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Abstract: The article is devoted to presenting an approach to decision-making in fuzzy modeling of systems based on a limited number of
experiments characterizing the system’s behavior. An iterative algorithm is proposed for use, in which the functions of generation and
selection of solutions with several branches of evolutionary search are successively implemented. The generation function is built, for the
most part, regardless of the content of the task. The selection function is built using a selection procedure that is completely dependent on
the problem to be solved. The resulting information is used to guide the search process, making it understandable for guided machine
learning. The convergence of algorithms for finding optimal solutions in the presence of constraints in the form of inequalities and
additional constraints in the form of binary relations is analyzed. The results of solving test problems of stochastic optimization are given.
The described approach solves the problem of fuzzy modeling for decision-making based on a limited set of experimental data, which
makes it possible to identify regularities and generalize them to evaluate the performance and accuracy of machine learning algorithms.
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1. Introduction

Stochastic optimization plays a significant role in the analysis,
design, and operation of modern systems [1]. Stochastic optimization
is a major branch of computational statistics. Stochastic optimization
applies when there are noisy measurements of the criterion being
optimized and/or there is an injected Monte Carlo randomness as
part of the algorithm [2]. A significant number of works are devoted
to stochastic optimization; first of all, these are the works of Jin
et al. [3], Kizielewicz and Sałabun [4], and Paik and Mondal [5].
Uncertainties, risks, and disequilibrium are pervasive characteristics
of modern socioeconomic, technological, and environmental systems
involving interactions between humans, economics, technology, and
nature. The systems are characterized by interdependencies,
discontinuities, endogenous risks, and thresholds, requiring
nonsmoothed quantile-based performance indicators, goals, and
constraints for their analysis and planning [6, 7]. Evolutionary fuzzy
systems are one of the greatest advances within the area of
computational intelligence [2, 8]. They consist of evolutionary
algorithms applied to the design of fuzzy systems [9]. Methods for
modeling fuzzy systems have received significant development [10,
11]. The work of Chen [12] uses a developed modification of a
genetic algorithm to optimize the operation of a neural network. A
Solution Approach to Fuzzy Nonlinear Programming Problems was
presented [13, 14], which is an example of solving numerical

problems. The Approach to Solve the Fuzzy Nonlinear Unconstraint
Optimization Problem was presented by Panigrahi et al. [15]; this
paper investigates fuzzy nonlinear system equations using an
optimization approach. In the paper by Iqbal et al. [16], a multi-
objective non-linear programming problem in linear programming
was proposed. Ensemble deep learning enabled multi-condition
generative design of aerial building machine considering
uncertainties was presented by Peng et al. [17]. The paper by Wang
et al. [18] proposes one algorithm framework to solve multi-
objective optimization problems. When setting the problem, real
functions are used here to formulate criteria and restrictions, and
binary selection relations are not used which narrows the
possibilities of finding solutions to complex problems. A significant
difference in the presented article’s approach to decision-making is
the use of binary choice relations. The use of binary choice relations
for decision-making has a history in works from Devraj and Chen
[19], Aizerman [20], Aizerman and Litvakov [21], and Sholomov
and Yudin [22]. Decision-making in complex systems by self-
organization methods developed in the works of Irodov et al. [23]
and his followers [10]. In the works of Yudin and Sholomov [24]
and other authors [25], computational methods of decision theory
were considered, in which the problems of finding solutions are
formulated in terms of binary relations; thus, the problems of
nonlinear mathematical programming are transformed into problems
of generalized mathematical programming. Methods of evolutionary
search for solutions in problems with binary choice relations were
developed [26]; a study of the convergence of evolutionary search
algorithms for binary choice relations when applying the preference
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function in an iterative process is presented [27]. An evolutionary
algorithm for multi-criteria optimization in evolutionary search with
a binary choice relation was presented [23], where the blocking
function is used instead of the preference function. Liu et al. [28]
proposed an algorithm for building a selection mechanism for
decision-making in multi-criteria systems where there is a sample of
fuzzy experimental results. The use of methods for finding solutions
in intelligent systems, including the use of evolutionary search
methods, genetic, and swarm algorithms, is widely presented, for
example, in Fu et al. [29] and Zhang et al. [30]. Evolutionary search
in stochastic optimization is used for final decision-making [31], but
the study of the convergence of evolutionary search in stochastic
optimization was not conducted.

The construction of evolutionary search algorithms for finding a
solution using a fuzzy model of an object based on a limited set of
experiments is of scientific and practical interest, which determines
the purpose of the work performed.

Themain goal of the article is to present the results of evolutionary
algorithms for binary choice relations in stochastic optimization using
the choice function in the form of preference. The results of the study of
the convergence of the evolutionary algorithm and the solution of test
problems of stochastic optimization. Using the described approach, the
problem of fuzzy modeling for decision-making based on a limited set
of experimental data is solved using the example of a film solar
collector.

2. Methods of Stochastic Optimization with Binary
Choice Relations

We will assume that the system is characterized by a set of
parameters x ¼ x1; x2; . . . xnf g, and there are also initial parameters
(functions, criteria) z ¼ z1; z2; . . . zf

� �
. We also assume that the

fuzzy binary relation eRS with the membership function належності
µR̃S

(z, z) is known.
We assume that the known selection function Γ zð Þ is such that

Γðzðx1ÞÞΓðzðx2Þ � zðx1ÞeRSzðx2Þ

using the fuzzy binary relation eRS with the corresponding member-
ship function µR̃S

(z, z). It is necessary to find the dominant element x
on the whole set Ω admissible parameters.

2.1. Ideal search algorithm

Significantly through черезM(iz) – mathematical definition of
the parameter z – a set of outlet system functions (parameters).

The significant function of choice S(x) is

SðxÞ ¼ x 2 X 8y 2 X=SðxÞ½ �;MðzðxÞÞeRSMðzðyÞÞ��� �
(1)

Let us take into account that the choice relation M z xð Þð ÞR̃SM z yð Þð Þ
is in a non-strict order, so it has the power of reflexivity, transitivity,
and antisymmetric.

Apparently up to Iqbal et al. [16] and others [17], the
evolutionary search looks like this:

Xjk ¼ SðGðXjk�1ÞÞ; j ¼ 1;NB; k ¼ 1; 2; . . . (2)

where
Xjk is the set of preferred solutions according to the binary choice

relation eRS at the iterate step k for the branch j of evolutionary search.
S(X) is the function of choice in the form (1).

G Xð Þ – generation function.
The generation function looks like

G Xð Þ ¼ X [ GH Xð Þ

GHðXÞ ¼ y 2 Ω 9x 2 X; yRGx;µRG
ðx; yÞ > 0

��� �
(3)

where relation RG is the fuzzy generation relation with the
dependency function:

µRG
ðx; yÞ : Ω�Ω ! ½0; 1�

It is significant that R + S (x) is the upper strut of the relationship R̃S

on the set of admissible parameters Ω:

Rþ SðxÞ ¼ yεΩ y eRSx
��� �

(4)

The following statement holds:

Statement 1. If Rþ
S ðxÞ – the upper intersection with respect to rela-

tion R̃S has the property:

8x 6¼ x0;mesRþ
S ðxÞ > 0 (5)

where x0 is the R̃S – optimal solution on the setΩ – and the generating
function satisfies the fact that if

xH 2 GHðXÞ then

8x 6¼ x0;P xH 2 Rþ
S ðxÞ

� �
δ > 0 (6)

then in this case, for any x 2 Ω, x 6¼ x0, there will be a numberK such
that for any k � K and for all search branches j ¼ 1;NB with prob-
ability 1, the requirement will be fulfilled xjk � Rþ

S ðxÞ which proves
the convergence of the iterative process (2) with probability 1 to eRS –

optimal solution for all branches of evolutionary search.
Various methods are known for generating solutions during

evolutionary search. Search variables can include both continuous
and discrete variables, including binary ones. Statement 1 defines
sufficient conditions for the convergence of the evolutionary search
to the most preferable solution. In this case, the essential point is
that the generated solutions have such a property that there is
always a finite, even if insignificant, probability of the newly
generated solutions falling into the upper section of the choice relation.

2.2. A real search algorithm

In the selection function (1), we replace the mathematical
expectation M(z) on the sample mean value z which is calculated
in the form

z ¼ 1=nz
Pnz
l¼1

z1

The selection function (1) takes the form

S Xð Þ ¼ xεXj8y 2 XnS Xð Þ�; z xð Þ eRS z yð Þ� ��
(7)

Suppose that the solutions that passed the selection at some step of
the iteration for all branches of the evolutionary search have the form
fxiljg where i is the number of the variable value for the selected
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solutions l in the jth branch of the search, j ¼ 1;NB.NB is a number of
branches for evolutionary search. Average values for all selected
solutions can be calculated as follows:

xi0 ¼ 1
NBNL

PN‘

j¼1

PNΠ

l¼1
xilj (8)

At the same time, the values of the empirical dispersion will be

σ2
i ¼ 1

NBNL�1

PNB

j¼1

PNΠ

l¼1
ðxilj � xi0Þ2 (9)

The generation of new solutions at the next step of the iteration is
performed with a normal distribution for each parameter xi and cen-
ters in xilj, j ¼ 1;NB and variance σ2

i . That is, the membership func-

tion µRG
for the fuzzy generation relation is the density function of

the normal distribution:

µRG
ðyi; xiÞ ¼ 1

σi

ffiffiffiffi
2π

p exp � 1
2

yi�xi

σi

	 

2

h i
(10)

Let us consider the case when the vector of the desired variables
x ¼ fx1; x2; . . . ; xng consists of binary variables xi 2 f0; 1g. Let at
some current step of the search iteration the eRS optimal solutions that
have passed the selection procedure in all branches of the evolution
of solutions have the form

fxiljg; i ¼ 1; n; l ¼ 1;NS; j ¼ 1;NB:

Then we calculate estimates of the probability of the variable taking a
value equal to 1 in the form

pi ¼ 1
NBNS

PNB

j¼1

PNS

l¼1
xilj

To generate new solutions at a new iteration step, the probability is
calculated in the form, which is interpreted as the probability of the
variable accepting the value 1:

pi ¼ pi if δ � pi � 1� δ

Orδ if pi < δ

Or 1� δ if pi > 1� δ

Obviously, ð1� piÞ is the probability of the variable accepting the
value 0.

The described method for generating solutions for binary
variables obviously satisfies the conditions of convergence of the
evolutionary search.

3. Solution of Test Problems of Stochastic
Optimization

Wewill present the results of solving test problems of stochastic
optimization which practically demonstrate the capabilities of the
described real solution search algorithm.

The first example is shown in Table 1, stochastic optimization
of the Rosenbrock function:

F x; yð Þ ¼ 0:25η 1� xð Þ2 þ 100 y � x2ð Þ2½ � ! min

where η is a random variable normally distributed with zero mean
and variance of 1.

Is given in the table x, y is a set of inlet system parameters, and F
are dimensional parameters.

The second example is shown in Table 2, stochastic
minimization of the Rastrigin function:

FðxiÞ ¼ 0:25η½AnþPn
i¼1

ðx2i � A cosð2πxiÞÞ� ! min

A= 10, n= 2, η − a is a random variable normally distributed with
zero mean and variance of 1.

Is given in the table x1, y2 is a set of inlet system parameters, F
are dimensional parameters.

4. The Problem of Fuzzy Modeling of the Solar
Collector

Mathematical modeling of a film-type solar collector is
considered. The basis for this mathematical modeling is the results
of an experimental study of the operation of a film-type solar
collector. The results of the study of the work of the collector are
presented in Table 3. There are seven dimensional parameters and
three dimensionless parameters (complexes) that characterize the
operating mode of the solar collector.

In Table 3, the first complex is p1 ¼ ΔT=Tair where ΔT is the
temperature difference at the inlet and outlet of the solar collector and
Tair is the air temperature.

The temperature complex p1 characterizes the effect of air
temperature on the difference between the initial and final water tem-
peratures. The second complex characterizes the physical dimensions
of the solar collector p2 ¼ h2=F where h is the distance between the
translucent and absorbing surfaces and F= 0.23m2 is the area of the
translucent surface. The third dimensionless complex characterizes
the efficiency of the solar collector p3 ¼ cwMwΔT=ðqsunFÞ, where
qsun is the solar radiation heat flux density, Mw is the mass flow rate
of water through the collector, and cw is the mass heat capacity of

Table 1
Evolutionary search progress for stochastic optimization of the

Rosenbrock function

Iteration step
Branch of
evolution x y F

1 1 6.566327 39.70555 1194.565
2 5.72689 28.14048 2190.919
3 5.201773 26.81788 23.46048

2 1 5.303123 26.79532 194.8043
2 5.567961 30.72101 28.75454
3 4.738819 22.32064 15.80767

37 1 1.343588 1.841613 0.233907
2 2.349523 5.484628 1.956881
3 1.237449 1.50857 0.082100

202 1 1.012769 1.023002 −0.06305
2 1.033854 1.065072 −0.08682
3 1.078498 1.173239 −0.05221
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Table 2
Evolutionary search progress for stochastic optimization of the Rastrigin function

Iteration step Branch of evolution x1 y2 F

1 1 2.15053 2.87881 19.7966
1 3.18624 2.09815 22.4829
1 1.89483 3.22277 24.3964
2 2.82108 2.13555 21.6122
2 3.84588 2.05549 23.9398
2 3.05669 3.19328 26.6383
3 2.92202 1.11057 13.2241
3 2.22859 −0.936689 15.2639
3 2.26403 1.98179 19.9844

10 1 −0.9237613 1.01625 3.0167
1 0.10237 1.02406 3.2196
1 −0.1301714 −1.040702 4.57903
2 −0.0487178 1.09186 3.26372
2 2.03096 0.96108 5.56181
2 2.01282 −1.976363 8.12123
3 1.89749 0.00074 5.57147
3 −1.004367 −1.137878 5.79307
3 −1.033895 −0.170471 6.54668

22 1 −0.009145023 −0.000178351 −0.0226898
1 0.00617 0.00519 0.00572
1 0.00167 0.01537 0.00653
2 0.0012 −0.01025081 −0.00042560
2 −5.4419e-005 −0.01072413 0.00035
2 −0.00498262 0.00031 0.00108
3 −0.001211888 −0.000880654 −0.05330217
3 0.00314 0.00072 −0.02399012
3 −0.001316805 −0.00627928 −0.00571147

Table 3
The results of research on the operation of a film-type solar collector

Dimensional parameters Dimensionless complexes

Tinlet ;K Toutlet Tair ;K h; sm qsun Mw; g=s p1 p2 p3
297.5 300.7 303.97 2 99.999 6.67 0.103326 0.001739 0.388186
297.3 301.4 303.71 2 98.862 6.67 0.133507 0.001739 0.503084
297.5 301.6 304.33 1 88.161 6.67 0.130865 0.000435 0.564148
297.7 302.3 304.16 1 100.491 6.67 0.147625 0.000435 0.555286
299.0 302.5 301.87 1 107.467 6.67 0.121233 0.000435 0.395074
299.2 303.0 302.39 1 97.374 6.67 0.129296 0.000435 0.473398
299.9 304.8 302.22 1 100.465 5.0 0.167693 0.000435 0.443518
301.1 305.2 302.3 1 101.282 5.0 0.174061 0.000435 0.457897
300.5 305.7 303.09 2 91.177 5.0 0.172815 0.001739 0.518619
300.7 305.9 303.71 2 98.862 5.0 0.169326 0.001739 0.478304
300.8 305.1 301.26 2 74.74 5.0 0.152159 0.001739 0.523173
300.1 307.8 303.36 2 111.016 3.85 0.253623 0.001739 0.485653
300.2 307.4 301.78 2 89.27 3.85 0.250174 0.001739 0.564739
300.3 307.8 300.75 2 94.154 3.85 0.27027 0.001739 0.557755
300.4 307.4 303.89 2 61.763 3.85 0.226611 0.001739 0.793579
300.4 306.6 303.89 1 83.502 3.85 0.200712 0.000435 0.519895
300.1 307.8 302.83 1 86.186 3.85 0.258129 0.000435 0.625568
300.7 306.9 301.52 1 113.943 3.85 0.217391 0.000435 0.381
301.2 307.6 302.04 2 112.004 3.85 0.220386 0.001739 0.400099
301.3 305.9 302.13 2 76.28 3.85 0.157913 0.001739 0.422248
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water. For the p3 complex, the following empirical dependence was
obtained:

p3 ¼ 0:53� 0:295p1 þ 0:0027ð1� p2Þ þ 3:5p21 � 0:23ð1� p2Þ2

As can be seen from the analysis of the experimental results of a film-
type solar collector, the optimal operating modes from the point of
view of themaximum criteria p1 and p3 are somewhat different. There-
fore, it is desirable to find a compromise mode of operation of the
reservoir, which emphasizes the feasibility of this scientific work.

Based on the results of experiments, it is difficult to determine
the most preferable mode of operation of the collector, especially if
the task is to find the most preferable mode not only among the set of
experiments but also if you expand the search to the entire set of
permissible parameters. To solve the problem, fuzzy modeling of
the reservoir operation was used, functions for selecting the most
preferable solutions were constructed, and the maximum of this
selection function was found on a set of acceptable parameters.

For expert evaluation, the rating scale used bit ∈ {0; 0.3; 0.4;
0.5; 0.6; 0.7; 1.0}, which make sense: {much worse; worse;
slightly worse; comparable; slightly better; better; much better}.
The correspondence matrix for the array of experimental data is
shown in Tables 4 and 5.

Table 3 shows Tinlet ;K, Toutlet , Tair;K, h; sm, qsun;mW=sm2,
Mw; g=s are dimensional parameters and cw = 4183 J/kg/K;
p1; p2; p3 are dimensionless parameters (complexes).

There are presented results with choice function in the form (11)

ΓðxÞ ¼ Q
5
i¼1 ð1þ a1i 	 ða2i � riÞ2Þ (11)

where a1i and a2i are the choice function parameters:

r1 ¼ x11 � x12; r2 ¼ x21 � x22; r3¼ x31 � x32;

r4 ¼ x41 � x42; r5 ¼ x51 � x52;
(12)

Γðx1Þ � Γðx2Þ � x1 	 R̃s 	 x2 (13)

Parameters a1i and a2i were obtained after evolutionary search of the
choice function for array 1 of experimental data and for array 2 of
experimental data.

Step 1. Input of a table of experimental data with dimensional
parameters. Transition to a set of dimensionless parameters p1, р2,
р3 for the entire set of experiments, number of experiments
NT = 20. We divide the entire set of experiments into two arrays:
(1) training sequence array and (2) testing sequence array. The
number of experiments for training sequence array No= 12, for
the array DATA 1, 3, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19. The
number of experiments for testing sequence array NTP = 8 for the
array DATA 2, 4, 6, 10, 12, 14, 18, 20.
Step 2.Using expert assessments, twomatrices of paired comparisons
are constructed: the matrix for array 1 of experimental data for training
sequence array and the matrix for array 2 of experimental data for
testing sequence array.
Step 3. The parameters of the evolution search are selected. The
number of search parameters n = 10; the number of generated
solutions for one branch of evolution and for one iteration step
Ne = 10; the number of selected solutions NS = 1; the branch
number j ¼ 1;NB, NB = 3; and the number of search repetitions
at a common iteration step without changing random parameters
is 5.

For i ¼ 1tonðσ1 ¼ 0:1 : ximidl ¼ 0 : next iÞ

Step 4. Generation of initial values of the required parameters for all
generated solutions for all branches of evolution. Preparatory
calculations are being carried out.

For k ¼ 1 to NEðfor i ¼ 1 to nð jf ¼ mnðk; ivÞ;
yel ¼ rndð1Þ; w1 ¼ yel 
 jd; lt ¼ intðw1Þ þ 1;

jg ¼ mnðlt; ivÞ; d ¼ aði; jgÞ; xTðiÞ ¼ d;

ys ¼ 0; for il ¼ 1 to 12ð z ¼ rndð1Þ;

ys ¼ ysþ z; next ilÞ ys ¼ ys� 6;

v1 ¼ d þ σðiÞ 
 ys; aði; jf Þ ¼ v1; next iÞ next kÞ:

Step 5. Calculation of objective functions for all possible solutions
for a given branch of evolution:

for k ¼ jn to NEðj ¼ mnðk; ivÞ :
for i ¼ 1 to 5ð a1ðiÞ ¼ aði; jÞ :
i2 ¼ iþ 5 : a2ðiÞ ¼ aði2; jÞ : next iÞ

s ¼ 0 : for jj ¼ 1 to NOðfor ii ¼ 1 to NOðj1 ¼ moðjjÞ :
x1 ¼ p3ðj1Þ : j2 ¼ moðiiÞ : x2 ¼ p3ðj2Þ

Table 4
Correspondence matrix for the array of experimental data 1

DATA 0.5, 0.4, 0.3, 0.4, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3
DATA 0.6, 0.5, 0.6, 0.4, 0.4, 0.4, 0.0, 0.3, 0.3, 0.3, 0.3, 0.3
DATA 0.5, 0.4, 0.5, 0.3, 0.3, 0.4, 0.0, 0.3, 0.3, 0.3, 0.3, 0.3
DATA 0.6, 0.6, 0.6, 0.5, 0.4, 0.5, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4
DATA 0.7, 0.7, 0.7, 0.6, 0.5, 0.6, 0.4, 0.4, 0.4, 0.4, 0.5, 0.5
DATA 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.3, 0.3, 0.4, 0.4, 0.5, 0.4
DATA 1.0, 1.0, 1.0, 0.6, 0.5, 0.6, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6
DATA 0.7, 0.7, 0.7, 0.6, 0.6, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5
DATA 0.7, 0.7, 0.7, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
DATA 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
DATA 0.7, 0.7, 0.7, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.3, 0.4
DATA 0.7, 0.7, 0.7, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.4, 0.4

Table 5
Correspondence matrix for the array of

experimental data 2

DATA 0.5, 0.5, 0.6, 0.6, 0.5, 0.7, 0.3, 0.3
DATA 0.4, 0.5, 0.6, 0.6, 0.5, 0.6, 0.3, 0.3
DATA 0.3, 0.3, 0.5, 0.3, 0.5, 0.5, 0.3, 0.3
DATA 0.3, 0.3, 0.3, 0.5, 0.3, 0.3, 0.3, 0.3
DATA 0.4, 0.5, 0.6, 0.6, 0.5, 0.6, 0.4, 0.4
DATA 0.7, 0.7, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5
DATA 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5
DATA 0.7, 0.7, 0.5, 0.7, 0.5, 0.5, 0.5, 0.5
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rð1Þ ¼ x1 � x2 : rð2Þ ¼ x1
2 � x2

2 : rð3Þ ¼ x1
3 � x2

3 :

rð4Þ ¼ x1
4 � x2

4 : rð5Þ ¼ x1
5 � x2

5 : s ¼ 1

for i ¼ 1 to 5ðy ¼ a1ðiÞ 	 ða2ðiÞ � rðiÞ 	 ða2ðiÞ � rðiÞÞ :
s ¼ s 	 y next iÞ ejðjj; iiÞ ¼ s next iiÞ next jjÞ

next kÞ for k ¼ jn to NEð j ¼ mnðk; ivÞ :
s1 ¼ 0 for jj ¼ 1 to NOðfor ii ¼ 1 to NO

ðra ¼ xeðjj; iiÞ � eyðjj; iiÞ : s1 ¼ s1 þ absðraÞ :
next iiÞ next jjÞ e1ðjÞ ¼ s1=NO=NO next kÞ

Step 6. Selection of the most preferable solutions:

i1 ¼ NE � 1 for l ¼ 1 to

NSð for lt ¼ 1 to i1 ð j ¼ NE � lt þ 1 :

k� j� 1 : jf ¼ mnðj; ivÞ : kf ¼ mnðk; ivÞ

if e1ðkf Þ � e1ðjf Þ goto z : mnðj; ivÞ ¼ kf :

mnðk; ivÞ ¼ jf : z ¼ 1 : next ltÞ next lÞ next ivÞ

Step 7. Print results for iteration step:

kit ¼ kit þ 1 prnt kit :

for iv ¼ 1 to NBð for k ¼ 1 to NSð jf ¼ mnðk; ivÞ :
for i ¼ 1 to n ðprnt ðaði; jf Þ; e1ðjf ÞÞ

Step 8. The calculation of parameters for the generation of new
solutions at the new iteration step:

for i ¼ 1 to n ðsr ¼ 0 : for iv ¼ 1 to NBðfor k ¼ 1 to

NSðj ¼ mnðk; ivÞ : sr ¼ sr þ aði; jÞ

next kÞ next ivÞ sr ¼ sr=NB=NS : xsrðiÞ ¼ sr :

d ¼ 0 : for iv ¼ 1 to NBð for k ¼ 1 to NSÞ

ðj ¼ mnðk; ivÞ : ra ¼ aði; jÞ � sr : d ¼ d þ ra 	 ra :

next kÞ next ivÞ ra ¼ d=ðNS 	 NB � 1Þ

sgðiÞ ¼ sqrðraÞ : next iÞ jd ¼ NS :

zzz ¼ 1 goto step 4

Step 9. Print results.

Table 6 demonstrates the evolutionary search iteration step.
There is a reduction in the error in constructing the choice
function model for the training data array, as well as the error for
the testing data array. The error for the verification data differs
slightly from the error for the training data set, which indicates the
adequacy of the constructed model.

The results of specific values of parameters a1i,a2i i ¼ 1; 5were
as follows:

• I; A1(I); A2(I)= 1, 0.1496397–1.427655
• I; A1(I); A2(I)= 2, 1.62397−0.3657375
• I; A1(I); A2(I)= 3, 0.4951336−0.2666837
• I; A1(I); A2(I)= 4, 0.0420600–0.0120022
• I; A1(I); A2(I)= 5, 0.0218973−2.013484

The choice function in the form (11) with specific values of
parameters a1i,a2i, i ¼ 1; 5 was used to solve the problem of gener-
alized mathematical programming: to find maximum MAXµR̃S

(x,y)
of choice function with restrictions, 0:05 <¼ x1 ¼< 0:25;
0:001 <¼ x2 ¼< 0:004; 0:15 <¼ x3 <¼ 0:8.

4.1. Algorithm maximum

Step 1. At this step, the permissible limits for changing parameters,
the number of generated solutions, the number of selected most
preferable solutions, the number of branches of the evolution of
solutions, the standard deviation of solutions from the values
obtained as a result of a physical experiment, and the number of
calculations of the selection function to obtain estimates from
values for random deviations are determined:

n ¼ 3 : for i ¼ 1 nð sgðiÞ ¼ 0:05 : xSRðiÞ ¼ 0 :

next iÞ : minð1Þ ¼ 0:05 : maxð1Þ ¼ 0:25 : minð2Þ ¼ 0:001 :

maxð2Þ ¼ 0:004 : minð3Þ ¼ 0:15 : maxð3Þ ¼ 0:8 :

NE ¼ 10 : NS ¼ 3 : NB ¼ 3 : svg ¼ 0:05 : Nvich ¼ 10

Step 2. Generation of initial values of the required parameters for all
generated solutions for all branches of evolution:

l ¼ 0 : for iv ¼ 1 to NBð for k ¼ 1 to NSðl ¼ l þ 1 :

mnðk; ivÞ ¼ l : next kÞ next ivÞ for i ¼ 1 to n

for iv ¼ 1 to NBð j ¼ mnð1; ivÞ : aði; jÞ ¼ xsrðiÞ :
next ivÞ xtðiÞ ¼ xsrðiÞ : next iÞ

Step 3. Preparatory calculations are being carried out. For the initial
values of all parameters of the search for solutions, deviations are
calculated using the standard function for generating random
variables.

Table 6
Evolutionary search of the selection function

Evolutionary search
iteration step

Error for training
sequence matrix 1

Error for check
sequence matrix 2

1 0.4981
2 0.3449
6 0.2730
8 0.1801
12 0.1319 0.1387
20 0.1353
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jd ¼ 0 : jn ¼ jd þ 1 : for kp ¼ 1 to NREPð for iv ¼ 1 to

NBð for k ¼ jn to NEð for i ¼ 1 to n Þ

ðjf ¼ mnðk; ivÞ : yel ¼ rndð1Þ : w1 ¼ yel 	 jd :

lt ¼ intðw1Þ þ 1 : jg ¼ mnðlt; ivÞ : d ¼ aði; jgÞ

xtðiÞ ¼ d : ys ¼ 0 : for il ¼ 1 to 12 ðz ¼ rndð1Þ :
ys ¼ ysþ z : next ilÞ ys ¼ ys� 6

v1 ¼ d þ sgðiÞ 	 ys : if v1 < minðiÞ then v1 ¼ minðiÞ :
if v1 > maxðiÞ then v1 ¼ maxðiÞ

aði; jf Þ ¼ v1 : next iÞ z1 ¼ að1; jf Þ : z2 ¼ að2; jf Þ :
ze ¼ 0:51� 0:295 	 z1 þ 0:0027 	 ð1� z2Þ þ 3:5 	 z1 	 z1

z3 ¼ z3 � 0:23 	 ð1� z2Þ 	 ð1� z2Þ :
if z3 < 0:01 then z3 ¼ 0:01 if z3 > 0:7 then z3 ¼ 0:7

að3; jf Þ ¼ z3 : next kÞ for k ¼ jn toNEðj ¼ mnðk; ivÞ :
x1 ¼ að3; jÞ : next kÞ

Step 4. Calculation of objective functions for all possible solutions
for a given branch of evolution. In this case, previously found
parameter values for the choice function are used.

sum ¼ 0 : for ivich ¼ 1 to

Nvichðfor il ¼ 1 to 12 ðz ¼ rndð1Þ : ys ¼ ysþ z : next ilÞ

ys ¼ ys� 6 : v1 ¼ x1 þ sgv 	 ys :
if v1 < 0:01 then v1 ¼ 0:01 :

if v1 > 0:8 then v1 ¼ 0:8 : x2 ¼ v1

rð1Þ ¼ x1 � x2 : rð2Þ ¼ x12 � x22 : rð3Þ ¼ x13 � x23 :

rð4Þ ¼ x14 � x24 : rð5Þ ¼ x15 � x25

s1 ¼ 1 : for i ¼ 1 to 5ð yy ¼ 1þ a1ðiÞ 	 ða2ðiÞ � rðiÞÞ	
ða2ðiÞ � rðiÞÞ : s1 ¼ s1 	 yy : next iÞ

sum ¼ sumþ s1 : next ivichÞ sum ¼ sum=Nvich :

e1ðjÞ ¼ sum : next kÞ

Step 5. Selection of the most preferable solutions.

Here, the most preferable solutions are directly selected based
on the values of the choice function; those solutions that have large
values of the choice function are selected:

i1 ¼ NE � 1 for l ¼ 1 to NSð for lt ¼ 1 to i1

ð j ¼ NE � lt þ 1 : k ¼ j� 1 : jf ¼ mnðj; ivÞ :
kf ¼ mnðk; ivÞÞ

if e1ðkf Þ � e1ðjf Þ goto z : mnðj; ivÞ ¼ kf :

mnðk; ivÞ ¼ jf : z ¼ 1 : next ltÞ next lÞ next ivÞ

Step 6. The calculation of parameters for the generation of new
solutions at new iteration step. Here, the average values for each
parameter among the selected most preferable solutions for all
branches of evolution and the standard deviations of these
parameters are calculated.

for i ¼ 1 to n ðsr ¼ 0 : for iv ¼ 1 to NBðfor k ¼ 1 to

NSðj ¼ mnðk; ivÞ : sr ¼ sr þ aði; jÞ

next kÞ next ivÞ sr ¼ sr=NB=NS : xsrðiÞ ¼ sr :

d ¼ 0 : for iv ¼ 1 to NBð for k ¼ 1 to NS

ðj ¼ mnðk; ivÞ : ra ¼ aði; jÞ � sr :

d ¼ d þ ra 	 ra : next kÞ next ivÞ ra ¼ d=ðNS 	 NB � 1Þ

sgðiÞ ¼ sqrðraÞ : next iÞ jd ¼ NS : zzz ¼ 1 goto step 4

Table 7 shows the search process in three branches of evolution. It is
clearly seen that in just 10 iteration steps, values of the maximum of
the choice function in all branches of evolution were obtained that
were quite close to each other, that is, the convergence of the
evolutionary search was obtained. And the very small number of
steps of evolutionary search clearly indicates the effectiveness of
its use for solving similar problems.

Thus, the most preferable parameters for the solar collector have
been found as shown in Table 8: p1= 0.183; p2= 0.002; p3= 0.347.

This solution corresponds to the maximum of the selection
function, that is, the best not only among the set of experimental
data but also in the entire set of varied parameters that differed
from the set of Table 3 with a random standard deviation
σi = 0.05 from the normal distribution.

The final result is selected when the values of the selected
selection functions and the values of the parameters of the

Table 7
Evolutionary search for the maximum of the choice function

Evolutionary
search step

Maximum
selection
function

MAXµR̃S
(x,y)

branch 1 of
evolution

Maximum
selection
function

MAXµR̃S
(x,y)

branch 2 of
evolution

Maximum
selection
function

MAXµR̃S
(x,y)

branch 3 of
evolution

1 0.6171489 0.6229391 0.6348273
2 0.6334881 0.6234488 0.6348273
3 0.6334881 0.6244889 0.6348273
: : :

10 0.6367123 0.6341401 0.6348273

Table 8
Evolutionary search results when finding the maximum of the

selection function

Branch of evolution Parameter x1 Parameter x2 Parameter x3
Branch 1 0.1827321 0.0026508 0.3468732
Branch 2 0.176442 0.0017470 0.340409
Branch 3 0.1887753 0.0022285 0.3527556
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selected solutions in all branches of evolution are sufficiently close to
each other. In this case, this is done.

5. Conclusion

The article considers approaches to decision-making in fuzzy
modeling of systems based on a limited number of experiments for
some generalized mathematical programming problems. Multi-
criteria optimization is presented as optimization using binary relations.

A modification of the method [32] using a fuzzy object
comparison scale is proposed.

This article presents the results of evolutionary algorithms for
binary choice relations in stochastic optimization using the choice
function in the form of preference. The convergence of the
evolutionary algorithm is investigated, and the results of solving
test problems for stochastic optimization are given.

The results of the calculations prove that the algorithm of
evolutionary search has a sufficiently good performance in solving
problems of fuzzy modeling. This solution corresponds to the
maximum of the choice function and is the best not only among
the set of experimental data but also in the entire set of varied
parameters that differed from the set of physical experiment data.

The results of the research show that the proposed approach to
building evolutionary search algorithms allows solving stochastic
optimization problems and applying this algorithm to build a choice
function in case of fuzzy modeling of solar collector operation,
including for finding the maximum of this choice function.

It is important that the algorithm can be built to a large extent
independent of the content of the problem to generate new solutions,
which makes it a universal tool.

6. Recommendations

The use of evolutionary search for stochastic optimization in
finding the maximum of the choice function makes it possible to
find the optimal solution not only among the performed
experiments but also to expand the search space to the set of all
permissible parameters, including those parameters for which
there has not yet been an experimental study.

In the future, it is advisable to investigate the interaction of
various aspects of fuzzy choice on the final decision on the entire
set of permissible parameters and not just on the set of
experimental results. It is of interest to solve the following
modification of the problem considered in this article. Let it be
required to find a solution x 2 Ω and for all y 2 Ω so that
Γ1ðx1Þ � Γ1ðx2Þ and also it is fulfilled Γ2ðx1Þ � Γ2ðx2Þ. Let us cre-
ate a new binary relation eRS in the form

x1eRSx2 � ½Γ1ðzðx1ÞÞ > Γ1ðzðx2ÞÞ� _ ½Γ1ðzðx1ÞÞ
¼ Γ1ðzðx2ÞÞ� ^ ½Γ2ðzðx1ÞÞ � Γ2ðzðx2ÞÞ�

It seems possible to use the evolutionary search algorithm to find a
solution to such a problem. This will be discussed in subsequent
works. In general, as experimental studies of a film-type solar collec-
tor show, it has acceptable efficiency values at low temperatures of
water in the film and lower efficiency values at elevated temperatures
of water in the collector film. Therefore, there is a natural desire to
use film solar collectors together with a heat pump, so that the film
collectors operate at low water temperatures in the collector, and the
heat pump ensures that the temperature of the supplied water is
brought to the desired value. There are a number of scientific results

that study the joint operation of solar collectors and heat pumps. It
seems most appropriate to conduct further research in this direction.
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