip_bytes
Dst_pkts
Dst_ip_bytes
Dns_query
http_response
http_response
http_status_code
http_version
Weird_name

Fridge sensor temperature measurement
Fridge sensor temperature condition
Normal or attack traffic data

Normal or attack traffic type like DoS or
DDosS.

IP address of source

Port number of source computer

IP address of destination

Port number of destination

Protocol either transmission control protocol
(TCP) or user datagram protocol (UDP)
Connection duration

Bytes sent by a source computer

Bytes received by a destination computer
State of connection

Bytes missed by destination

Packets sent by a source

Number of IP bytes by a source
Destination packets

Destination IP bytes

Type of Domain name system (DNS) query
Response generated by http

Response generated by http

Status code of http

Version of http

Whether a transmission control protocol
(TCP) is bad or not
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3.6. Data classes

After label encoding, we need to prepare our target column. For
that purpose, we assign our data label to normal or abnormal for
binary classification, and for multi-class classification, all the
attacks are defined.

3.7. Data distribution

Data distribution plays a very important role in ML model
training and testing purpose. If our data are imbalanced, then the
results of ML might not be good. So balanced data distribution
plays a vital role in ML. If dataset is not balanced, then we do
synthetic minority oversampling technique (smote) to balance our
dataset classes. In our case, our dataset is balanced, so we do not
need any smote technique.

Figure 3 represents the data distribution of the TON_IoT
dataset. It is evident from the figure that the data are balanced in
the target class. Sixty-five percent of normal data is present, along
with 35% of attack data. Normal distribution of data is mandatory
for obtaining high accuracy because all the classes need to
participate equally in model training.

Figure 4 represents the class distribution of multi-class data. In
our target class, we have 10 types of attacks. Scanning, denial-of-
service (DoS), DDoS, and man-in-the-middle (MITM) attack.
These all are network attacks. ML models classify the traffic on
the basis of these attacks. Scanning, DoS, MITM, injection,
ransomware, backdoor, and XSS are all types of network attacks.

The ML model is trained on data features to effectively and
efficiently detect these attacks.

3.8. Feature selection

Feature selection is one of the most important tasks in the ML
domain. Not all the features are used for model training. If so many
features are present in the dataset, then they may increase the training

Figure 3
Data distribution
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Figure 4
Overall attack distribution
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time and complexity of the model. Sometimes, obtained data are very
high dimensional, and we need to convert it to the lower dimension
for efficiency and effective attack detection. So efficient feature
selection technique is necessary to cope with this problem. Also,
relevant feature selection is very important in ML. Sometimes, we
remove some most important features and may get low accuracy.
We need to cope with all these problems. Various feature
selection techniques are used in ML like recursive feature
elimination, chi-square, or backward feature selection techniques.
These techniques are used based on datasets, dimensionality, and
correlation. In our case, we use the Pearson correlation coefficient
technique for feature selection. This technique works based on the
correlation among variables.

3.9. Pearson’s correlation coefficient

This technique works based on correlation. This technique
depicts the linear relationship among the variables in the dataset.
This technique can take a range of values between —1 and +1.
A value of 0 indicates no relationship among variables, whereas
—1 indicates a negative relationship and +1 indicates a positive
relationship among the variables. If the relationship between two
values is stronger, the correlation is close to +1.

Figure 5 represents the features selected on the basis of the
correlation score in our dataset. These are the final features which
are selected for model training purposes. These features are
further joined with one-hot encoded variable to form complete data.

3.10. Random forest feature scoring

In the research, random forest feature scoring is also utilized.
The features obtained from the Pearson correlation technique are
given to the random forest for further selection. The random forest
model selects features on the basis of their importance. Seventeen
features are selected with the Pearson correlation technique. These
features are further reduced to 14 after utilizing the random forest
technique. The features which are obtained from the random
forest model are shown below.

Table 2 represents features that the random forest model selects.
The features which are selected by the random forest model are
referred to as true, and the features which are not selected are
referred to as false.

Figure 5
Selected features
duration ©.000607
dst_ip_bytes ©.001338
http_response_body_len ©.002280
http_request_body_len ©.0083373
src_pkts ©.003963
dst_pkts ©.204780
src_1ip_bytes ©.005000
http_status_code ©.0085216
missed_bytes ©.005464
dst_bytes e.e13001
src_bytes ©.013713
dns_rcode 8.e25507
dns_qclass ©.e47995
src_port ©.069546
dns_qtype ©.145034
dst_port 8.270791
ts ©.488816
i |

intrusion .200000

Table 2
Random forest feature selection
Feature Selection
Duration True
Dst_ip_bytes True
http_response_body_len True
http_request_body_len True
Src_pkts True
Dst_pkts True
Src_ip_bytes True
Missed_bytes True
Src_bytes True
Dst_bytes True
Dns_rcode True
Src_port True
Dst_port True
ts True

3.11. ML training

After all the preprocessing is done, then we have the model
training phase. The features which are obtained from
preprocessing stage is given to the ML model for training
purpose. In the training phase, the data or features which are
obtained from preprocessing stage are given to the model, and the
model starts training on these features. Some ML algorithms take
so much time for training, while some require less time.
Sometimes, hyperparameter tuning is required if desired results
are not obtained.

3.12. Model evaluation

After the testing phase, we need to evaluate our ML model on
the basis of some parameters. For classification problems, confusion
matrix, accuracy, and receiver operating characteristic (ROC) curve
are used to measure the model’s performance, whereas root mean
square error is used for regression problems. Accuracy and
precision are considered the benchmark in binary classification
problems. If our mode obtains accuracy greater than 95% with
less false-positive rate, then we conclude that the performance of
our model is good and it is ready for a real-time production
environment. Sometimes, we also consider precision, recall, and
accuracy.

3.12.1. ROC curve

ROC curve is also used to measure the effectiveness of the
binary classification problem. ROC curve plots two parameters,
true-positive and false-positive. ROC curve is also appropriate
when the class data is balanced, whereas, for imbalanced data,
precision, recall, and f score are feasible.

4. Results

In this section, the results obtained from each model are
described. Models are evaluated on the basis of accuracy,
detection time, and testing time. The confusion matrix and ROC
curve are used to evaluate model performance. ML models are
tested on preprocessed dataset, and accuracy is calculated.
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4.1. Decision tree results

After data preprocessing, ML model is applied to the
preprocessed data. Data are trained and tested in the ratio of
75:25. Seventy-five percent of data is used for training and 25% is
used for testing the model.

The accuracy obtained from the decision tree model is 99.6%,
which is optimal. Accuracy means how our model is accurate, and its
predictions are correct. If the ML model achieves an accuracy of 90%
or greater, then we conclude that its performance is considered
as good.

A decision tree is ideal for classification problems because it
mostly gives maximum accuracy if data preprocessing is done
properly. The decision tree is composed of nodes and branches,
and besides feature selection, it automatically makes feature
selection on each node when splitting occurs. So decision tree
often is used in classification-related problems.

Figure 6 is the ROC curve obtained from decision tree results.
ROC curve illustrates the capability of a binary classifier. A higher
AUC value tells us that the model performance is better. The ROC
curve is plotted against the model’s true- and false-positive rates.

From the classification and ROC curve, it is concluded that
the performance and accuracy of decision tree are optimal and
accurate. So, decision tree can be used for IDS in real network
environments.

4.3. KNN results

KNN algorithm is also used in our research. The results
obtained from this model is described below.

The accuracy obtained from KNN algorithm is 99%. Although
the accuracy obtained from KNN model is good, it takes so much
time to train or test the model making it inappropriate for
deployment purpose. When dealing with IDS, we also consider
the time taken by the model to train or test the algorithm.

Figure 7 represents the RoC Curve for KNN algorithm. The auc
value achieved by the KNN model is 1.00 which depicts the
performance of the model. If auc score is near to 1 then it is
concluded that the ML model is suitable for the real time
deployment and it also achieves less false positive rates. The RoC

Figure 6
ROC curve decision tree
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Figure 7
ROC curve KNN
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curve is used mostly in binary classification tasks where true
positive and false negative rates calculated. In order to make an
effective classifier high RoC score is required.

4.4. AdaBoost accuracy

The accuracy achieved by the AdaBoost algorithm is 99.8%.
The results obtained from this model are shown below. The
accuracy obtained from the AdaBoost algorithm is 99.8%.
Although the accuracy obtained from the AdaBoost model is
good, it takes so much time to train or test the model making it
inappropriate for deployment purposes.

The ROC area is 1.00 in the case of AdaBoost. This shows that
the model performs well in terms of positive predictions. AUC area is
not relevant to accuracy, and it only refers to the positive predictions
of the model.

ROC and AUC curves determine the model’s efficiency in case
of true-positive and false-positive predictions. The area between the
true-positive and false-positive rate is being determined by the ROC
curve in the case of binary classification problems; however, in the
case of multi-class classification problems, other parameters are
considered.

From Table 2, it is evident that the accuracy of the ML models is
good, but the testing time and training time of the decision tree are
less than the other algorithms making it more appropriate for real-
time detection and deployment.

Figure 8 represents the RoC Curve for AdaBoost model. The
auc value achieved by the AdaBoost model is 1.00 which depicts
the performance of the model. If auc score is near to 1 then it is
concluded that the ML model is suitable for real time deployment
and it also achieves less false positive rates. Boosting algorithms
generally achieves good accuracy in classification tasks. Boosting
involves the stacking classifiers in which different classifiers are
stack on each other to perform classification.

Figure 9 represents the overall accuracy of the ML models
trained in the research. From figure it is concluded that the
supervised learning algorithms are suitable for the attack detection
tasks and detect attacks with higher accuracy. Tree based
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Figure 8
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Figure 9
Comparison graph
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Decision Tree AdaBoost
Table 3
Accuracy
Algorithm Accuracy Precision Recall F1 score
Decision tree 99.6% 99% 98% 99.8%
KNN 99% 99.2% 99.4% 99%
AdaBoost 99.8% 99.8% 99.2% 99.9%

algorithms mostly provides high accuracy in classification and
prediction tasks.

Table 3 represents the overall accuracies of the ML models. It is
concluded from the table that all the supervised learning algorithms
achieves high accuracy in detection and prediction tasks.

4.5. DL results

The results of the DL model are evaluated on the basis
of the ROC curve and model loss and accuracy curves. The
results obtained from DL models on TON_IoT dataset are discussed
below.

Figure 10
MLP accuracy curve
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MLP loss curve
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4.5.1. MLP results

Figure 10 represents the accuracy curve for MLP. This curve
shows us that with the increase in the number of epochs, the
accuracy of the model increases. At the start, the accuracy
becomes low, but with the increase in epoch, accuracy increases.

Accuracy to epoch curve is the most important evaluation
parameter for DL algorithms. With the increase in the number of
epochs, the accuracy tends to be increased.

Figure 11 is the loss curve loss of the MLP model. It is evident
from the figure that the loss of the model tends to be low with the
increase in the number of epochs. So the number of epochs plays
a significant role in determining the accuracy and reducing the
loss of the model.

4.5.2. LSTM results

It is evident from the comparison table that the accuracy,
precision, and recall of the MLP model are better than the other
algorithm in determining the attack in the network. The
accuracy, precision, recall, and fl score of the MLP model
provide optimal results as compared to the LSTM model.
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However, LSTM also provides good results. LSTM usually works
well with sequential or temporal data, whereas MLP works well
with numerical data.

Figure 12 represents the Accuracy curve of the LSTM model. It
is concluded from the figure that with the increase in number of
epochs the accuracy of the model gets increased. High number of
epochs means high accuracy but very large number of epochs
may lead to the over fitting problem while training Deep Learning
models.

Figure 13 represents the loss curve of the LSTM model. It is
concluded from the figure that with the increase in number of
epochs the loss of the model gets decreased. High number of
epochs means low loss of the model. LSTM makes use of epochs
in order to train the model. High number of epochs sometime
leads to the model overfitting.

Table 4 represents the overall accuracies of the deep learning
models.it is concluded from the figure that MLP achieves an
accuracy of 99.2% and the accuracy achieved by the LSTM
model is 99%. Deep Learning models are also considered as
effective for attack and intrusion detection tasks. The accuracy is
the main predictor to determine the performance of ML and DL
models. DL algorithms makes use of activation functions in order
to train the model.

Figure 12
LSTM accuracy curve

Plot of accuracy vs epoch for train and test dataset
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LSTM loss curve

Plot of loss vs epoch for train and test dataset
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Table 4
Deep learning accuracy
Algorithm Accuracy Precision Recall F1 score
MLP 99.2% 99% 99.4% 98%
LSTM 99% 99% 99.4% 99%

5. Conclusions

In this research, ML techniques are used for the detection of
intrusion in computer networks. TON_IoT dataset is used in this
research for IDSs. Pearson’s correlation coefficient feature
selection technique is used for efficient feature selection
technique. Several ML algorithms are applied to data like decision
tree, AdaBoost, and KKN. These algorithms are evaluated on the
basis of accuracy, precision, recall, and ROC curve. The accuracy
achieved by decision tree on the TON_IoT dataset is nearly
99.6% followed by AdaBoost which is also near 99.8%. KNN
achieves an accuracy of 99. From this research, we concluded that
the use of ML algorithms for IDS is optimal and ML techniques
provide accurate results with very less false-positive rates and
false-negative rates. DL techniques are also being applied to the
two datasets. The results obtained on the TON_IoT dataset are
optimal and accurate. MLP obtained an accuracy of nearly 99.2%
on the TON_IoT dataset, wherecas LSTM obtained 99% on
TON_IoT. It is evident from the results that the decision tree for
ML and MLP and LSTM for DL provide accurate optimal results.

ML provides efficient and accurate techniques for detecting
intrusion in the network. The algorithms like decision tree, KNN,
and MLP provide good results along with accuracy. So, we can
say that ML provides a good basis for intrusion detection in the
network. Moreover, proposed model could be implemented for the
detection of unknown attacks in the network in real time.
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