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Abstract: Urban flooding is caused due to poor drainage design and excessive rain. It severely affects the road infrastructure. Existing hydrologic
software tools to examine the extent of urban flooding primarily require walking through a series of manual steps and address each study area
individually, preventing a collective review of poor storm-drains in an efficient manner. Previous methods for optimal drainage design were
inefficient and lacked the ability of solving the underlying optimization problem due to the inherent nonlinearity of the decision variables. In
this paper, we develop a nonlinear optimization formulation to minimize urban flooding using underground pipe size as a decision variable.
We propose a solution algorithm using sequential least squares quadratic programming and spatial datasets. The proposed method eliminates
the need to examine each study area manually using existing hydrologic tools. An example using the storm-drain system for the Baltimore
County is performed. The results show that the model is effective in identifying storm-drain deficiencies and correcting them by choosing
appropriate storm-drain inlet types to minimize flooding. Future works may include using large datasets and a more sophisticated modeling
approach for estimating rainfall intensity based on extreme weather patterns. The method can be applied to other jurisdictions if relevant
hydrological and underdrain piping network data were available.

Keywords: urban flooding, stormwater runoff, storm-drain system deficiency, nonlinear optimization, sequential least squares quadratic
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1. Introduction

Urban flooding is a significant issueworldwide,which is primarily
caused due to, among other things, storm-drain system deficiency
associated with urban stormwater management and unusual weather
patterns, such as excessive rain caused due to extreme events. Such
disasters have surged in recent years. According to the Center for
Research on the Epidemiology of Disasters and United Nations
Office for Disaster Risk Reduction (2020), over the last 20 years,
7,348 disaster events were recorded. These disasters claimed more
than a million lives and led to about US$ 3 trillion in economic
losses worldwide.

Many cities in the world have poor storm-drain design, which
causes flooding due to excessive rain (Bertrand-Krajewski, 2021).
The situation exacerbates in the event of hurricanes or when the rain
is more persistent and intense. The problem appears to be due to the
lack of the drainage capacity of detention tanks and deficiency
associated with pipe culvers in the event of rapid rain events.

With respect to storm-drain system deficiency, several methods
have been proposed in the literature, including numerical simulation

with a geographic information system (Eldho et al., 2018), nature-
based solution (Bremer et al., 2021), bioretention (Jones & Jha,
2009), and smart stormwater management (Webber et al., 2022).
However, these methods either offer a qualitative discussion of the
underlying issues or are hard to be adopted for real-world
application. For example, Webber et al. (2022) acknowledge that
while data analytics and online optimization have been a topic of
broad and well-developed research, often synthesized under the
banner of hydroinformatics, limitation to current approaches remains.
Developing optimization to the network scale and from the real-time
perspective requires coordinated decentralized infrastructure. Guo
(2017) recommended a risk-based approach to the selection of
design storm events, based on public perception, federal regulations,
watershed physical characteristics, economics, and safety. The author
discussed, at length, storm sewer system design and detention basin
design. However, no optimization method was proposed to address
storm-water system deficiencies.

There are a number of hydrologicmodeling software (e.g., TR-55,
HydroCAD, TR-20, HEC-RAS, StreamStats, L-THIA, SWMM,
WMOST, MAST, HY-8) which are traditionally used to examine
flood risks and make recommendations to address them. The first
author undertook a number of flooding analysis using these software
tools and reported the results in his dissertation (Ekeh, 2020). Most
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of the available literature (Atta-ur-Rahman et al., 2016; Boulmaiz et al.,
2023; Cook et al., 2019; Eldho et al., 2018; Lopez-Gunn et al., 2021;
Meng, 2018; Myers & Pezzaniti, 2019; Sebastian et al., 2022; Sinha,
2023; Upreti et al., 2024) and the hydrologic software tools offer
solutions to urban flooding either in a qualitative way or by iterating
through a series of manual steps. This makes the process of
identifying attributes causing flooding very inefficient. Furthermore,
currently available literature on urban drainage design approaches
the problem from a purely mathematical perspective, ignoring the
geo-spatial analysis requirement to efficiently identify (preferably
in real-time) and correct the drainage deficiency. For example,
there are thousands of storm-drain pipes buried underground and
it is not possible to analyze each of them individually unless there
is an efficient procedure to analyze their combined effect
collectively in understanding the likelihood of future flooding. In
other words, while existing studies and hydrologic software tools
are useful, they are primarily manual in nature requiring repetitive
iterations to examine the effect of flooding due to certain rainfall
intensity and watershed, cross-section, and culvert and piping
characteristics.

Under this backdrop, the key contributions to this paper can be
summarized as follows:

1. Develop a geo-spatial nonlinear optimization model by extracting
spatial datasets on underground storm-drain pipelines to
minimize flooding in a particular jurisdiction, such as a county,
city, or municipality;

2. Perform the optimization by developing an integrated GIS-Python
framework. The novelty of the GIS-Python integrated framework
is that while the nonlinear aspect of the mathematical optimization
can be performed in the Python environment, the optimal solution
can be geocoded and passed to the GIS through a geo-spatial
analysis. Such an approach advances the state of the art in curbing
urban flooding, which has not been proposed in previous works.
The other benefit is that the integrated GIS-Python framework
enables us to work directly with the spatial datasets consisting of
the piping network containing relevant information, such as pipe
diameter, flow, slope, and roughness;

3. Bring the spatial datasets in the Python environment to perform the
optimization. Upon optimization, deficient storm-drain pipes
needing replacement can be quickly identified on a geographic
map. The integrated GIS-Python framework is similar to the
second author’s work on GIS and genetic algorithms integration
for highway route optimization (Jha & Schonfeld, 2000) in that
continuous bi-directional data transfer needs to take place to
efficiently perform the optimization.

We have primarily focused on developing an optimization approach to
solve a nonlinear optimization problem specific to storm-drain system
deficiency. Pipe installation cost and other practical limitations in
redesigning and installing storm-drain systems (e.g., budget constraints
of a particular jurisdiction) have been skipped for future work. In
recommending a new pipe size, we have followed guidelines by the
Baltimore County, Maryland, USA.

2. Literature Review

Several studies have developed methods for assessing urban
flooding and providing potential solutions. For example, Chang and
Huang (2015) proposed an emergy approach to assess urban
flooding vulnerability. Cherqui et al. (2015) developed risk reduction
measures due to flooding. Kim et al. (2017) developed a decision-
making tool for urban flooding under climate change. Xie et al.
(2017) performed an integrated assessment of urban flooding

mitigation strategies. Zhou et al. (2017) established a linkage
between urban extreme rainfall and urban flooding in China. The US
Environmental Protection Agency (EPA) has developed a national
stormwater calculator to estimate the annual amount of rainwater and
frequency of runoff from a specific site (EPA National Stormwater
Calculator, n.d.). ScienceDirect has compiled a list of papers under
the title “Urban Flooding” (Atta-ur-Rahman et al., 2016; Boulmaiz
et al., 2023; Cook et al., 2019; Eldho et al., 2018; Lopez-Gunn
et al., 2021; Meng, 2018; Myers & Pezzaniti, 2019; Sebastian et al.,
2022; Sinha, 2023; Upreti et al., 2024). These papers discuss a range
of issues related to urban flooding, including urban flood
management and relationships to climate change and urban flooding.

Flynn and Davidson (2016) discussed the issues associated with
poor storm-drain design. They concluded that despite major
investments in stormwater infrastructure, urban areas continue to
experience urban flooding. Municipal stormwater management plans
in many developed countries have favored the use of gray
infrastructure (e.g., sewer separation projects, deep storage tunnels,
and regional treatment facilities). These engineering solutions can be
costly, tend to promote centralized subsurface conveyance systems
with end-of-pipe treatment, and often take years to complete. Despite
major investments in stormwater infrastructure, urban areas continue
to experience critical problems in managing water flows, including
flooding, surface water impairment, and combined sewer overflows.
While the study outlined the causes of urban flooding (e.g.,
stormwater system deficiencies) well, it did not offer any solution,
much less, a real-time optimization solution to address stormwater
system deficiencies.

Many studies have proposed green infrastructure and
bioretention to curb urban flooding (Hatt et al., 2004; Jones &
Jha, 2009; Tzoulas et al., 2007; Villarreal et al., 2004). However,
there may be practical limitations for actual implementation of
green infrastructure and bioretention, including limited resources
available to counties, cities, and municipalities.

Some studies have been reported on numerical methods for
drainage culvert redesign. For example, Duan et al. (2016)
developed a multiobjective approach for the design of detention
tanks in the urban stormwater drainage system. Jun et al. (2017)
developed a storm-drain-based bivariate frequency analysis
method to design urban storm-drains. Selbig et al. (2016)
investigated the effect of particle size distribution on the design of
urban stormwater control measures. Monrabal-Martinez et al.
(2016) investigated the seasonal variation in pollutant
concentrations and particle size distribution in urban stormwater
design. Chen et al. (2016) developed a tool for urban rainwater
management using integrated design workflow. However, these
methods could not work directly with spatial datasets limiting
their practical applicability in performing a tradeoff analysis or
optimization in identifying deficient underground piping structure.

2.1. Current state of the art in urban drainage
design

Some relevant previous works on optimal drainage design can be
found in Mays (1976), Taur et al. (1987), and Afshar (2008). Mays
(1976) developed a mathematical optimization method for
determining the optimal layout and design of storm sewer systems.
However, the method required manual datasets as inputs preventing
efficient real-world applicability of the developed methodology.
Moreover, the programming languages used to solve the
mathematical problem were old and outdated, which further limited
the practical applicability of the developed methodology. Newer
and more sophisticated programming techniques have emerged
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since 1971, which can work directly with spatial datasets enhancing
the practical applicability and real-time implementation.

Themethods proposed in other studies had the inability of handling
either the nonlinearity associated with the decision variables or working
with spatial datasets of underground storm-drains in performing offline or
online optimization to identify and correct culvert piping deficiencies.
The studies primarily focused on solution procedures. They proposed
numerical methods and iterative heuristics, such as dynamic
programming and particle swarm optimization. Moreover, the studies
approached the problem of piping optimality from a pure
mathematical perspective and ignored the geo-spatial analysis needed
for an efficient practical implementation, preferably in real-time, as
suggested by Webber et al. (2022).

The majority of the literature on optimal drainage system design
is qualitative in nature. While some of them (Duan et al., 2016; Eldho
et al., 2018) discuss analytical and mathematical approaches for urban
flood management, the approaches are still manual since one must go
through a series of manual steps to examine each storm-drain outlet
individually. This process is very time consuming and cannot
ensure a reduction in flooding in each urban segment since the
direction of flow of water cannot be collectively examined.

3. Methodology

The hydrologic technique most often used in urban drainage
design is the rational method expressed as (Guo, 2017):

Q ¼ CIA (1)

where:
Q = peak discharge (m3/s)
C = runoff coefficient
I = design storm rainfall intensity (mm/hr)
A = drainage area (hectares)
The quantity, I, can be further formulated as a function of

extreme weather as follows:

I ¼ I ewð Þ (2)

Using the TR-55 method, peak discharge, runoff depth, initial
abstraction, unit peak discharge, and pond/swamp factor can be
computed as follows:

QP ¼ QuAQFp (3)

Q ¼ P � Iað Þ2
P � Ia þ s

(4)

Ia ¼ 0:2s (5)

s ¼ 1000
CN

� 10 (6)

Qu ¼ f TC;
Ia
P
; Rainfall Distribution Type

� �
(7)

Fp ¼ f ð% Ponds and SwampsÞ (8)

where A = total watershed area (mile2); CN = overall curve number
for the watershed; Fp = pond and swamp adjustment factor; Ia =
initial abstraction (inch) losses before runoff begins (surface
depressions, interception by leaves, evaporation, infiltration); P =
precipitation (inch) for 24-hr duration storm of return period for
which the study is interested; Q = depth of runoff over entire

watershed (inch); Qp = peak discharge (cfs); Qu = unit peak
discharge (cfs/mile2-inch); s = potential maximum watershed
water retention after runoff begins (inch); Tc = time of
concentration for the watershed (hr); time for runoff to travel from
the furthest distance (by time) in the watershed to the location
where to be determined Qp.

Ia can be further defined as a function of extreme weather as:

Ia ¼ Ia ewð Þ (9)

There are typically three distinct runoff patterns in a watershed: sheet
flow, shallow concentrated flow, and channel flow. Each of the flow
patterns requires a unique mathematical expression as follows:

Tc ¼ Tt sheetð Þ þ Tt shallow concentratedð Þ þ Tt channelð Þ (10)

Sheet Flow : Tt ¼
0:007ðnLÞ0:8
P2ð Þ0:5S0:4 (11)

Shallow Concentrated Flow : Tt ¼
L

3600V
(12)

If paved surface; V ¼ 20:3282S0:5;Unpaved : V ¼ 16:1345S0:5

(13)

Channel Flow : Tt ¼
L

3600 V
;

V ¼ 1:49
n

R2=3S0:5 Manning Equationð Þ
(14)

where L = length of flow pattern (ft) (includes all wiggles in channels);
n=Manning’s n value; for sheet flow, n represents the ground cover to a
depth of about 1.2 inches (3 cm); for channel flow, n represents bank full
conditions for an open channel or full conditions for a culvert; P2= 2-yr
return period, 24-hr duration precipitation for the geographic region
where your watershed is located (inch); R = hydraulic radius (ft) of
bank full open channel or culvert flowing full (computed
automatically if channel cross-section dimensions are input);
S = average ground slope of each flow pattern (ft vertical/ft
horizontal); Tc = time of concentration for the watershed (hr); time for
runoff to travel from the furthest distance (by time) in the watershed
to the location where you wish to determine Qp; Tt = travel time for
flow regime of interest (hr) – sheet, shallow concentrated, or channel
flow; V = average velocity of water in each flow regime (ft/s).

Based on the above formulation, it is obvious that amount of
flooding will depend on discharge rate, rate of rainfall, land
characteristics, and volume of the storm-drain to allow for proper
drainage of rainwater. Therefore, conceptually, the flood
minimization problem can be formulated as:

Min F ¼ f Q;T; L; S;Vð Þ (15)

where F = Flooding (m3); Q = discharge rate (m3/sec); T = length of
time of rain (sec);L= land characteristics (e.g., impervious, grassy, other
soil type, etc.); V = volume of the storm-drain (m3/sec); and S = slope.

A hypothetical relationship for F can be expressed as:

F ¼ α
Q� Vð ÞTL

S
(16)

where α is a constant.
The purpose of Equations (15)–(16) is to illustrate, conceptually,

the independent variables which may influence the flooding. These
equations, however by no means, represent an exact relationship
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between the dependent variable, F, and the independent variables. It
can be observed from these equations that the higher the difference
between discharge rate and storm-drain volume, the higher the
flooding. Likewise, longer rain duration, smaller storm-drain
volume, larger impervious areas, and smaller slopes will tend to
increase the flooding. Models from the National Oceanographic and
Atmospheric Administration (NOAA) can be used to estimate
appropriate rainfall intensity.

Many books, articles, and manuals have been written on
stormwater conveyance modeling and design. For example,
Durrans et al. (2003) and Guo (2017) discuss design considerations
with respect to storm-drain systems. However, as discussed
previously, available methods for storm-drain system design do not
offer an optimization procedure for an enhanced tradeoff analysis
limiting the practical implementation of the methods. In this paper,
our goal is to develop an optimization procedure to minimize
flooding using storm-drain inlet design variables to perform a quick
tradeoff analysis for an enhanced practical implementation.

Storm-drain system deficiency means inability of the storm-drain
to be effective in stormwater runoff conveyance. This relates to poor
design of the stormwater inlet systems and waterways, such as
channels, conduits, swales, and drainage paths. The decision
variables in the proposed optimization procedure may include
rainfall intensity, land characteristics (e.g., gray v. green
infrastructure, impervious, grassy, other soil type, etc.), and design
variables for the storm-drain (including constrains placed on the
design variables). For example, effective radius (R) of various sizes
of box culverts can be considered as a design variable. In order to
develop the optimization formulation, we re-label Equation (17) as

Q1 ¼ CIAw (17)

The Manning equation to calculate the outflow to a particular storm-
drain inlet is expressed as (Durrans et al., 2003; Guo, 2017):

Q2 ¼
KAsR2=3S1=2

n
(18)

where As = area of the storm-drain; R = hydraulic radius; S = slope of
the storm-drain inlet; K = unit conversion factor (1.49 for English units
and 1 for SI units); and n = Manning coefficient.

From the inspection of Equations (17) and (18), it is clear that
flooding will occur if: Q1 > Q2; and flooding will not occur if
Q1 � Q2. Therefore, for minimizing flooding, following condition
should be satisfied:

CIAw � KAsR2=3S1=2

n
(19)

In a special case of circular storm-drain pipe, the pipe area can be
represented as πD2

4 and the hydraulic radius as D
4 where D is the pipe

diameter in mm. Using these values, Equation (19) will reduce to

CIAw � 2KπD
8
3S

1
2

12� n
¼ KπD

8
3S

1
2

6n
(20)

or

I � KπD8=3S1=2

6CAwn
(21)

Assuming everything else to be a constant for a given watershed will
lead to the following situation:

I � βD8=3

Aw
(22)

where β is a constant, I = rainfall intensity; D = inlet pipe size (or
diameter); and Aw = area of the watershed.

3.1. Rainfall intensity and conversion of rainfall to
runoff

Many studies have been reported on future changes in extreme
precipitation by employing climate models. For example, Tamm
et al. (2023) expressed the need for frequent update of intensity–
duration–frequency curves for a more realistic calculation of rainfall
intensity for designing urban drainage system. Such an update is a
topic of research on its own and beyond the scope of this study,
which is to develop a mathematical methodology to handle the
nonlinearity associated with storm-drain conveyance system design.
Once a more realistic rainfall intensity is available through
advanced modeling techniques, it can be plugged into the proposed
methodology developed here.

The maximum 24-hour rainfall intensity can be obtained from
NOAA graphs. The runoff volume can be calculated using the
curve number (CN) method (Watershed Engineering, 2004). The
CN equation is a relationship between runoff volume and rain
volume. The major factors that determine CN are the hydrologic
soil group, cover type, treatment, hydrologic condition, and
antecedent runoff condition. Another important factor is whether
impervious areas outlet directly to the drainage system or the flow
spreads over previous areas before entering the drainage system.

In the proposed research, we have made certain simplifying
assumptions in calculating runoff volume from rainfall intensity
and have used a deterministic interpretation of the rational
method, which does not convert the rainfall frequency to the same
runoff frequency. While this issue will affect the optimization and
can be addressed in future works, we believe our method still
captures the worst-case scenario in optimizing the pipe
dimensions since any loss in runoff volume is neglected.

3.2. Nonlinear optimization with Sequential Least
Squares Quadratic Programming (SLSQP)

An inspection of Equation (22) reveals that because the rainfall
intensity varies nonlinearly with the pipe diameter, it is a nonlinear
optimization problem. While there are many methods available to
solve nonlinear problems, sequential quadratic programming (SQP)
has become the most successful method in solving nonlinearly
constrained optimization problems (Boggs & Tolle, 1995). SQP
solves a sequence of optimization subproblems, each of which
optimizes a quadratic model of the objective subject to a linear
equivalent of the constraints. If the problem is unconstrained, then
the method reduces to Newton’s method for finding a point where
the gradient of the objective vanishes. If the problem has only
equality constraints, then the method is equivalent to applying
Newton’s method to the first-order optimality conditions, or
Karush–Kuhn–Tucker conditions, of the problem. Further details on
the mathematical foundations of SQP can be found in standard
references and have been skipped here for brevity.

SLSQP is an extension of SQP method in which the original
problem is replaced with a sequence of quadratic problems whose
objectives are second-order approximations of the Lagrangian and
whose constraints are the linearized original constraints. It uses
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certain globalization techniques to guarantee convergence irrespective
of the initial point.

The SLSQP is encoded into the Python programming
environment via the package called scipy.optimize. The minimize
function provides a common interface to unconstrained and
constrained minimization algorithms for multivariate scalar functions
in scipy.optimize. To demonstrate the minimization function, the
following nonlinear optimization problem is considered as an
illustration:

Min Z ¼ x1x4 x1 þ x2 þ x3ð Þ þ x3 (23)

subject to

x1x2x3x4 � 25 (24)

x1 þ x2 þ x23 þ x4 ¼ 40 (25)

1 � x1; x2; x3; x4 � 5 (26)

x0 ¼ 1; 5; 5; 1ð Þ (27)

where Z is the objective function; and x1, x2, x3, and x4 are the decision
variables for the conceptual optimization problem. This problem has a
nonlinear objective that the optimizer attempts to minimize. The
nonlinear nature of the objective function is obvious by the left-hand
side of Equation (23) where degree of the decision variables is 4.
The decision variable values at the optimal solution are subject to
both equality (= 40) and inequality (≥ 25) constraints presented in
Equations (24) and (25), respectively. The product of the four
decision variables must be greater than 25 while the sum of squares
of the variables must also equal 40. In addition, all variables must be
between 1 and 5 and the initial guess is x1= 1, x2 = 5, x3 = 5, and
x4 = 1.

Using the above illustrative nonlinear optimization problem as a
guide, an optimization procedure is developed in Python using
SLSQP solver to solve the nonlinear optimization problem for our
study. This solver, which is based on the principles of sequential
least squares, is a package within Python’s model called
Scipy.optimize. In Figures 1–2, the Python code snippets show the
application of this solver to the current nonlinear optimization
problem.

4. Case Study Example

We apply the proposed methodology to an underground storm-
drain piping network for Baltimore County, Maryland. A sample
section of the network is shown in Figure 3.

The spatial dataset for this study is obtained from the website of
the Environmental Systems Research Institute (2023). It is available
in ESRI’s ArcGIS portal at http://www.arcgis.com using the
following code:

Storm drain ¼ gis:content:get ‘07d6eb057e554c51832c4f0852ecf9c0’ð Þ

The map in Figure 3 has 131,817 storm-drain pipes with information
on velocity, length, height, width, slope, flow rate, and some other
relevant features. However, in many instances there are missing
values, and the data are not complete. For example, in 50,309
instances velocity information is missing and in 20,817 instances
pipe diameters are missing. The storm-drain pipe shapes are
arched, circular, oval (elliptical), and rectangular. For a special
case of circular pipes and after pruning missing, unknown, and

unrealistic values, the dataset reduces to 64,719. We plot three
sets of data to gain insight to the piping database: (1) velocity v.
flow rate; (2) design length v. flow rate; and (3) geometric shape
v. velocity. These plots are shown in Figures 4–6, respectively.
The plot of velocity v. flow rate (Figure 4) shows that most of the
pipes have a velocity between 0 and 15 mps (0–50 fps) and
corresponding flow rate between 0 and 11 m3 per sec (0–400 cfs).
The plot of design length v. flow rate (Figure 5) shows that most
of the pipes have a design length between 0 and 180 m (591 ft).
The plot of geometric slope and velocity (Figure 6) shows that
most of the pipes have a geometric slope between 0 and 25.
While, in general, a higher slope would lead to a higher velocity,
the plot may be skewed due to some outliers or inconsistent data.
Any inconsistency is attributed to the inconsistency in the spatial
dataset. There may be some outliers or inaccurate data that are not
recorded correctly.

The optimization is performed in Python for a rainfall intensity of
7.04 mm per hour (0.277 inch per hour) obtained from NOAA charts
for Baltimore. Because the optimization procedure is nonlinear, an
initialization step is necessary. In the initialization step, certain
dummy initial variables are used based on which initial flooding
rate is calculated. Two examples are performed. The following

Figure 1
First Python code screenshot showing application of SLSQP

Figure 2
Second Python code screenshot showing application of SLSQP
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input values are considered for the first example: runoff
coefficient= 0.84; rainfall intensity= 7.04 mm per hour (0.277
inches per hour); geometric slope= 2%; roughness= 0.012; initial
value of the pipe diameter= 50.8 mm (2 inches); initial value of
the watershed area= 0.093 hectare (10,000 sq. ft.); allowable
bounds of pipe size in mm = [50.8–2,540] (in inches=[2–100]);
and allowable bounds of the watershed in m2 = [929.03–9,290.3]
(in sq. ft. = [10000–100000]).

Using the above values, initial flooding is obtained to be 65.89
m3 per sec (2,326.49 cfs). After optimization with the SLSQP
approach is performed, an optimal pipe size for a no flood
situation is obtained to be 1,443.99 mm (56.85 inches). Another
example with a rainfall intensity of 1.27 mm per hour (0.05
inches per hour) is performed, which results in an initial flooding

of 11.88 m3 per sec (419.69 cfs) and optimal pipe size of 760 mm
(29.92 inches).

A comparison of both sets of results shows that an
underestimated value of rainfall intensity may result in a reduced
optimal pipe size. Therefore, it makes sense to use a realistic
value of the rainfall intensity using most up-to-date NOAA data
or more sophisticated climate models to obtain better results.

A plot of geometric slope v. initial flooding is shown in Figure 7.
It can be seen that as the slope increases initial flooding decreases. It
means that it may not be necessary to optimize the pipe size for
locations with higher slopes since the risk of flooding is less. Next,
a sensitivity analysis is performed to examine the variation among
rainfall intensity, flooding, and optimal pipe size.

The result is shown in Table 1. It can be observed that in general,
flooding increases as the rainfall intensity increases. This is a
common natural phenomenon. Regardless of how adequately

Figure 4
Plot of velocity v. flow rate for the Baltimore

County storm-drain spatial dataset

Figure 3
Sample storm-drain section for Baltimore County

Figure 5
Plot of design length v. flow rate for the Baltimore County

storm-drain spatial dataset

Figure 6
Plot of geometric slope v. velocity for the Baltimore County

storm-drain spatial dataset
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underground piping network is designed, extreme weather patterns
and excessive rain events will tend to create flooding. While
adjustments to rainfall intensity have been left for future works,
our algorithm takes into account the worst-case scenario to
optimize pipe size to minimize flowing as illustrated by the
screenshots in Figures 1–2. In general, a large pipe size is
required to minimize flooding.

Using the optimization algorithm, a revised pipe size (rounded
off to the nearest integer) can be obtained for the 131,817 pipes. For
incomplete and missing values in the dataset, appropriate data
pruning, imputing, or cleansing should be performed before
applying the optimization model for practical implementation.

As an illustrative real-world example, the flooding risk, amount
of runoff, and existing underground pipe sizes along certain streets in
the Jones Falls watershed in Baltimore County are performed.
Figure 8 shows the aerial view of the watershed at 704 Crossland
Road, Pikesville, MD. Figure 9 shows the number of flooding
events and amount of runoff for Jones Falls watershed.

For the period of 2005–2015, collectively, the region
experienced 230 flooding events with the highest number of
flooding events experienced along Slade Avenue. Currently, Slade
Avenue has a circular underground pipe of 609.6 mm (24 inches).
Upon optimization, a new optimal pipe size is obtained for the

underground pipes that would minimize flooding. The result is
shown in Table 2. For Slade Avenue, a pipe size of 2,133.6 mm
(84 in) is recommended. A similar analysis can be performed for
a particular watershed or region and results can be cross-checked
against the existing manual procedures, such as using TR-55.

5. Practical Implementation of the Developed
Approach

Unlike the detailed mathematical calculations to be undertaken
manually for storm-drain design (e.g., the methods proposed in Guo
(2017) and Durrans et al. (2003), the approach developed here is
easy to implement. The Python code module automatically extracts
the geo-spatial database containing information on underground
storm-drain network and performs necessary optimization to

Figure 7
Plot of geometric slope v. initial flooding rate

Table 1
Variations among rainfall intensity, flooding, and

optimal pipe size

Rainfall inten-
sity (mm/hr)

Flooding in m3 for a
fixed pipe size of

1,270 mm
Optimal pipe size (mm)
to minimize flooding

6.35 12.69 1397
8.89 36.47 1600.2
11.43 60.26 1752.6
13.97 84.05 1879.6
16.51 107.83 2006.6
19.05 131.62 2108.2
21.59 155.41 2209.8
24.13 179.19 2311.4
26.67 202.98 2387.6

Figure 9
Number of flooding events and amount of runoff in Jones Falls

watershed between 2005 and 2015

Figure 8
Aerial view of Jones Falls watershed
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recommend pipes tominimize flooding events. Themodel can easily be
implemented to any jurisdiction if geo-spatial datasets were available in
appropriate format. A dashboard for monitoring flooding events in real-
time can be developed in future works. This will either help avoid
catastrophic failures or take timely mitigation measures to reduce
collateral damage due to sudden and unforeseen flooding events.
One caveat for actual implementation would be budget and resource
constraints of a particular jurisdiction since replacing deficient
stormwater lines is costly.

5.1. Computational challenges with SLSQP

For the example studies performed in the current research, there
were no computational challenges encountered while handling the
nonlinear optimization problem with SLSQP and spatial datasets.
This is because we were only dealing with numerical computation
with less than a million-piping network. It is anticipated that when
non-numerical spatial computations with over a million datasets are
involved and if the computation must be performed in real-time, the
computation process may slow down a little bit. We discussed this
issue in the highway alignment context in one of our previous
works (Jha & Schonfeld, 2000). For the present problem, this issue
can be addressed in future works when dealing with large spatial
datasets and when performing the computation in real-time.

6. Conclusions and Future Works

This paper formulated a nonlinear mathematical optimization
problem using SLSQP and spatial datasets to address the flooding
on urban roadways due to deficient storm-drain pipe geometry.
The study was carried out to investigate the optimal culvert

capacity associated with the hydraulic analysis that could justify
the sizing of the pipe culvert to minimize flooding. Based on the
sample results, it is shown that the GIS and Python-based
nonlinear optimization model within a Python environment is an
effective tool in identifying storm-drain deficiencies and
correcting them by choosing appropriate storm-drain inlet types to
minimize flooding. Moreover, the developed procedure eliminates
the need to perform manual analysis using existing hydrologic
software tools, although those tools can still be used in subsequent
stages for micro-level manual analysis.

The results show that deficient and poor design of storm-drain
pipes are key contributors to urban flooding. For the Baltimore
County case study, flooding was attributed to the difference between
in-flow and out-flow. Whenever there was excess in-flow, a flooding
scenario was observed. This scenario was removed by performing
the nonlinear optimization and selecting optimal pipe sizes.

While the proposed approach identifies corrections to the storm-
drain pipeline network, challenges with respect to cost and other
resources to replace the poor piping network are not explored in
this study. Future works may include expanding the nonlinear
optimization methodology on larger datasets with complex
hydrological features as well as modeling the spatial disparity
when considering the effects of extreme weather and climate
change. Additional sensitivity analysis for a range of input values,
such as roughness, geometric slope, and watershed area, can also
be undertaken in future works. The future works may also include
expanding the formulation to include the nonlinearity associated
with the conversion of rainfall intensity to runoff volume as well
as performing the optimization in real-time. The method can be
applied to other jurisdictions if relevant hydrological and
underdrain piping network data were available.

Table 2
Optimal pipe size for Jones Falls watershed to minimize flooding

Pipe
number Street name Number of flooding

Discharge rate
(m3 per sec)

Underground culvert diameter
(if available) in mm

Adjusted (optimal) diameter
in mm

1 Ridge Terrace 9 1.39 NA 1118
2 Crossland Road 18 1.81 457 1372

Corrugated metal pipe (CMP)
3 Midfield Road 15 6.94 1067 × 686 1220 × 2134

Elliptical
4 Southvale Road 12 1.27 NA 914
5 Seven Mile Lane 28 4.47 914 1829

Reinforced round concrete pipe (RRCP)
6 Fairway Road 25 0.76 1067 × 686 1220 × 2134

Elliptical
7 Overbrook Road 20 2.61 381 1829

Circular
8 Barton Oaks Road 19 1.42 NA 1067
9 Traymore Road 3 0.68 NA 533
10 Lorry Lane 10 0.79 533 686

Circular
11 Lee court 6 2.27 457 1676

Circular
12 Greenvale Road 12 1.78 381 1372

Circular
13 Slade Avenue 27 7.11 610 25

Circular
14 Marnat Road 17 5.55 914 1829

Circular
15 Carla Road 9 2.66 457 2134

Circular

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

08



Acknowledgments

The authors confirm contribution to the paper as follows: J. Ekeh
and M. Jha: study conception, design, and development of the
mathematical formulation; J. Ekeh: data collection and hydrological
analysis; J. Ekeh and M. Jha; draft manuscript preparation; M. Jha:
preparation of revised manuscript in light of reviewer’s comments
and preparation of responses to reviewer’s comments. All authors
reviewed the results and approved the final version of the manuscript.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

Manoj K. Jha is an editorial board member for Journal of
Computational and Cognitive Engineering and was not involved
in the editorial review or the decision to publish this article. The
authors declare that they have no conflicts of interest to this work.

Data Availability Statement

The data that support the findings of this study are openly
available in ESRI’s ArcGIS portal at http://www.arcgis.com using
the following code:

Storm_drain = gis.content.get(‘07d6eb057e554c51832c4f08
52ecf9c0’). The data are good as of June 12, 2023 and may have
changed over time.

References

Afshar, M. H. (2008). Rebirthing particle swarm optimization algorithm:
Application to storm water network design. Canadian Journal of
Civil Engineering, 35(10), 1120–1127. https://doi.org/10.1139/
L08-056

Atta-ur-Rahman, Parvin, G. A., Shaw, R., & Surjan, A. (2016). Cities,
vulnerability, and climate change. In R. Shaw, Atta-ur-Rahman,
A. Surjan & G. A. Parvin (Eds.),Urban disasters and resilience
in Asia (pp. 35–47). Butterworth-Heinemann. https://doi.org/10.
1016/B978-0-12-802169-9.00003-3

Bertrand-Krajewski, J.-L. (2021). Integrated urban stormwater
management: Evolution and multidisciplinary perspective.
Journal of Hydro-environment Research, 38, 72–83. https://
doi.org/10.1016/j.jher.2020.11.003

Boggs, P., & Tolle, J. (1995). Sequential quadratic programming. Acta
Numerica, 4, 1–51. https://doi.org/10.1017/S0962492900002518

Boulmaiz, T., Guermoui,M., Saber,M., Boutaghane, H., Abida, H., &
Eslamian, S. (2023). Uncertainty analysis using fuzzy models in
hydroinformatics. In S. Eslamian & F. Eslamian (Eds.),
Handbook of hydroinformatics (pp. 423–434). Elsevier.
https://doi.org/10.1016/B978-0-12-821285-1.00002-6

Bremer, L. L., Keeler, B., Pascua, P.,Walker, R., & Sterling, E. (2021).
Nature-based solutions, sustainable development, and equity. In J.
Cassin, J. H. Matthews & E. L. Gunn (Eds.), Nature-based
solutions and water security: An action agenda for the 21st
century (pp. 81–105). Elsevier. https://doi.org/10.1016/B978-0-
12-819871-1.00016-6

Centre for Research on the Epidemiology of Disasters, & United
Nations Office for Disaster Risk Reduction. (2020). Human
cost of disasters: An overview of the last 20 years, 2000–2019.
Retrieved from: https://www.undrr.org/publication/human-cost-
disasters-overview-last-20-years-2000-2019

Chang, L. F., & Huang, S. L. (2015). Assessing urban flooding
vulnerability with an emergy approach. Landscape and
Urban Planning, 143, 11–24. https://doi.org/10.1016/j.landu
rbplan.2015.06.004

Chen, Y., Samuelson, H. W., & Tong, Z. (2016). Integrated design
workflow and a new tool for urban rainwater management.
Journal of Environmental Management, 180, 45–51. https://
doi.org/10.1016/j.jenvman.2016.04.059

Cherqui, F., Belmeziti, A., Granger, D., Sourdril, A., & le Gauffre, P.
(2015). Assessing urban potential flooding risk and identifying
effective risk-reduction measures. Science of the Total
Environment, 514, 418–425. https://doi.org/10.1016/j.scitote
nv.2015.02.027

Cook, S., van Roon, M., Ehrenfried, L., LaGro Jr, J., & Yu, Q. (2019).
WSUD “best in class”—Case studies from Australia, New
Zealand, United States, Europe, and Asia. In A. K. Sharma,
T. Gardner & D. Begbie (Eds.), Approaches to water
sensitive urban design (pp. 561–585). Woodhead Publishing.
https://doi.org/10.1016/B978-0-12-812843-5.00027-7

Duan, H. F., Li, F., &Yan, H. (2016).Multi-objective optimal design
of detention tanks in the urban stormwater drainage system:
LID implementation and analysis. Water Resources
Management, 30, 4635–4648. https://doi.org/10.1007/s1126
9-016-1444-1

Durrans, S., Dietrich, K., Ahmad, M., & Haestad Methods, Inc.
(2003). Stormwater conveyance modeling and design. USA:
Haestad Press.

Ekeh, J. (2020). A GIS-based optimization model to minimize urban
flood risk due to storm-drain system deficiencies. Doctoral
Thesis, Morgan State University.

Eldho, T. I., Zope, P. E., & Kulkarni, A. T. (2018). Urban flood
management in coastal regions using numerical simulation and
geographic information system. In P. Samui, D. Kim & C.
Ghosh (Eds.), Integrated disaster science and management:
Global case studies in mitigation and recovery (pp. 205–219).
Elsevier. https://doi.org/10.1016/B978-0-12-812056-9.00012-9

Environmental Systems Research Institute. (2023). ArcGIS online.
Retrieved from: http://www.arcgis.com

EPA National Stormwater Calculator. (n.d.). Help prevent pollution
by controlling stormwater runoff. Retrieved from: https://
swcweb.epa.gov/stormwatercalculator

Flynn, C. D., &Davidson, C. I. (2016). Adapting the social-ecological
system framework for urban stormwater management: The case
of green infrastructure adoption. Ecology & Society, 21(4), 19.
https://doi.org/10.5751/ES-08756-210419

Guo, J. C. (2017). Urban flood mitigation and stormwater
management. USA: CRC Press.

Hatt, B. E., Fletcher, T. D., Walsh, C. J., & Taylor, S. L. (2004). The
influence of urban density and drainage infrastructure on the
concentrations and loads of pollutants in small streams.
Environmental Management, 34, 112–124. https://doi.org/10.
1007/s00267-004-0221-8

Jha, M. K., & Schonfeld, P. (2000). Integrating genetic algorithms
and GIS to optimize highway alignments. Journal of the
Transportation Research Board, 1719, 233–240.

Jones, D., & Jha, M. K. (2009). Green infrastructure: Assessing the
benefits of bioretention over traditional stormwater management.
Environmental Science and Sustainability, 134–141.

Jun, C., Qin, X., Gan, T. Y., Tung, Y. K., & de Michele, C. (2017).
Bivariate frequency analysis of rainfall intensity and duration
for urban stormwater infrastructure design. Journal of
Hydrology, 553, 374–383. https://doi.org/10.1016/j.jhydrol.
2017.08.004

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

09

http://www.arcgis.com
https://doi.org/10.1139/L08-056
https://doi.org/10.1139/L08-056
https://doi.org/10.1016/B978-0-12-802169-9.00003-3
https://doi.org/10.1016/B978-0-12-802169-9.00003-3
https://doi.org/10.1016/j.jher.2020.11.003
https://doi.org/10.1016/j.jher.2020.11.003
https://doi.org/10.1017/S0962492900002518
https://doi.org/10.1016/B978-0-12-821285-1.00002-6
https://doi.org/10.1016/B978-0-12-819871-1.00016-6
https://doi.org/10.1016/B978-0-12-819871-1.00016-6
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
https://doi.org/10.1016/j.landurbplan.2015.06.004
https://doi.org/10.1016/j.landurbplan.2015.06.004
https://doi.org/10.1016/j.jenvman.2016.04.059
https://doi.org/10.1016/j.jenvman.2016.04.059
https://doi.org/10.1016/j.scitotenv.2015.02.027
https://doi.org/10.1016/j.scitotenv.2015.02.027
https://doi.org/10.1016/B978-0-12-812843-5.00027-7
https://doi.org/10.1007/s11269-016-1444-1
https://doi.org/10.1007/s11269-016-1444-1
https://doi.org/10.1016/B978-0-12-812056-9.00012-9
http://www.arcgis.com
https://swcweb.epa.gov/stormwatercalculator
https://swcweb.epa.gov/stormwatercalculator
https://doi.org/10.5751/ES-08756-210419
https://doi.org/10.1007/s00267-004-0221-8
https://doi.org/10.1007/s00267-004-0221-8
https://doi.org/10.1016/j.jhydrol.2017.08.004
https://doi.org/10.1016/j.jhydrol.2017.08.004


Kim, Y., Eisenberg, D. A., Bondank, E. N., Chester, M. V.,Mascaro, G.,
& Underwood, B. S. (2017). Fail-safe and safe-to-fail adaptation:
Decision-making for urban flooding under climate change.
Climatic Change, 145, 397–412. https://doi.org/10.1007/s10584-
017-2090-1

Lopez-Gunn, E., Altamirano, M. A., Ebeltoft, M., Graveline, N.,
Marchal, R., Moncoulon, D., : : : , & Cassin, J. (2021).
Mainstreaming nature-based solutions through insurance:
The five “hats” of the insurance sector. In J. Cassin, J. H.
Matthews & E. Lopez Gunn (Eds.), Nature-based solutions
and water security (pp. 401–422). Elsevier. https://doi.org/
10.1016/B978-0-12-819871-1.00006-3

Mays, L. W. (1976). Optimal layout and design of storm sewer
systems. PhD Thesis, University of Illinois at Urbana-
Champaign.

Meng, C. L. (2018). A review of road surface conditions forecast. In
Elsevier reference collection in earth systems and environmental
sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.
11483-6

Monrabal-Martinez, C., Muthanna, T., &Meyn, T. (2016). Seasonal
variation in pollutant concentrations and particle size
distribution in urban stormwater-design implications for
BMPs. Novatech 2016. 9th International Conference on
Planning and Technologies for Sustainable URBAN WATER
Management, 1–7.

Myers, B. R., & Pezzaniti, D. (2019). Flood and peak flow
management using WSUD systems. In A. K. Sharma,
T. Gardner & D. Begbie (Eds.), Approaches to water
sensitive urban design (pp. 119–138). Woodhead
Publishing. https://doi.org/10.1016/B978-0-12-812843-5.
00006-X

Sebastian, A., Juan, A., & Bedient, P. B. (2022). Urban flood
modeling: Perspectives, challenges, and opportunities. In
S. Brody, Y. Lee & B. B. Kothuis (Eds.), Coastal flood risk
reduction (pp. 47–60). Elsevier.

Selbig, W. R., Fienen, M. N., Horwatich, J. A., & Bannerman, R. T.
(2016). The effect of particle size distribution on the design of
urban stormwater control measures. Water, 8(1), 17. https://
doi.org/10.3390/w8010017

Sinha, S. (2023). Climate change, urban flooding, and community
perceptions of vulnerability and resilience: Lessons from
Diamond Harbor region. In U. Chatterjee, R. Shaw, G. S.
Bhunia & S. Banerjee (Eds.), Climate change, community
response and resilience (pp. 391–417). Elsevier. https://doi.org/
10.1016/B978-0-443-18707-0.00021-7

Tamm, O., Saaremäe, E., Rahkema, K., Jaagus, J., & Tamm, T.
(2023). The intensification of short-duration rainfall
extremes due to climate change–Need for a frequent update
of intensity–duration–frequency curves. Climate Services,
30, 100349. https://doi.org/10.1016/j.cliser.2023.100349

Taur, C.-K., Toth, G., Oswald, G. E., & Mays, L. W. (1987). Austin
detention basin optimization model. Journal of Hydraulic
Engineering, 113(7), 860–878. https://doi.org/10.1061/(ASCE)
0733-9429(1987)113:7(860)

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A.,
Niemela, J., & James, P. (2007). Promoting ecosystem and
human health in urban areas using Green Infrastructure: A
literature review. Landscape and Urban Planning, 81(3),
167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001

Upreti, M., Saikia, P., Shilky, Lal, P., & Kumar, A. (2024). Major
challenges in the urbanizing world and role of earth
observations for livable cities. In A. Kumar, P. K.
Srivastava, P. Saikia & R. K. Mall (Eds.), Earth observation
in urban monitoring (pp. 23–52). Elsevier. https://doi.org/10.
1016/B978-0-323-99164-3.00002-1

Villarreal, E. L., Semadeni-Davies, A., & Bengtsson, L. (2004).
Inner city stormwater control using a combination of best
management practices. Ecological Engineering, 22(4–5),
279–298. https://doi.org/10.1016/j.ecoleng.2004.06.007

Watershed Engineering. (2004).Course notes on watershed engineering
from Cornell University. Retrieved from: http://www.hydrology.
bee.cornell.edu/BEE473Homework_files/Runoff.pdf

Webber, J. L., Fletcher, T., Farmani, R., Butler, D., & Melville-
Shreeve, P. (2022). Moving to a future of smart stormwater
management: A review and framework for terminology,
research, and future perspectives. Water Research, 218,
118409. https://doi.org/10.1016/j.watres.2022.118409

Xie, J., Chen, H., Liao, Z., Gu, X., Zhu, D., & Zhang, J. (2017). An
integrated assessment of urban flooding mitigation strategies for
robust decision making. Environmental Modelling & Software,
95, 143–155. https://doi.org/10.1016/j.envsoft.2017.06.027

Zhou, X., Bai, Z., & Yang, Y. (2017). Linking trends in urban
extreme rainfall to urban flooding in China. International
Journal of Climatology, 37(13), 4586–4593. https://doi.org/
10.1002/joc.5107

How to Cite: Ekeh, J. O., & Jha, M. K. (2024). Minimizing Urban Flooding by
Optimal Design of Drainage System Using Sequential Least Squares Quadratic
Programming and Spatial Datasets. Journal of Computational and Cognitive
Engineering. https://doi.org/10.47852/bonviewJCCE42022507

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2024

10

https://doi.org/10.1007/s10584-017-2090-1
https://doi.org/10.1007/s10584-017-2090-1
https://doi.org/10.1016/B978-0-12-819871-1.00006-3
https://doi.org/10.1016/B978-0-12-819871-1.00006-3
https://doi.org/10.1016/B978-0-12-409548-9.11483-6
https://doi.org/10.1016/B978-0-12-409548-9.11483-6
https://doi.org/10.1016/B978-0-12-812843-5.00006-X
https://doi.org/10.1016/B978-0-12-812843-5.00006-X
https://doi.org/10.3390/w8010017
https://doi.org/10.3390/w8010017
https://doi.org/10.1016/B978-0-443-18707-0.00021-7
https://doi.org/10.1016/B978-0-443-18707-0.00021-7
https://doi.org/10.1016/j.cliser.2023.100349
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:7(860)
https://doi.org/10.1061/(ASCE)0733-9429(1987)113:7(860)
https://doi.org/10.1016/j.landurbplan.2007.02.001
https://doi.org/10.1016/B978-0-323-99164-3.00002-1
https://doi.org/10.1016/B978-0-323-99164-3.00002-1
https://doi.org/10.1016/j.ecoleng.2004.06.007
http://www.hydrology.bee.cornell.edu/BEE473Homework_files/Runoff.pdf
http://www.hydrology.bee.cornell.edu/BEE473Homework_files/Runoff.pdf
https://doi.org/10.1016/j.watres.2022.118409
https://doi.org/10.1016/j.envsoft.2017.06.027
https://doi.org/10.1002/joc.5107
https://doi.org/10.1002/joc.5107
https://doi.org/10.47852/bonviewJCCE42022507

	Minimizing Urban Flooding by Optimal Design of Drainage System Using Sequential Least Squares Quadratic Programming and Spatial Datasets
	1. Introduction
	2. Literature Review
	2.1. Current state of the art in urban drainage design

	3. Methodology
	3.1. Rainfall intensity and conversion of rainfall to runoff
	3.2. Nonlinear optimization with Sequential Least Squares Quadratic Programming (SLSQP)

	4. Case Study Example
	5. Practical Implementation of the Developed Approach
	5.1. Computational challenges with SLSQP

	6. Conclusions and Future Works
	References


