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COVID-19 Outbreak with Fuzzy
Uncertainties: AMathematical Perspective
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Abstract: In this article, we design a mathematical SEQAIMR (susceptible, exposed, quarantined, asymptomatic, symptomatic, isolated,
recovered) epidemic model and investigate the nature of the system. We transform the crisp model into the fuzzy model. All the
biological parameters are treated as triangular fuzzy numbers (TFNs). With the help of utility function method, the fuzzy model is
defuzzified. We use the MATLAB codes to solve the system of equations and to predict different situations under different values of the
control parameters. Lastly, optimal control for COVID-19 disease is explained.
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1. Introduction

The model formulation of infectious disease is the most
important tool to fathom of its epidemiological prototypes. It helps
us to take suitable measure to control its severity. Recently, it is a
great threat throughout the world from COVID-19. Coronavirus
disease is exponentially (Velavan & Meyer, 2020; Wu &
McGoogan, 2020) growing, and patients in main land China were
detected with COVID-19. The authority of China promptly
initiated the radical measure to control the outbreak (Chakraborty
& Ghosh, 2020; Chen et al., 2020; He et al., 2020; Kumar et al.,
2020; Nadim et al., 2021; Nesteruk, 2020; Tiwari, 2020; Wu et al.,
2020). In spite of radical measure, it is shaped an epidemic and
China became the epicenter. World Health Organization described
coronavirus as family of virus. Respiratory droplets and contact
transmission are the important way for transmission of
coronavirus. Its incubation period is 2–14 days (Yang & Wang,
2020). Generally, COVID-19 patients suffer from high fever, sneeze,
dry cough, tiredness, runny nose, and lung penetration. This infectious
disease is spread all over the world by human dynamism. India, USA,
and Europe become the epicenter of coronavirus. Shared surfaces are
a serious risky. Because the coronavirus may alive or it may remain
infectious from 2 h up to 1 week on different kind of metals such as
aluminum, metal, wood, silicon, steel, glass, rubber, and paper
(Kampf et al., 2020). Giordano et al. (2020) explained a mathematical
model for coronavirus disease and described the combining both strict
lockdown and testing can control the severity of infectious
coronavirus disease within human. Verity et al. (2020) explained a
model-based analysis. Khajanchi and Sarkar (2020) investigated the
transmission dynamics and forecasting SARS-CoV-2 virus for many
states on their mathematical model. Khajanchi et al. (2020) developed
a new mathematical model for describing the transmission dynamics
in different states in India. Pal et al. (2020) designed the SEQIR

epidemic model. They used data-driven epidemiological parameter
for spreading in India (Pal et al., 2020). A SEIR model was discussed
by Read et al. (2021) on real data. They found basic reproduction
ratio 3.1 (Read et al., 2021). A SIR model was developed by Volpert
et al. (2020). They explained for restriction the increasing of
coronavirus disease through initiating firm quarantine procedure. The
mathematical model on infection kinetics was proposed by Liang
(2020). They analyzed for COVID-19, SARS, and MARS on his
research work.

In this work, we have explained SEQAIMR (susceptible,
exposed, quarantined, asymptomatic, symptomatic, isolated,
recovered) model in fuzzy environment. We have considered the
imprecise parameter as triangular fuzzy numbers (TFNs). These
TFNs are more easy to use, more intuitive, and helpful for raising
delegation and information processing in fuzzy nature. We have
defuzzified our proposed model using utility function method
(UFM). We use uncertainty for the associated parameters
uncertain to form more realistic model. So, we may use the
uncertain interval-valued parameter. It may help to inform
a real-world mathematical system. Zadeh (1965) first used the
uncertainty in his mathematical deduction. Panja et al. (2017)
used the fuzzy in his Cholera epidemic model. Researchers paid
attention to investigate their infectious disease models in
imprecise environments (Lahrouz et al., 2011; Imai et al., 2020;
Senapati et al., 2021; Das et al., 2022; Nandi et al., 2018; Cai
et al., 2017; Chang et al., 2017, Mahato et al., 2022). Verma et al.
(2019) used uncertainty in his outbreak of Ebola virus
fuzzy epidemic model in Africa. They assumed fuzzy value of
susceptible population and also reproduction number.

This article is organized as follows:We study some preliminaries
inSection 2.We investigate both themodel calibration crispmodel and
fuzzy model and their assumption in Section 3. Boundedness of the
system, equilibria, and stability analysis are performed in the
theoretical study portion in Section 4. Optimal control for COVID-
19 disease is described in Section 5. Some numerical examples are
represented in Section 6. Lastly, conclusions are presented in Section 7.
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2. Preliminaries

We introduce some preliminaries to develop the mathematical
model. Useful definitions are as follows:

2.1. Definition of fuzzy set

Assuming X is nonempty set. The set Ã in X is denoted by

ordered pair eA� ¼ x;M xð Þ : x 2 Xð Þf g. The mapping
M xð Þ : X ! 0; 1½ � is the membership function and M xð Þ is the

membership value of x in X of the fuzzy set eA.
2.2. Definition of triangular fuzzy numbers (TFNs)

Based on the definition of triangular fuzzy numbers (TFNs)
from Mondal et al. (2015), the TFNs M is represented by
(c1; c2; c3Þ, where M xð Þ is defined as follows:

M xð Þ ¼

x�c1
c2�c1

if c1 � x � c2

1 if x ¼ c2

c3�x
c3�c2

if c2 � x � c3

0 otherwise

:

8>>>>>><>>>>>>:

2.3. Definition of α cut of a fuzzy number

Based on the definition of α cut of a fuzzy number fromMondal
et al. (2015), a fuzzy set eA in X is a mapping eA: X ! 0; 1½ �; where X
is the nonempty set. Aα represent the α cut of a fuzzy number Ã in X:

The set Aα ¼ fx 2 X : A xð Þ > αg is called α cut of eA.
The α cut of a TFNM = (c1; c2; c3) is closed and bounded inter-

val [ML αð Þ; MR αð Þ], where ML αð Þ ¼ c1 þ α c2 � c1ð Þ and
MR αð Þ ¼ c3 � α c3 � c2ð Þ, where α2 0; 1½ �.

2.4. Definition of utility function method

Based on the definition of the utility function method from
Panja et al. (2017), a utility function can be formed by wihi xð Þ,
for i-th objective. The total utility function is prescribed as follows:

U =
Pp

i¼1 wihi xð Þ; wi > 0; i ¼ 1; 2; . . . . . . p, subject to the condi-
tion

Pp
i¼1 wi ¼ 1.

where wi and hi denote the scalar and the relative value of the objec-
tive of utility function, respectively.

3. Model Calibration

Let the total population be N tð Þ:We divide the total population
into seven sub populations. They are namely susceptible S tð Þð Þ,
exposed E tð Þð Þ; quarantined Q tð Þð Þ; asymptomatic A tð Þð Þ; sympto-
matic I tð Þð Þ; isolation M tð Þð Þ; and recovered (Rðt)) population.
When the population is symptomatic infectious, they have been
transferred to the isolation ward. We have organized this work as
SEQAIMR model. For making this model more realistic, we have
supposed that d(> 0) is the natural death rate of all seven subpopu-
lation in India. We add another parameter Π (> 0) which is the rate
per unit time of net influx of susceptible individuals in the envi-
ronments.

3.1. Crisp model

3.1.1. Dynamics of susceptible population: S tð Þ
We assume that Π is the rate of recruiting individuals. The

parameter d represents natural death rate. Susceptible population
converted into quarantine individuals at rate β1. The susceptible pop-
ulation is sent to safe area for panic. So, we have the differential equa-
tion of the susceptible population:

dS
dt

¼ Π � λSE � β1S� dS

3.1.2. Dynamics of exposed population: E tð Þ

The parameter λ is the increasing rate of exposed population by
the disease transmission between a susceptible population and infected
population. The parameter β2 is the decreasing rate of this population
for quarantine. The parameter d represents the natural mortality rate.
The exposed population becomes infected at the rate of r1: The equa-
tion of exposed population is controlled in the following way:

dE
dt

¼ λSE� r1E � β2E � dE

3.1.3. Dynamics of quarantine population: Q tð Þ
The disease transmission rate is very high during incubation

period of the virus. For this reason, the government advises for 14
days of quarantine to control the epidemic. Quarantine population
increases at rate β1 and β2 from susceptible and exposed population
accordingly. This population reduces at rate r2 and σ1 due to infected
population and recovery rate, respectively. The parameter d repre-
sents the natural death rate. Therefore, the quarantine population
is given as follows:

dQ
dt

¼ β1Sþ β2E � r2Q� σ1Q� dQ

3.1.4. Dynamics of asymptomatic population: A tð Þ

There are no symptoms of COVID-19, but asymptomatic
individuals were irradiated to the virus. At a rate γ1, the exposed indi-
viduals converted to asymptomatic. The parameters σ2 and d are the
recovery rate and death rate of the asymptomatic population, respec-
tively. The equation of the asymptomatic population represents in the
following way:

dA
dt

¼ γ1E � σ2 þ dð ÞA

3.1.5. Dynamics of symptomatic population: I tð Þ
There are clinical symptoms of COVID-19 of the symptomatic

population. The isolation rate of symptomatic individuals is γ2. The
parameter d represents the natural mortality rate and σ3 is the recov-
ery rate of this population. The equation of the symptomatic popu-
lation is given below:
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dI
dt

¼ r1E þ r2Q� σ3 þ γ2 þ dð ÞI

3.1.6. Dynamics of isolation population: M tð Þ

The parameter k is the rate from quarantine community to iso-
lated individuals and γ2 is the rate from symptomatic groups. The
healing rate of isolated individuals is σ4 and δ is the disease incited
death rate and d presents natural mortality rate of this population.

dM
dt

¼ kQþ γ2I � δþ σ4 þ dð ÞM

3.1.7. Dynamics of recovered population: R tð Þ

The parameters σ1; σ2; σ3; σ4 represent the rate of heal from
quarantine, asymptomatic, symptomatic, and isolated population,
respectively.

dR
dt

¼ σ1Qþ σ2Aþ σ3I þ σ4M � dR

With the help of above consideration, we have got the following
dynamical system:

dS
dt

¼ Π � λSE � β1S� dS

dE
dt

¼ λSE � r1E � β2E � dE

dQ
dt

¼ β1Sþ β2E � r2Q� σ1Q� dQ

dA
dt

¼ γ1E � σ2 þ dð ÞA

dI
dt

¼ r1E þ r2Q� σ3 þ γ2 þ dð ÞI

dM
dt

¼ kQþ γ2I � δþ σ4 þ dð ÞM

dR
dt

¼ σ1Qþ σ2Aþ σ3I þ σ4M � dR: (1)

Initially, the state variables are positive. Figure 1 represents the
compartment diagram.

3.2. Fuzzy model

In this subsection, using the fuzzy set theory we extend the crisp
model (1) with the help of imprecise biological parameters. Then the
crisp model (1) reduces the following form:

edS
dt

¼ eΠ � eλSE � eβ1S�deS
fdE
dt

¼ eλSE � er1E � eβ2E � deE
fdQ
dt

¼ eβ1Sþ eβ2E � er2Q� eσ1Q� deQ
fdA
dt

¼ eγ1E � eσ2A� edA
edI
dt

¼ er1E þ er2Q� ð eγ2 þ eσ3 þ edÞI
fdM
dt

¼ ekQþ eγ2I � ðeδþ eσ4 þ edÞM
fdR
dt

¼ eσ1Qþ eσ2Aþ eσ3I þ eσ4M � edR (2)

We have to find the solution of the system (2)

dx
dt

� �
α

¼ dx
dt

� �
α

L
;

dx
dt

� �
α

R

� �
:

We get the solution of the system (2) in the following way:

dS
dt

� �
α

L
¼ ΠLð Þα � λRð ÞαSE � β1R

� �
αS� dRð ÞαS

dS
dt

� �
α

R
¼ ΠRð Þα � λLð ÞαSE � β1L

� �
αS� dLð ÞαS

dE
dt

� �
α

L
¼ λLð ÞαSE � r1R

� �
αE � β2R

� �
αE � dRð ÞαE

dE
dt

� �
α

R
¼ λRð ÞαSE � r1L

� �
αE � β2L

� �
αE � dLð ÞαE

dQ
dt

� �
α

L
¼ β1L

� �
αSþ β2L

� �
αE � r2R

� �
αQ� σ1R

� �
αQ� kRð ÞαQ� dRð ÞαQ

dQ
dt

� �
α

R
¼ β1R

� �
αSþ β2R

� �
αE � r2L

� �
αQ� σ1L

� �
αQ� kLð ÞαQ� dLð ÞαQ

dA
dt

� �
α

L
¼ γ1L

� �
αE � σ2R

� �
αA� dRð ÞαA

dA
dt

� �
α

R
¼ γ1R

� �
αE � σ2L

� �
αA� dLð ÞαA

Figure 1
SEQAIMR model diagram
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dI
dt

� �
α

L
¼ r1L
� �

αE þ r2L
� �

αQ� γ2R

� �
α þ σ3R

� �
α þ dRð Þα� 	

I

dI
dt

� �
α

R
¼ r1R
� �

αE þ r2R
� �

αQ� γ2L

� �
α þ σ3L

� �
α þ dLð Þα� 	

I

dM
dt

� �
α

L
¼ kLð ÞαQþ γ2L

� �
αI � δRð Þα þ σ4R

� �
α þ dRð Þα� 	

M

dM
dt

� �
α

R
¼ kRð ÞαQþ γ2R

� �
αI � δLð Þα þ σ4L

� �
α þ dLð Þα� 	

M

dR
dt

� �
α

L
¼ σ1L

� �
αQþ σ2L

� �
αAþ σ3L

� �
αI þ σ4L

� �
αM � dRð ÞαR

dR
dt

� �
α

R
¼ σ1R

� �
αQþ σ2R

� �
αAþ σ3R

� �
αI þ σ4R

� �
αM � dLð ÞαR:

(3)

3.3. Defuzzified model

Using UFM, we have defuzzified the fuzzy model. The fuzzy
model is reduced in the following forms:

dS
dt

¼ w1
ds
dt

� �
α

L
þw2

ds
dt

� �
α

R

dE
dt

¼ w1
dE
dt

� �
α

L
þw2

dE
dt

� �
α

R

dQ
dt

¼ w1
dQ
dt

� �
α

L
þw2

dQ
dt

� �
α

R

dA
dt

¼ w1
dA
dt

� �
α

L
þw2

dA
dt

� �
α

R

dI
dt

¼ w1
dI
dt

� �
α

L
þw2

dI
dt

� �
α

R

dM
dt

¼ w1
dM
dt

� �
α

L
þw2

dM
dt

� �
α

R

dR
dt

¼ w1
dR
dt

� �
α

L
þw2

dR
dt

� �
α

R
(4)

Here,w1 andw2 are twoweight functions. They satisfy the conditions
w1 þ w2 ¼ 1 and w1 � 0 and w2 � 0.

Equation (4) can be written as follows:

dS
dt

¼ b11 � b12SE � b13S

dE
dt

¼ b21SE � b22E

dQ
dt

¼ b31Sþ b32E � b33Q

dA
dt

¼ b41E � b42A

dI
dt

¼ b51E þ b52Q� b53I

dM
dt

¼ b61Qþ b62I � b63M

dR
dt

¼ b71Qþ b72Aþ b73I þ b74M � b75R (5)

where, b11 ¼ w1 ΠLð Þα þ w2ðΠRÞα; b12 ¼ w1 λRð Þα þ w2 λLð Þα;
b13 ¼ w1 β1R

� �
α

� þ dRð Þα� þ w2 β1L

� �
α þ dLð Þα� 	

; b21 ¼ w1 λLð Þαþ
w2 λRð Þα; b22 ¼ w1½ðr1

R
Þα þ ðβ2

R
Þα þ dRð Þα� þ w2 r1L

� �
αþ�

ðβ2
L
Þα þ dLð Þα�; b31 ¼ w1 β1L

� �
α þ w2 β1R

� �
α; b32 ¼ w1 β2L

� �
α

þw2 β2R

� �
α;

b33 ¼ w1 r2R
� �

αþ�
σ1R

� �
α þ kRð Þα þ dRð Þα� þ w2½ðr2

L
Þα þ σ1L

� �
αþ

kLð Þα þ dLð Þα�; b41 ¼ w1 γ1L

� �
αþ w2 γ1R

� �
α; b42 ¼ w1 γ1R

� �
αþ�

dRð Þα � þ w2½ γ1L
� �

α þ dLð Þα�; b51 ¼ w1 r1L
� �

α þ w2 r1
R


 �
α
; b52 ¼

w1 r2L
� �

α þ w2 r2R
� �

α; b53 ¼ w1 γ2R

� �
α þ σ3R

� �
α þ dRð Þα� 	þ

w2 γ2
L


 �
αþ

h
σ3L

� �
α þ dLð Þα�,

b61 ¼ w1 kLð Þα þ w2 kRð Þα; b62 ¼ w1 γ2L

� �
α þ w2 γ2R

� �
α; b63 ¼

w1 δRð Þαþ½ ðσ4
R
Þα þ dRð Þα� þ w2 δLð Þα þ σ4L

� �
α þ dLð Þα� 	

; b71 ¼
w1 σ1L

� �
α þ w2 σ1R

� �
α; b72 ¼ w1 σ2L

� �
α þ w2ðσ2

R
Þα; b73 ¼

w1ðσ3
L
Þα þ w2 σ3R

� �
α; b74 ¼ w1 σ4L

� �
α þ w2 σ4R

� �
α; b75 ¼

w1 dRð Þαþ w2 dLð Þα:

4. Theoretical Study of the Model

In this section, we have discussed the nature of the system.

4.1. Boundedness of the system

Theorem 1: The system (5) is entirely bounded if the condition
ψ ¼ min b13 � b31ð Þ; b22 � b32 � b41 � b51ð Þ; b33 � b52�ðf
b61Þ; b53 � b62ð Þ; b42; b63g, and b21 > b12 are satisfied.

Proof: Let us consider auxiliary function

F ¼ Sþ E þ Qþ Aþ I þM:

Differentiating with respect to t both sides, we derive

dF
dt

¼ dS
dt

þ dE
dt

þ dQ
dt

þ dA
dt

þ dI
dt

þ dM
dt

dF
dt þ ψF ¼ b11 þ b21 � b12ð ÞSE þ b31 � b13 þ ψð ÞSþ b32 þ b41þð
b51 � b22 þ ψÞE þ b52 þ b61 � b33 þ ψð ÞQþ �b42 þ ψð ÞAþ b62ð
�b53 þ ψÞI þ ψ� b63ð ÞM¼ b11 þ b21 � b12ð ÞSEþ ψ� b13 þ b31f g
Sþ ψ� b22�ðf b32 � b41 � b51ÞgE þ ψ�f b33 � b52 � b61ð ÞgQþ
ψ� b42ð ÞAþ fψ� ðb53 � b62ÞI þ ψ� b63ð ÞM g:

Choosing ψ ¼ min b13 � b31ð Þ; b22 � b32 � b41 � b51ð Þ;f b33�ð
b52 � b61Þ; b53 � b62ð Þ; b42; b63g and b21 > b12,

We get dF
dt þ ψF � b11.

The solution of the equation is F � b11
ψ
þ c1e�ψt .

Therefore, F � b11
ψ
; as t! 1:
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Consequently, we can conclude S tð Þ � b11
ψ

; E tð Þ � b11
ψ
; Q tð Þ �

b11
ψ
; A tð Þ � b11

ψ
; I tð Þ � b11

ψ
; M tð Þ � b11

ψ
.

We put the value of Q tð Þ; A tð Þ; I tð Þ; M tð Þ in the system (5)

dR
dt

� b11
ψ

b71 þ b72 þ b73 þ b74ð Þ � b75R

dR
dt

þ b75R � b11
ψ

b71 þ b72 þ b73 þ b74ð Þ

The solution of the above inequality is given by

R tð Þ � b11
ψ

b71 þ b72 þ b73 þ b74ð Þ þ c2e�b75t :

When t tends to 1, the solution becomes R tð Þ � b11
ψ

b71ð þb72 þ
b73 þb74Þ:

Hence, we have concluded that the solution of the system (5)
becomes bounded under the conditions ψ ¼ min b13 � b31ð Þ;f
b22 � b32 � b41 � b51ð Þ; b33 � b52 � b61ð Þ; b53 � b62ð Þ; b42; b63g
and b21 > b12.

4.2. Equilibria

The following equation gives the equilibrium points.

b11 � b12SE � b13S ¼ 0

b21SE � b22E ¼ 0

b31Sþ b32E � b33Q ¼ 0

b41E � b42A ¼ 0

b51E þ b52Q� b53I ¼ 0

b61Qþ b62I � b63M ¼ 0

b71Qþ b72Aþ b73I þ b74M � b75R ¼ 0

(a) Infection-free steady state is denoted by

E10 S0; E0; Q0;A0; I0;M0;R0
�
¼ b11

b13
; 0; 0; 0; 0; 0; 0


 �
:



(b) The endemic equilibrium is E1� ¼ S�; E�;Q�;A�; I�;M�;R�Þð

where, S� ¼ b22
b21

; E� ¼ b11b21�b13b22
b12b22

Q�¼b31b22b12b22þb32b21 b11b21�b13b22ð Þ
b12b21b22b33

,

A� ¼ b41 b11b21�b13b22ð Þ
b42b12b22

, I� ¼ b51E�þb52Q�
b53

; M� ¼ b61Q�þb62I�
b63

;

R� ¼ b71Q�þb72A�þb73I�þb74M�
b75

.

4.3. Basic reproduction number R0ð Þ
With the help of the next generation matrix method (van den

Driessche & Watmough, 2002), we calculate the basic
reproduction number. From the system (5), we have

dy
dt

¼ ϕ vð Þ � χ vð Þ

where, v =

E
Q
A
I
M
R
S

0BBBBBBBB@

1CCCCCCCCA
; ϕ vð Þ ¼

b21SE
0
0
0
0
0
0

0BBBBBBBB@

1CCCCCCCCA

and χ vð Þ ¼

b22E
�b31S� b32E þ b33Q

�b41E þ b42A
�b51E � b52Qþ b53I
�b61Q� b62I þ b63M

�b71Q� b72A� b73I � b74M þ b75R
�b11 þ b12SE þ b13S

0BBBBBBBB@

1CCCCCCCCA
.

Now, we analyze the Jacobian matrix of ϕ and χ at E10

J ϕjE10

 �

¼ F 0
0 0

� �
where, F ¼

b11b21
b13

0

0 0

 !

J χjE10

 �

¼ V2 K1

K2 K3

� �
where, V2 ¼ b22 0

�b32 b33

� �
;

K1 ¼ 0 0 0 0 0
0 0 0 0 �b31

� �
;

K2 ¼

�b41 0 b42
�b51 �b52 0
0 �b61 0
0 �b71 �b72

b11b12
b13

0 0

0BBBB@
1CCCCA; K3 ¼

0 0 0 0
b53 0 0 0
�b62 b63 0 0
�b73 �b74 b75 0
0 0 0 b13

0BBBB@
1CCCCA

Now, we derive R0 ¼ FV2
�1 ¼ b11b21

b13b22
.

Therefore,
R0 ¼ ½w1 ΠLð Þαþw2 ΠRð Þα � w1 λLð Þαþw2 λRð Þα½ �

w1 β1Rð Þαþ dRð Þα½ �þw2 β1Lð Þαþ dLð Þα½ �f g w1 r1Rð Þαþ β2Rð Þαþ dRð Þα½ �þw2 r1Lð Þαþ β2ð Þαþ dRð Þα½ �f g .

4.4. Stability analysis

In this section, two feasible steady states of SEQAIMR model
are investigated. The equilibrium points in steady states are stable
or unstable the conditions represented in the following theorems.

Theorem 2: Under the condition R0 < 1 and R0 > 1, the infection-
free equilibrium E1

0of the system (5) is locally asymptotically stable
and unstable, respectively.

Proof: At the infection-free equilibrium point (E10), we get

JE10 ¼

�b13 � b12b11
b13

0 0 0 0 0

0 b21b11�b22b13
b13

0 0 0 0 0
b31 b32 �b33 0 0 0 0
0 b41 0 �b42 0 0 0
0 b51 b52 0 �b53 0 0
0 0 b61 0 b62 �b63 0
0 0 b71 b72 b73 b74 �b75

0BBBBBBBBB@

1CCCCCCCCCA
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The five negative eigenvalues of the matrix are �b33; �b42; �b53;
�b63; and �b75. The quadratic equation x2 þ g1x þ g2 ¼ 0 repre-

sents other eigenvalues, where g1 ¼ b13 þ b11b21�b13b22
b13

,

g2 ¼ b13b22 � b11b21 ¼ b13b22 1� R0ð Þ.
Here, all the involved model parameter values are

negative: �b33 < 0; �b42 < 0; �b53 < 0; �b63 < 0; �b75 < 0:
If, g1 > 0; g2 > 0, and g21 � 4g2 < 0; the roots of quadratic equation
are negative. Therefore, we have 1� R0ð Þ > 0 or R0 < 1. If R0 < 1;
the infection-free equilibrium E10 is locally asymptotically stable
and unstable if R0 > 1.

Theorem 3: Under the conditionR0 < 1, the infection-free equilib-
rium E10 of the system (5) is globally asymptotically stable.

Proof: We rewrite the system (5) as

dU
dt

¼ L1 U;Vð Þ

dV
dt

¼ L2 U ;Vð Þ; L2 U ; 0ð Þ ¼ 0

where U ¼ S;Rð Þ 2 R2; which represents the number of uninfected
populations, V ¼ E;Q;A; I;Mð Þ 2 R5, which represent the number
of infected populations.We represent infection-free equilibriumpoint

E10 ¼ b11
b13

; 0; 0; 0; 0; 0; 0

 �

of the system (5). The global stability of the

infection-free equilibrium is maintained by two conditions (i) and (ii).

(i) If dUdt ¼ L1 U; 0ð Þ, U0 becomes the globally asymptotically stable
(ii) If L2 U ;Vð Þ � 0 for U ; Vð Þ 2 Ω, then L2 U ;Vð Þ ¼ BV�

L2
� U ;Vð Þ.

where B ¼ DzL1 U0; 0ð Þ has non-negative off-diagonal elements.

With the help of Castillo-Chavez and Song (2004), we define the

system (5), L1 U; 0ð Þ ¼ b11 � b13S
0

� �

B ¼

b11 � b22 0 0 0 0
b32 �b33 0 0 0
b41 0 �b42 0 0
b51 b52 0 �b53 0
0 b61 0 b62 �b63

0BBBB@
1CCCCA

BV � L2�ðU ;VÞ ¼

b11 � b22 0 0 0 0
b32 �b33 0 0 0
b41 0 �b42 0 0
b51 b52 0 �b53 0
0 b61 0 b62 �b63

0BBBB@
1CCCCA

E
Q
A
I
M

0BBBB@
1CCCCA�

b12SE
b31S
0
0
0

0BBBB@
1CCCCA.

L2� U ; Vð Þ � 0 when the state variables are in the region Ω. B illus-
trates the Metzler matrix. Therefore, both the conditions (i) and (ii)
are satisfied. Hence, the proof is completed.

Theorem 4: If all of Ai A1; A2; A3; A4; A5; A6ð Þ and
Γ2;Γ3;Γ4;Γ5 are positive, then the system (5) becomes locally
asymptotically stable at E1

�.

Proof: At E1�, the equation becomes

� x þ b75ð Þðx6 þ A1x5 þ A2x4 þ A3x2 þ A4x þ A5Þ ¼ 0

where A1 ¼ b13 þ b22 þ b33 þ b42 þ b53 þ b63 � b21S� þ b12E� þ b12b21S�E�

A2 ¼ b22 � b21S
�ð Þ b13 þ b12E

�ð Þ þ b13 þ b12E
� þ b22 � b21S

�ð Þ
b33 þ b42 þ b53 þ b63ð Þ þ b33b42 þ b53b63 þ b33 þ b42ð Þ b53ð
þb63Þ þ b12b21S�E� b33 þ b42 þ b53 þ b63 þ b13 þ b21E�ð Þ

A3 ¼ b13 þ b12E� þ b22 � b21S�ð Þ b33þð½ b42Þ b53 þ b63ð Þ þ b33b42 þ
b53b63� þ b33 þ b42ð Þb53b63þ b33b42 b53 þ b63ð Þ þ b12b21S

�E� ½ b13þð
b21E

�Þ b33 þ b42 þ b53 þ b63ð Þ þ ðb33b42 þ b53b63 þ b33 þ b42ð Þ
b53 þ b63ð Þ

A4 ¼ b33b42b53b63 þ b13 þ b12E� þ b22 � b21S�ð Þ b33 þ b42ð Þf
b53b63 þ b33b42 b53 þ b63ð Þg þ b33b42b53b63 þ b12b21S�E� b13þðf
b21E

� Þ b33b42 b33 þ b42ð Þ b53 þ b63ð Þ þ b53b63ð Þ þ b33 þ b42ð Þþ½
b53b63þ b33b42 b53 þ b63ð Þ�g

A5 ¼ b13 þ b12E� þ b22 � b21S� þ 1ð Þb33b42b53b63 þ b13þð b12E�Þ
b22 � b21S�ð Þ b33 þ b42ð Þb53b63 þ b53 þ b63ð Þb33b42þ
b12b21S

�E� f b13 þ b12E
�ð Þ b33 þ b42ð Þb53b63 þ b33b42ð Þðb53 þ b63½ Þ�

A6 ¼ b33b42b53b63 b13 þ b12E
�ð Þ b22 � b21S

�ð Þf g þ b12b21S
�E�

b13 þ b12E�ð Þ:
We define the following terms:
Γ1 ¼ A1; Γ2 ¼ A1A2 � A3; Γ3 ¼ A1A2A3 � A1

2A4 � A3
2 þ A1A5

Γ4 ¼ A6A1
2A2 � A1

2A4
2 � A1A2

2A5 þ A1A2A3A4 � A6A1A3þ
2A1A4A5 þ A2A3A5 � A3

2A4 � A5
2

Γ5 ¼ �A1
3A6

2 þ 2A1
2A2A5A6 þ A1

2A3A4A6 � A1
2A4

2A5�
A1A2

2A5
2 � A1A2A3

2A6 þ A1A2A3A4A5

�3A1A3A5A6 þ 2A1A4A5
2 þ A2A3A5

2 þ A3
3A6 � A3

2A4A5 � A5
3:

Applying the Routh Hurwitz criteria, the system (5) becomes
locally asymptotically stable at E1� under the conditions
Ai i ¼ 1; 2; 3; 4; 5; 6ð Þ > 0 and Γi i ¼ 1; 2; 3; 4; 5; 6ð Þ > 0.

Theorem 5: Under the condition ψ2 ¼ b21u1� b22 þ b33 � b32 þ
min b21u1þ½ b13 þ b22� þmin b13 þ u1 b21 � b12ð Þ; b22½ � > 0, the
endemic equilibrium E1

� of the system (5)will be globally asymptoti-
cally stable.
Proof: From (5), we choose a subsystem

dS
dt

¼ b11 � b12SE � b13S

dE
dt

¼ b21SE � b22E

dQ
dt

¼ b31Sþ b32E � b33Q (6)

The system (6) is written as follows

M ¼
�b12E � b13 �b12S 0

b21E �b22 0
b31 b32 �b33

0@ 1A
With the help of Buonomo et al. (2008), we have the second additive
compound matrix as follows
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M 2½ � ¼
�b12E � b13 � b22 0 0

b32 �b12E � b13 � b33 �b12S
�b31 b21E �b22 � b33

0@ 1A
Let us assume the function

D S; E; Qð Þ ¼ diag
S
E
;
S
E
;
S
E

� 

Df ¼
@D
@x

¼ diag
S
:

E
� SE

:

E2 ;
S
:

E
� SE

:

E2 ;
S
:

E
� SE

:

E2

� �
:

It gives us DfD
�1 ¼ diag (S

:

E � E
:

E ;
S
:

S � E
:

E ;
S
:

S � E
:

E ) and
DJ 2½ �D ¼ J 2½ �.

Then, we get L ¼ Df D�1 þ DJ 2½ �D ¼ L11 L12
L21 L22

� �
where, L11 ¼ S

:

S � E
:

E � b12E þ b13 þ b22ð Þ, L12 ¼ 0; 0ð Þ; L21 ¼
b32 � b31ð ÞT

L22 ¼
S
:

S � E
:

E � b12E þ b13 þ b33ð Þ �b12S

b21E
S
:

S � E
:

E � b22 þ b33ð Þ

 !

We consider the norm in R3 as x; y; zð Þj j ¼ max xj j; y þ zj jf g
where x; y; zð Þ any vector in R3 and represented by R.
Therefore,

R Lð Þ � sup r1; r2g ¼ sup R L11ð Þ þ L12j j; R L22ð Þ þ L21j jf gf (7)

where, L12j j and L21j j represent matrix norms according to R norms.
Thus

h1 ¼ R L11ð Þ þ L12j j

where, R L11ð Þ ¼ S
:

S � E
:

E � b12Eþ b13 þ b22ð Þ and L12j j ¼ 0

We have r1 ¼ S
:

S � E
:

E � b12Eþ b13 þ b22ð Þ

and r2 ¼ &R L22ð Þ þ L21j j

¼ S
:

S
� E

:

E
� b33 þ b32 �min b13 þ E b21 � b12ð Þ; b22f g (8)

We have E
: ¼ b21SE � b22E

E
:

E
¼ b21S� b22:

Substituting the value of E
:

E in (8) and there exist t1 > 0 such that

u1 ¼ inf S tð Þ; E tð Þ; Q tð Þf g

We get r1 ¼ S
:

S � b21u1 þ b22 � b12u1 þ b13 þ b22ð Þ

r2 ¼
S
:

S
� b21u1 þ b22 � b33 þ b32 �min b13 þ u1 b21 � b12ð Þ; b22f g

R Lð Þ � sup r1; r2f g

� S
:

S
� b21u1 þ b22 � b33 þ b32 �min b12u1 þ b13 þ b22ð Þf g

�min b13 þ u1 b21 � b12ð Þ; b22f g

i:e: R Lð Þ � S
:

S
� ψ2 (9)

where,ψ2 ¼ b21u1 � b22þ b33 � b32 þmin b12u1 þ b13þðf b22Þgþ
min b13 þ u1 b21 � b12ð Þ; b22f g

Integrating both sides, we have

ð
t

0
R Lð Þds � log

S tð Þ
S 0ð Þ � ψ2t

1
t

ð
t

0
R Lð Þds � 1

t
log

S tð Þ
S 0ð Þ � ψ2

lim
t!1sup sup 1

t

Ð
t
0 R Lð Þds < �ψ2 < 0 if ψ2 > 0:

Hence, we can say that (S�; E�; Q�) will be globally asymptotically
stable ifψ2 > 0:Now the remaining part of the system (5) is as follows:

dA
dt

¼ b41E � b42A

dI
dt

¼ b51E þ b52Q� b53I

dM
dt

¼ b61Qþ b62I � b63M

dR
dt

¼ b71Qþ b72Aþ b73I þ b74M � b75R (10)

Its limit system becomes

dA
dt

¼ b41E� � b42A� (i)

dI
dt

¼ b51E� þ b52Q� � b53I� (ii)

dM
dt

¼ b61Q� þ b62I� � b63M� (iii)

dR
dt

¼ b71Q� þ b72A� þ b73I� þ b74M� � b75R� (iv)

From (i), the solution is

A tð Þ ¼ A 0ð Þ e�b42t þ b41
b42

E� � b41e�b42tE�

This implies A tð Þ ! b41
b42

E� ¼ A� as t ! 1:

The equation (ii) gives us I tð Þ ¼ I 0ð Þ e�b53tþ b51E�þb52Q�
b53

�
b51E� þ b52Q�ð Þe�b53t

It indicates I tð Þ ! b51E�þb52Q�
b53

¼ I� as t ! 1:

In similar way from (iii) and (iv) it follows, M tð Þ ! M� and
R tð Þ ! R� when t tends to 1.

Hence, the system (6) will be globally asymptotically stable at E1�.
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5. Optimal Control Analysis

We discuss that how proper control policy diminishes the
disease from the population. So, the precautionary measures such
as maintaining social distance and use of face mask in mass
gathering area are important factors to diminish the spread of
disease. We take the incurred cost that needs to minimize by
applying control intervention. Using the maximum principle from
Pontryagin et al. (1962), the objective functional can be
represented as

L1 ¼ minv1;v2

ð
T1

0
ðk1I þ k2v1

2 þ k3v2
2Þdt

with subject to the condition

dS
dt

¼ Π � 1� v1ð ÞλSE � β1S� dS� v2S

dE
dt

¼ 1� v1ð ÞλSE�r1E � β2E � dE

dQ
dt

¼ β1Sþ β2E � r2Q� σ1Q� dQ

dA
dt

¼ γ1E � σ2 þ dð ÞA

dI
dt

¼ r1E þ r2Q� σ3 þ γ2 þ dð ÞI

dM
dt

¼ kQþ γ2I � δþ σ4 þ dð ÞM

dR
dt

¼ v2Sþ σ1Qþ σ2Aþ σ3I þ σ4M � dR (11)

with S 0ð Þ > 0; E 0ð Þ > 0; Q 0ð Þ > 0; A 0ð Þ > 0; I 0ð Þ > 0;M 0ð Þ
> 0; R 0ð Þ > 0: Let, the constant k1 represents the per capita loss
due to the presence of infected population at any instants. The control
parameter v1 is considered as the precautionarymeasure (likemaintain-
ing social distance, use of face mask in mass gathering) and v2 as the
protective measure (like maintaining suitable hygiene, staying in
isolation) for the susceptible population. k2 and k3 are the weighted
functions of v1 and v2 respectively and k1, k2, k3 are positive constants
in time interval 0; T1½ �:The area of the control intervention v1 tð Þ; v2 tð Þ
is given as follows:

ψ ¼ v1 tð Þ; v2 tð Þð Þ : v1 tð Þ; v2 tð Þð Þ 2 0; 1½ � � 0; 1½ �; t 2 0;T1½ �f g:

where the control parameters v1 tð Þ; v2 tð Þ are measurable and
bounded function for t 2 0;T1½ �: When people take a full violation
of precautionarymeasures (like social distance), then v1 tð Þ takes low-
est value which is 0. When people take full maintaining the precau-
tionary measure then v1 tð Þ takes highest value which is 1. In other
situation, the control variable is in v1 tð Þ 2 0; 1ð Þ: v2 tð Þ represents
as control policy which is due to protective measure susceptible pop-
ulation directly moves to recovered population. From beginning it
satisfies 0 � v2 tð Þ � 1:

Theorem 6: In the region ψ ¼ v1 tð Þ; v2 tð Þð Þ : v1 tð Þ; v2 tð Þð Þ 2f
0; 1½ �� 0; 1½ �; t 2 0;T1½ �g the optimal control intervention (v�1 ; v�2)
which minimizes L1 is given by v�1 ¼ max 0;min v̄1; 1ð Þf g and

v�2 ¼ max 0;min v̄2; 1ð Þf g where v̄1 ¼ τ2�τ1ð ÞλSE
2k2

, v̄2 ¼ τ1�τ7ð ÞS
2k3

.

Proof: The Lagrangian of the problem is given by L2 ¼ k1Iþ
k2v12 þ k3v22. Let us define the Hamiltonian function as H̄ S; E;ð
Q;A; I;M; R; v1; v2; τÞ ¼ L2 I; v1; v2ð Þþ τ1

dS
dt þ τ2

dE
dt þ τ3

dQ
dt þ

τ4
dA
dt þ τ5

dI
dt þτ6

dM
dt þτ7

dR
dt . Here, τ ¼ τ1; τ2; τ3; τ4; τ5; τ6;ð τ7Þ

are all adjoint variables. According to the maximum principle from
Pontryagin et al. (1962), the cost functional may beminimized by the
minimized Hamiltonian. We can compute the Hamiltonian by solv-
ing the following equations

dτ1
dt

¼ � @H̄
@S

¼ τ1 1� v1ð ÞλE þ β1 þ d þ v2f g � τ2 1� v1ð ÞλE � τ3β1 � τ7v2

dτ2
dt

¼ � @H̄
@E

¼ τ1 1� v1ð ÞλS� τ2 1� v1ð ÞλS� r1 þ β2 þ dð Þf g � τ3β2 � τ4γ1 � τ5r1

dτ3
dt

¼ � @H̄
@Q

¼ τ3 r2þσ1 þ dð Þ � τ5r2 � τ6k� τ7σ1

dτ4
dt

¼ � @H̄
@A

¼ τ4 d þ σ2ð Þ � τ7σ2

dτ5
dt

¼ � @H̄
@I

¼ �k1 þ τ5 γ2 þ σ3 þ dð Þ � τ6γ2 � τ7σ3

dτ6
dt

¼ τ6 δþ σ4 þ dð Þ � τ7σ4

dτ7
dt

¼ τ7d (12)

The differential equation satisfies the transversality conditions
τi T1ð Þ ¼ 0; i ¼ 1; 2; 3; 4; 5; 6; 7. From the optimality condi-
tions, we derive

@H̄
@v1

¼ 0 and @H̄
@v2

¼ 0 at the point v1 ¼ v1 and v2 ¼ v2, respectively.

The variables v1 and v2 take the following values

v1 ¼ v1 ¼
ðτ2 � τ1ÞλSE

2k2
and v2 ¼ v2 ¼

ðτ1 � τ7ÞS
2k3

The lower bound and upper bound of two controls are 0 and 1
respectively. Therefore, we have v�1 ¼ 0 if v1 < 0 and v�1 ¼ 1 if
v1 > 1, otherwise v�1 ¼ v1. Similar results hold for other control
parameter v2: Hence, the optimal value of the functional L1 for the
pair of control (v�1 ; v�2) is drawn.

6. Numerical Results

In this section, we study the theoretical results and explain
through some graphical representation.

Result 1: Let us assume the values of the parameterseΠ ¼ 6; 8; 10ð Þ; eλ ¼ 2:8� 10�5; 3:8� 10�5;ð 4:8� 10�5Þ,

eβ1 ¼ 0:35; 0:45; 0:55ð Þ; eβ2 ¼ 0:1; 0:2; 0:3ð Þ; er1 ¼ 0:01; 0:02;ð
0:03Þ; er2 ¼ 0:5; 0:6; 0:7ð Þ, eσ1 ¼ 0:005; 0:006; 0:007ð Þ; eσ2 ¼ 0:034;ð
0:044; 0:054Þ; eγ1 ¼ 0:275; 0:276; 0:277ð Þ; eγ2 ¼ 0:44; 0:45; 0:46ð Þ,eσ3 ¼ 0:001; 0:0011; 0:0012ð Þ; eσ4 ¼ 0:85; 0:86; 0:87ð Þ, ek ¼ 0:95;ð
0:96; 0:97Þ, eδ ¼ 0:01; 0:02; 0:03ð Þ, ed ¼ 0:97; 0:98; 0:99ð Þ at
α ¼ 0:1, w1 ¼ 0:2; w2 ¼ 0:8.
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We choose above hypothetical data of all biological parameters.
Figure 2 has been drawn. We have infection free equilibrium point
E10 ¼ 6:627; 0; 0; 0; 0; 0; 0ð Þ. Therefore, the system (5) becomes
asymptotically stable at E10.

Result 2: Let eΠ ¼ ð2000000; 2000010; 2000020Þ; eγ ¼
ð:00000028; :00000038; :00000048Þ

eβ1 ¼ 0:35; 0:45; 0:55ð Þ; eβ2 ¼ 0:1; 0:2; 0:3ð Þ; er1 ¼ 0:01; 0:02; 0:03ð Þ;er2 ¼ 0:5; 0:6; 0:7ð Þ, eα3 ¼ 0:001; 0:0011; 0:0012ð Þ, eα4 ¼ 0:85;ð
0:86; 0:87Þ, ek ¼ 0:95; 0:96; 0:97ð Þ, eδ ¼ 0:01; 0:02; 0:03ð Þ, ed ¼
0:17; 0:18; 0:19ð Þ at α ¼ 0:1, w1 ¼ 0:2; w2 ¼ 0:8.

It is seen that Δ1 ¼ A1 > 0; Δ2 ¼ A1A2 � A3 > 0; Δ3 ¼ A1A2

A3 � A1
2A4 � A3

2 þ A1A5 > 0 Δ4 ¼ A6A1
2A2 � A1

2A4
2 � A1A2

2

A5 þ A1A2A3A4 � A6A1A3 þ 2A1A4A5 þ A2A3A5 � A3
2A4 �

A5
2 > 0:

Δ5 ¼ �A1
3A6

2 þ 2A1
2A2A5A6 þ A1

2A3A4A6 � A1
2A4

2A5�
A1A2

2A5
2 � A1A2A3

2A6 þ A1A2A3A4A5 � 3A1A3A5A6 þ 2A1A4

A5
2 þ A2 A3A5

2 þ A3
3A6 � A3

2A4A5 � A5
3 > 0:

So, the system (5) is locally asymptotically stable around
E1� 106795:58; 5878412:65; 894184:78;ð
6143674:35; 1094051:45; 1242804:36; 36477129:37Þ.

Figure 3 represents the population trajectories for the endemic
equilibrium points. We consider the above data set for Figure 4
with the help of fixed α ¼ 0:1. From these figures, it is seen that
the weight w1 increases and w2 decreases and then the level of
equilibrium of susceptible population increases gradually and
recovered population gradually increases (from Figure 4(a),
(b)). The rest of the figure indicates this population decreases
gradually in the environment. This figure represents that exposed
population and asymptomatic population in our environment
increase gradually and other population decreases.

We use the above same set of parametric values for Figure 5.
With the help of different values of α and fixed values for for
w1 ¼ 0:3; w2 ¼ 0:7: Figure 5 has been drawn. In the figure, deep

blue line indicates susceptible population, green line indicates
exposed population, red line indicates quarantine population, sky
blue line indicates asymptomatic population, purple line indicates
isolation population, yellow line indicates symptomatic population,
and black line indicates recovered population. From these figures, it
is concluded that all the population decreases gradually as the value
of α increases. It is concluded that all the population of the environ-
ment depends on the imprecise biological parameters.

We have taken the fixed α = 0.1, w1 ¼ 0:5; w2 ¼ 0:5 for same
set of parametric values to draw Figure 6. We plot the phase portrait
between different populations. From this figure, it is concluded that
all the population is dominated by the imprecise nature of
parameter.

We represent the profiles of population for the control variables
v1 ¼ 0:3; v2 ¼ 0:0; v1 ¼ 0:0; v2 ¼ 0:3; v1 ¼ 0:0; v2 ¼ 0:0 (without
control); v1 ¼ 0:3; v2 ¼ 0:3 (with control) in Figure 7. For without
control variables the susceptible individual is immensely increased
in 10–20 days and then suddenly decreased. In these figures, we
observe that the susceptible population is highly increased for
20–30 days and then decreased and a fixed line after 40 days for
v1 ¼ 0:3; v2 ¼ 0:0:The susceptible population is maximum between
5 and 15 days for v1 ¼ 0:0; v2 ¼ 0:3 and then gradually decreases.
For with control variables, the population is maximum in 5 days
and it is fixed line between 5 days to 55 days and then gradually
decreases. So the susceptible individual is greatly influenced by
the change of control variables. For without control variables, the
exposed population is progressively increased and it is a fixed line
after 30 days. From the figure, it is seen that the exposed population
is gradually increased and it is a fixed line after 40 days. We have a
significant change for v1 ¼ 0:3; v2 ¼ 0:0 and v1 ¼ 0:0; v2 ¼ 0:3: If
both control variables are applied, then the population is gradually
increased after 50 days. For without control variables, the quarantine
population is highly increased in 10–20 days and with control var-
iables it is less increase than without control variables. We have
shown that a significant change for exposed population and asymp-
tomatic population can be arisen for the change of control variables.
A meaningful change is observed between isolated and symptomatic
population for the variation of control variables. For the effect of
without control and with control, we have seen that the recovered
population is less enough between them. The recovered population
is a fixed line from 20 days to 55 days and then slightly decreased
using control variables v1 ¼ 0:3; v2 ¼ 0:3: A significant deflection
is shown for v1 ¼ 0:3; v2 ¼ 0:0 and v1 ¼ 0:0; v2 ¼ 0:3:

Figure 2
Population trajectories of infection-free equilibrium point

Figure 3
The population trajectories of endemic equilibrium point
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Figure 4
Population trajectories for different values of w1 and w2 and fixed value of α ¼ 0:1
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Figure 5
Population trajectories for different values of α
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Figure 6
Plotting of phase portrait for α= 0.1 and w1 ¼ 0:5; w2 ¼ 0:5 (a) susceptible versus exposed, (b) susceptible versus
symptomatic, (c) susceptible versus recovered, (d) quarantine versus isolated, (e) asymptomatic versus symptomatic,

(f) exposed versus recovered, (g) quarantine versus recovered, and (h) symptomatic versus recovered
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Figure 7
Population trajectories with both control and without control variables
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7. Conclusions

During this pandemic situation, prediction mathematical model is
the most important tool for sketching the technique to control
coronavirus disease. In this article, we have analyzed a newly
developed epidemic SEQAIMR model. In the fuzzy model, all the
biological parameters considered as imprecise parameters due to
natural disaster (like earthquake, flood, wildfires, etc.) and human
activity (like financial crisis) change continuously the value of the
parameters. Assuming the total population is divided into seven
subpopulations such as susceptible, exposed, quarantine,
asymptomatic, symptomatic, isolation, recovered. We have explained
the stability analysis of the fuzzy coronavirus disease model. We
have determined the basic reproduction number (R0Þ (Diekmann
et al., 1990). We have described that the infection-free equilibrium of
the system will be locally asymptotically stable and globally asymptoti-
cally stable for R0 < 1: The global asymptotically stability around the
endemic equilibriumpoint has been analyzed in ourwork.All biological
parameters are treated as imprecise nature. We have performed the
infection-free equilibrium and endemic equilibrium point by graphical
representation in our numerical simulation part. The figures are drawn
for fixed value α. The significant change of the population trajectories is
shown for weighted w1;w2. From this figure, we have concluded that
imprecise biological parameters can affect the population. Lastly pop-
ulation trajectories with control and without control are adopted by
graphically representation. The disease load can be condensed by con-
trol interventions. Therefore, we hope that our model can be used to
develop the biological field. Onemay improve the epidemicmodel with
the use of stochastic, fuzzy and intuitionistic fuzzy uncertainty.
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