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A Model for Estimating the
Population Size of Disproportionate
Two Sample Capture Recapture
Methods
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Abstract: The size of a population bN in a dynamic setting can be estimated using closed population capture-recapture techniques. This entails
drawing a sample from a sampling frame denoted by n1:, mark and return into the population. Thereafter, another sample is drawn independ-
ently and denoted by n:1 items or individuals selected in both samples are recorded and denoted by n11. The sizes of samples drawn are not
necessarily at bay. Supplementary Immunization Activities (SIAs) are vaccination campaigns conducted at National and Subnational scale to
boost immunity against Vaccine Preventable Diseases (VPD) such as polio and Lot Quality Assurance Survey (LQAS) was introduced to
assess the coverage of the immunization activities with the view to get quick idea of what the coverage is so as to decide whether to accept or
reject the lot(s) on the basis of a predetermine number of acceptable defects (unvaccinated). Since the size of the first sample is inordinately
different to the second sample in LQAS, a disproportionate capture-recapture (C-R) model was developed to address the disparity, estimate
SIAs coverage and enhance precision of estimate classification.

Keywords: supplementary immunization activities, lot quality assurance survey, capture-recapture (C-R) models, disproportionality, global
polio eradication initiative

1. Introduction

Two sample capture-recapture (C-R) techniques are used to
evaluate and approximate the size of a population using
individuals or items selected from two samples of almost equal
magnitude. A special type of two sample C-R methods with
disproportionality between the sizes of the two samples is
obtained as exemplified in the biggest internationally organized
public health project, the Global Polio eradication Initiative
(GPEI) which is lunched in 1988 (Tebbens et al., 2010). The
improvement in the quality of life from the paralysis and deaths
that would be avoided and money that would have been used for
procurement of vaccines deployed to other areas of lives was the
anticipated relevance of the GPEI (Thompson et al., 2006).
Sangrujee et al. (2004) estimated the gains accruable from post-
polio certification and found out that the budgets on the vaccine
per dose and targeted number factors of the global costs of post
certification polio vaccination.

When National Immunization Plus Days are conducted,
primary supervision is vital for problem identification in planning
and reporting, observing particular areas of inadequate coverage,
and forecasting the tendency of the spread of disease. The use of
supervisory tools before, during and after National Immunization

Plus Days (NIPD) is hampered because entrenching and adopting
reliable techniques to generate data can be improved in the
buildup and implementation of humongous national activities in
addition to unreliable regular monitoring data which show
appreciable level of coverage in almost all areas, including those
with current cases of virus circulation. To mitigate this problem,
LQAS was adopted because data collected is quickly and easily
interpreted (Brown et al., 2014).

LQAS which was initially developed for industrial quality
control, has been applied to health surveys. It is a quick
sampling technique deployed to evaluate the viability of
immunization coverage sequel to SIAs in a settlement that has
been determined ahead of time using small sample size. It is
particularly used in areas with risk or polio dominated area to
execute corrective action such as mop-up in areas identified to
be weak in coverage (Manual, 2012; Jutand & Salamon, 2000;
Olives, 2011). With a small investment, this method enables
programme directors to identify rapidly the health facilities with
below standard services and therefore requiring special attention
(Valadez, 1991).

As a statistically dependable tool for supervising polio
immunization, LQAS has proven its relevance in determining
campaign quality. Information supplied by LQAS in determining
the quality of SIAs coverage has helped to distinguish the areas
that seriously in need of intervention. More so, the capacity of

*Corresponding author: B. Z. Reuben, Modibbo Adama University, Nigeria.
Email: zangaluka@gmail.com

Journal of Computational and Cognitive Engineering
2023, Vol. 2(3) 249–259

DOI: 10.47852/bonviewJCCE2202226

© The Author(s) 2022. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

249

https://orcid.org/0000-0002-2176-1103
https://orcid.org/0000-0003-3190-235X
mailto:zangaluka@gmail.com
https://doi.org/10.47852/bonviewJCCE2202226
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


GPEI to track the patterns of immunization quality overtime can be
hinged on LQAS, an improvement on SIAs pre-implementation of
LQAS (Brown et al., 2014).

Some of the limitations of CLQAS as enunciated in (Manual,
2012) are: (i) if the lot is too enormous and heterogenous in
coverage, LQAS may not give the coverage of the entirety of the
lot, thereby diffusing its reliability across the entire lot (e.g.
ward); (ii) LQAS doesn’t give us the point estimate of the
coverage but classification of SIA coverage; and (iii) there is a
tendency for misclassification due to the relatively small sample
size and clustering approach. In fact, statistical error can be very
high in lot where coverage varies greatly between clusters.

Capture-Recapture (C-R) techniques are used for assessing the
size of a population based on ratio of tagged to untagged individual
(Amstrup & Mcdonald, 2010). Mingoti and Caiaffa (2006), noted that
C-R can be used to estimate the size of unknown finite population size.
Pollock (1981), affirmed that the population under review can be
sampled more than a time. At every occasion, every untagged
individual caught is specially tagged; previously tagged individuals
have their capture history recorded and returned into the population.
Therefore, by the time the study is concluded, the researcher has the
comprehensive history of each individual handled.

In using LQAS, subsamples of the population (lots) are either
accepted or rejected based on the number of defects in a random
sample (N) of a given lot. Should the number of defects is higher
than decision value (d), the lot is rejected and remedial measures
recommended in the lot; should the number of defects is equal or
less than d, the lot is accepted (Pezzoli & Kim, 2013). Since the
variableness in the percentage of children immunized among
clusters within a lot has remarkable relevance on the remarkable
impact on the coverage estimates, the probability of error is
increased by high variability thereby weakening the strength of
the “pass/fail” determination (Okayasu et al., 2014). To this end,
overestimation of immunization coverage may leave populations
at risk, whilst underestimation can lead to unnecessary catch-up
campaigns (Alberti et al., 2008). Additionally, there were
instances where the Wild Polio Virus (WPV) were recorded in
lots where the LQAS coverage were estimated to have been high.
As a result of the high estimate, program activities were relapsed
and the virus was spreading. To this effect, reliance on LQAS
coverage alone might not in all cases give a true reflection of the
reality on ground, hence the need to incorporate estimated
population size. Intrinsic heterogeneity in C-R techniques is
reduced by stratification (Sutherland & Schwartz, 2005).
Stratification in LQAS would address the effect of intrinsic
heterogeneity in C-R techniques and the estimated population size
would address the frailty of LQAS due to small sample size.
Therefore, C-R techniques in alliance with CLQAS (where lots
are classified into clusters) would provide a more precise insight
of the coverage estimate, hence the need for this study.

This work is aimed at developing an effective model that could
be used to estimate SIAs coverage with a view to enhance the
precision of the estimate classification by developing a model for
disproportionate two sample capture recapture.

2. Literature Review

2.1. Immunization coverage surveys

Siddiqi et. al. (2021) studied how powerful, vaccine data are
generated via Electronic Immunization Registers (EIR) are used to
supervise vaccination workers and ensuring that remedial

measures are strategically targeted at communities identified as
chronically missed. They suggested the importance of generating
and using quality data for evidence-based decision making to
overcome the obstacles inherent in immunization system in order
to attain the Sustainable Development Goal (SDGs) of ensuring
healthy lives and well-being for all persons at all ages, especially
for newborn and children under the age of 5.

Abbott et al. (2021) showed howMeasurement and Improvement
(M&I) strategy has helped to mitigate the variableness across
Immunization Information System and strengthen immunization
data in Immunization Information System (IIS) which is more
comprehensive, reliable and can be used with certain degree of
certainty that is of particular relevance in actualizing Sustainable
Development Goal targeted at enhancing healthy lives and elevating
well-being for all age groups via robust immunization system.

Pincipal target of immunization programmes is to assuage the
frequency of occurrence of vaccine preventable of diseases (VPDs)
by reaching high levels of routine immunization coverage with
viable vaccines (Uwaibi & Omozuwa, 2020). As one of the
countries accounting for 62% of under and unvaccinated children
worldwide, Nigeria needs to strengthen its immunization system
(Olaniyan et al., 2021). Themajor attention of the health-related SDGs
number three is universal health coverage (UHC), encompassing
access to secured, robust, excellent, and affordable essential medicines
and vaccines. However, the problems to realizing UHC are enormous,
particularly with increases reliance on the health sector whose budget
is either stagnant or plummeting (Chopra et al., 2020).

2.2. Underlying assumptions

The assumptions required for incorporating the number of units
selected in both samples and the number of units selected in just one
sample to evaluate the number of units not selected in both samples,
therefore, providing estimate of the entire population magnitude,
N, can be itemized in a number of ways, but the substratum is
unpacked as following (International Working Group for Disease
Monitoring and Forecasting, 1995):

i. Closure: the population under study is closed that is, the
population is unaffected by change in birth, death or migration
during the study period.

ii. Perfect matching: subjects captured in one sampling unit can be
precisely paired to another sampling unit with no variation (no
unpair, no loss of tag, etc.).

iii. Homogeneity:withineach source, all subjects haveequal chanceof
being selected (that is the “catchability” is equal for all subjects).

iv. Independence: the two sources are independent, that is, the
likelihood of a subject being selected in one sampling unit is
independent of subject selected from other sampling units
whether the unit was captured in the other source.

2.3. Capture recapture techniques

To improve the Petersen estimates when heterogeneity is
deemed to affect the estimates, Sekar and Deming (1949)
employed stratification to evaluate the rate of birth and death
using two lists. Pollock (1976) explicitly highlighted a step by
step approach to building models and the importance of
assumptions in the building of such models. He used the trap
response models to accentuate the problem of non-identifiability
of the parameter N. He found that N could not be estimated unless
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the often-unrealistic assumption that the probability of capture of the
unmarked animal is constant for both samples.

Manning and Goldberg (2010) designed a method to build
spatial explicit capture-recapture selection histories from sites of
untagged species for evaluating population magnitude with
conventional C-R techniques. They applied the technique to data
from point coordinate capture-recapture sampling method for
more species with the probability of detecting error.

Focusing on themodel formulation rather than on the estimation
methods (which include inverse prediction, maximum likelihood and
Bayesian methods) in a non-technical way, omitting much of the
algebraic detail, Borchers (2012) reviewed capture recapture
models that do include an explicit spatial component. He observed
in an attempt to synthesize these models, that starting with
circular plot survey models and moving through conventional
distance sampling models, with and without measurement
errors, through mark-recapture distance sampling (MRDS) model;
concluded that spatial explicit capture-recapture (SCR) models
can be viewed as an endpoint of a series of spatial sampling
models.

Jibasen et al. (2012) presented a robust capture-recapture
model for estimating the size of elusive epidemiologic events.
They compared a proposed estimator bNc the Petersen estimator bNs

and another estimator bN0 using the Akaike Information Criterion
(AIC) and the Mean Absolute Deviation (MAD) through simulation

studies. The study shows that both AIC andMAD revealed that bNc is

a better and robust estimator. The research further discovered that bNs

under estimates the total elusive population N, bN0 over estimates N

while bNc was always consistent and performs better than the other

two and hence, recommended that the proposed estimator bNc be used
for estimating dual system elusive events.

Jibasen and Adams (2013) proposed an efficient two sample
capture-recapture model (Ma) with high recaptures and compared
it with the existing models such as the model of no factor effect
ðMo), behavioral response model (Mb) and the Petersen model
(Ms), using simulated data. They found that the proposed model pro-
vides a better estimator of the population size than the existing ones
when the recapture is high, that is, in situations where individuals
respond positively to capture, and also found that the Petersen model
provides a better estimate of the population size when the observa-
tions follow a hyper-geometric distribution.

Sekar and Deming (1949), Ahlo (1990), Chao et al. (2008); Chao
et al. (2001), and Royle and Converse (2014) use stratification to
address the biasness in Petersen estimator under population
heterogeneity. Manning and Goldberg (2010); and Borchers (2012)
reviewed C-R models that include explicit spatial components for
estimating population size. Chao et al. (2001), Chao et al. (2008);
Pollock (1976), and Clavel et al. (2008) presented an intuitive
interpretation for independence between capture sample and
recapture sample while “trap happy” and “trap shy” were buttressed
with explicit exposition on elusive event by Jibasen et al. (2012).

Apart from Okayasu et al. (2014) who conducted a pilot
evaluation in four LGAs in Nigeria with an expanded LQAS
sample size 16 clusters instead of the standard 6 clusters of 10
subjects each and found out that improvement in precision was
deemed insufficient to warrant the effort, most literatures reviewed
on LQAS were more emphatic on its application rather than its
formation. They also noted that since variability in the proportion
of children vaccinated among clusters within a lot has a
remarkable impact on the coverage estimates, the probability of
error is increased by high variability thereby compromising the
robustness of the “pass/fail” determination. This may lead to

overestimation of vaccination coverage which may leave
populations at risk or underestimation which can lead to
unnecessary catch-up campaigns (Alberti et al., 2008).

This work proposes C-R models that takes into consideration
the disproportionality between the first and the second sample
sizes in two sample capture recaptures.

3. Methodology

3.1. Model direction

This work focused on two-sample C-R model where the first
sample typically is the enumeration of the target population (i.e.
children under the age of 5 years that were immunized during SIAs)
while the second sample is a small fraction of the first. During SIAs,
vaccination teams move from house-to-house, immunizing children
under the age of 5 years and finger marking them as indication that
they have been immunized. Two days after the immunization
campaign, independent surveyors are deployed to take sample of 60
eligible children from selected lots (wards) and coverage based on
the principle of LQAS is reached by considering children that have
been finger marked vis-à-vis those not finger marked. This is a
topology of two-sample C-R technique. While the usual two-sample
C-R methods considered two independent samples of almost the
same size, this research is looking at a situation where the two
samples sizes are greatly disproportionate.

3.2. The proposed model (Mp)

Disproportionate two sample Capture Recapture, was derived
from the general (unrestricted) two sample capture recapture
model. The general two-sample C-R model is given as:

P n:1; n1:; n11ð Þ ¼ N
n1:

� �
n:1
n11

� �
N � n1:
n:1 � n11

� �
Pn1:
1: ð1� P1:ÞN�n1: �

Cn11ð1� CÞn1:�n11Pn:1�n11
:1 ð1� P:1ÞN�n1:�n:1þn11 (1)

Where,
n1: ¼ number of captures in the first sample
n:1 ¼ number of captures in the second sample
n11 ¼ number of captures in both sample
P1: ¼ Captures probability in the first sample
P:1 ¼ Captures probability in the second sample
C ¼ Capture probability in both samples

Also note that robustness when conditions are altered by relapsing
and constraining at least a parameter results in the following: when,

i. P1: ¼ C, while P:1 is unaffected, Petersen Model Ms ensue.
ii. P:1 ¼ C, while P1: is unaffected, Effective Model for High

Recaptures Ma ensue.
iii. P:1 ¼ P1:, while C is unaffected, Behavioral Model Mb ensue.
iv. P:1 ¼ P1: ¼ C, No Effect Model (Restricted Model) Mo ensue.

In SIAs, the number of children immunized and the number of
children sampled during LQAS represent the first and second
sample respectively.

Since the number of children sampled during LQAS is a small
proportion of number of children immunized during House to House
campaign, it is important that a suitable CR model be developed to
address the issue of gross disproportionality between the first
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and the second sample as shown in Figure 1. f n:1ð Þ as depicted in
equation (5) is introduced as a replacement to the second sample dis-
tribution into the general model to curb the parity between the two
samples.

3.3. Assumptions of the proposed C-R models

Assumptions for the proposed dipropionate capture recapture
model are as follows:
i. Let n1: and n:1 be the observed sample sizes of the first and second

samples respectively as depicted in Figure 2.

ii. Let E1: and E:1 be the expected sample sizes of the first and second
samples respectively.

iii. The expected sample sizes of both samples are approximately the
equal (E1: ¼ E1:) as shown in Figure 3.

The expected and observed sample sizes of the first sample
are approximately the same (E1: ¼ n1:) as demonstrated in
Figure 4.

iv. The subset and superset of the second sample have the same
interception with the first sample.

v. Let:
Combination of the observed subset

Cmsub1 ¼ n1:
n:1

� �
(2)

Combination of the unobserved subset

Cmsub2 ¼ N � 2n1:
n1: � n:1 � n11

� �
(3)

Combination of the expected superset

Cmsup ¼ N � n1:
n1: � n11

� �
(4)

Let Psup ¼ N � n1:
n:1 � n11

� �
Pn:1�n11
:1 ð1� P:1ÞN�n1:�n:1þn11 be the

probability of the expected superset of the second sample from
whence the undercount could be adjusted. By merging equations
(2), (3) and (4), we get a hypergeometric probability, denoted by
f n:1ð Þ, thus:

f n:1ð Þ ¼
n1:
n:1

� �
N � 2n1:

n1: � n:1 � n11

� �
N � n1:
n1: � n11

� � (5)

Therefore, equation (1) becomes:

P n:1; n1:; n11ð Þ ¼

N

n1:

� �
Pn1:
1: ð1� P1:ÞN�n1:

n:1
n11

� �
Cn11ð1� CÞn1:�n11 �

n1:
n:1

� �
N � 2n1:

n1: � n:1 � n11

� �
N � n1:
n1: � n11

� �
(6)

Figure 1
Venn diagram showing disproportionate two

sample capture recapture

Figure 2
Venn diagram showing first sample and second

sample observed

Figure 3
Venn diagram showing expected sample sizes of the

first and second samples

Figure 4
Venn diagram showing equal observed and expected

sizes of the first sample
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As the binomial distributionof the second samplewhich iswritten thus:

N � n1:
n:1 � n11

� �
Pn:1�n11
:1 ð1� P:1ÞN�n1:�n:1þn11

becomes a hypergeometric distribution:

n1:
n:1

� �
N � 2n1:

n1: � n:1 � n11

� �
N � n1:
n1: � n11

� �
Using maximum likelihood estimation method, equation (6) yields
maximum likelihood estimator (MLE) as:

P̂1: ¼
n1:bN (7)

Ĉ ¼ n11
n1:

(8)

L Nð Þ
L N � 1ð Þ ¼ 1 ¼>

bNbN � n1:
�

bN � 2n1:bN � 3n1: þ n:1 þ n11
�
bN � 2n1: þ n11bN � n1:

� 1� P̂1:

� � ¼ 1

(9)

Substituting equation (8) in equation (9) gives us the appropriate
Maximum Likelihood estimator of N, thus:

bNp ¼
n1: n1: þ n:1 � n11ð Þ

n:1
(10)

Using Delta Method as expounded by Jibasen (2011), where the
variance Vf xð Þ of a function of x is estimated as:

Varf xð Þ ¼ @f
@x

� �
2

E
var xð Þ

Such that ð ÞE represent replacement of the expected value for x
in the differentiation of the bracketwhile var xð Þ represents the variance
of x.

Therefore, the variance of MP is given by:

var bNP

� �
¼ var

n1:ðn1: þ n:1 � n11Þ
n:1

� �

var bNP

� �
¼ var

n21: þ n1:n:1ð Þ
n:1

� n1:n11
n:1

� �

var bNP

� �
¼ var � n1:n11

n:1

� �

var bNP

� �
¼ � n1:

n:1

� �
2
var n11ð Þ

var bNP

� �
¼ n21:

n2:1
var

@f ðn11Þ
@n11

� �
2

E
var n11ð Þ

var bNP

� �
¼ n21:

n2:1
bNPp1;q1:
� �

var bNP

� �
¼ n21:

n2:1
bNP

n1:bNP

� � bNP � n1:bNP

 !

var bNP

� �
¼ n31:

n2:1

bNP � n1:bNP

 !
(11)

3.4. Model selection criteria

Comparing the proposed model with existing models, Mean
Absolute Deviation (MAD) and Akaike Information Criteria
(AIC) were used.

Mean Absolute Deviation (MAD) in case of simulation and is
given as:

MAD ¼
N � bN��� ���

n
(12)

Unrealistically simple assumptions are made which lead to high bias,
poor prediction, and missed opportunities for insight when choosing
a model with too few parameters. Such models lack the flexibility to
explain the sample or the population well. A model with too many
parameters can fit the observed data very well, but be too closely
tailored to it. Such models may generalize poorly. Penalized-
likelihood information criteria, such as Akaike’s Information
Criterion (AIC) and the Bayesian Information Criterion (BIC), are
widely used for model selection (Dziak et al., 2020).

The AIC is computed as follows:

AIC ¼ �2logL θ^ð Þ þ 2k (13)

where
θ = the set (vector) of model parameters
L θ^Þð = the likelihood of the candidate model given the data when
evaluated at the maximum likelihood estimate of θ
k = the number of estimated parameters in the candidate model

There is no problem of subjectively specifying an arbitrary
significance level to test the models, and comparisons are not
restricted to two models which are nested or hierarchically
ordered. It is easy to calculate AIC once the maximum likelihood
estimators of the parameters of a model are determined. A model
with a minimum value of AIC is chosen to be the best fitting
model among several competing models (Takane &
Bozdogan, 1987).

The BIC is computed as follows:

BIC ¼ �2logL θ^ð Þ þ klogðnÞ (14)

where
θ = the set (vector) of model parameters
L θ^Þð = the likelihood of the candidate model given the data when

evaluated at the maximum likelihood estimate of θ
k = the number of estimated parameters in the candidate model
n ¼ the sample sizes

When n should be used in the context of mark-recapture is
ambiguous. While some are advocating that n is the total number
of recorded individuals in the population, others are of the opinion
that it should instead be the number of releases, excluding those
released from the last sample. AIC is preferable to avoid such
inconsistency (Burnham et al., 2011).
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Since we are dealing with disproportionality between the first
and the second samples whose sizes differ greatly, attempt to
consistently estimate the dimension model which requires that the
sample size is very large, in model selection we focused more on
the distance rather than on dimension of the true model. To this
end, the suggestion by Anderson and Burnham (1999) which
recommends the use of criteria that are based on Kullback-Leibler
information in biological sciences was adopted. AIC is better
in situations when a false negative finding would be considered
more misleading than a false positive, and BIC is better where
false positive is as misleading as, or more misleading than a false
negative (Acquah, 2010). In capture recapture model selection,
AIC performs slightly better than the BIC methods, which tend to
select simpler models (Hook, & Regal, 2000). The usually
preferred model selection method in capture recapture studies is
the AIC (Zwane et al., 2004).

The Akaike Information Criteria (AIC) used in this work was
proposed by Sanni and Jolayemi as cited in Jibasen and Adams
(2013) as:

AIC ¼ �β
Xc0
i0

Xc1
i1

n i0; i1ð Þloge
n i0; :ð Þn :; i1ð ÞbN2 þ 2 c0 þ c1 � 2ð Þ

(15)

Where, c0 and c1 are the dimensions of the contingency table, β is

equal to 2 just like it is in the classical, or identified as Abs(N � bNÞ
in case of simulation, n is the number of observations, N is the

hypothesized (in case of simulation) and bN is the estimated popula-
tion size. Taking into account that population size estimate may be
very sensitive if certain cells are null or very sparse, using log-linear
capture-recapture methods Hooks and Regal (1997) suggested that
the use of AIC in model selection appears to be preferrable over
its BIC counterpart.

3.5. Simulation studies

The hypothesized population size N as well as the first sample
size n1: and the second sample size n:1 which represent house to
house immunization during immunization plus days and LQAS cov-
erages respectively were used to simulate the size of capture in both

samples using the hypergeometric setting (Jibasen et al., 2012), thus:

P n11ð Þ ¼

n1:
n11

� �
n:1
n01

� �
N
n:1

� � ; n11 ¼ max 0; n:1 � n1;
� �

to min n:1; n1;
� �

0; otherwise

8>>>><>>>>:
(16)

Simulation scheme was repeated ten times (it could be more) for
every hypothesized first, second and population sizes and
population sizes for No; Ns; Nb; Na (see Jibasen & Adams, 2013)
and Np were estimated.

bN0 ¼
n2

4n11
(17)

Where, n ¼ n1: þ n:1

bNs ¼
n1:n:1
n11

(18)

bNb ¼
n21:

n1: � n:1 � n11ð Þ (19)

bNa ¼
n11ðn:1 � n11Þ þ n1: þ n11ð Þn1:

2n11
(20)

4. Results and Discussion

Tables 1–10 show comparison between the proposed
disproportional C-R model and some existing C-R models using
simulated data, AIC and MAD. Results of simulated data for
different hypothesized values of N; n1: and n:1 are presented in this
session, the simulated data were used to compute estimated popula-
tion size, AIC values and MAD using the five models, these are
Mo; Ms; Mb; Ma; and Mp which are No factor effect model,
Petersen model, Behavioral model, High recapture model and the
proposed model. Each iteration is a complete set of simulation as
depicted in Tables 1–10.

Table 1
Ten simulated data sets: N=100, n1. =50 and n.1=30

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 20 32,000 75 63 37,000 100 85,711 11 11 101,288 4
2 18 28,800 83 66 32,544 103 68,314 9 10 78,653 5
3 20 32,000 75 63 37,000 100 85,711 11 11 101,288 4
4 19 30,400 79 64 34,761 102 76,752 10 11 89,562 5
5 21 33,600 71 61 39,260 98 95,197 11 11 113,839 5
6 18 28,800 83 66 32,544 103 68,314 9 10 78,653 5
7 19 30,400 79 64 34,761 102 76,752 10 11 89,562 5
8 17 27,200 88 68 30,354 105 60,396 7 10 68,552 6
9 21 33,600 71 61 39,260 98 95,197 11 11 113,839 5
10 20 32,000 75 63 37,000 100 85,711 11 11 101,288 4
MAD 30,780 22 36 35,348 2

Table 1 shows that the proposed model Mp is better than any other model in AIC, MAD and its estimation of the population size.
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Table 3
Ten simulated data sets: N=200, n1.=90 and n.1=60

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 41 230,625 132 114 257,665 164 1,521,317 37 35 1,723,244 28
2 46 258,750 117 107 296,332 156 1,942,546 40 36 2,261,856 34
3 36 202,500 150 123 219,672 171 1,153,806 30 32 1,264,607 22
4 46 258,750 117 107 296,332 156 1,942,546 40 36 2,261,856 34
5 40 225,000 135 116 250,000 165 1,443,540 36 35 1,625,131 27
6 34 191,250 159 127 204,748 174 1,021,681 26 31 1,103,351 19
7 44 247,500 123 109 280,808 159 1,767,565 39 36 2,036,810 32
8 36 202,500 150 123 219,672 171 1,153,806 30 32 1,264,607 22
9 44 247,500 123 109 280,808 159 1,767,565 39 36 2,036,810 32
10 46 258,750 117 107 296,332 156 1,942,546 40 36 2,261,856 34
MAD 232,113 68 86 260,037 37

Table 3 clearly shows that Mp performed better than all the model under consideration following closely by Ms model.

Table 2
Ten simulated data sets: N=100, n1.=60 and n.1=45

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 30 82,688 90 80 87,750 100 365,321 7 9 390,839 4
2 26 71,663 104 88 73,502 105 269,021 5 7 276,904 6
3 27 74,419 100 86 77,031 104 291,643 4 8 303,327 5
4 27 74,419 100 86 77,031 104 291,643 4 8 303,327 5
5 30 82,688 90 80 87,750 100 365,321 7 9 390,839 4
6 27 74,419 100 86 77,031 104 291,643 4 8 303,327 5
7 24 66,150 113 92 66,528 108 226,661 9 6 228,140 7
8 22 60,638 123 97 59,686 111 188,115 13 5 184,744 8
9 27 74,419 100 86 77,031 104 291,643 4 8 303,327 5
10 28 77,175 96 84 80,584 103 315,230 5 8 331,121 5
MAD 73,768 6 14 76,292 4

Table 2 clearly shows that whileMo andMa models performing poorly,Mp performed excellently well with the lowest AIC andMAD values.

And much better estimation of the population size.

Table 4
Ten simulated data sets: N=300, n1.=90 and n.1=35

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 29 113,281 109 96 157,818 247 498684 77 67 725,554 50
2 27 105,469 117 99 145,071 252 428129 76 65 614,267 43
3 30 117,188 105 95 164,250 244 536093 77 68 785,151 53
4 26 101,563 121 100 138,762 255 394973 75 63 562,537 40
5 31 121,094 102 94 170,717 242 574931 76 69 847,405 57
6 30 117,188 105 95 164,250 244 536093 77 68 785,151 53
7 28 109,375 113 98 151,424 249 462698 77 66 668,599 46
8 27 105,469 117 99 145,071 252 428129 76 65 614,267 43
9 20 78,125 158 108 102,000 270 225338 63 54 305,313 23
10 24 93,750 131 103 126,288 260 332872 73 61 466,789 34
MAD 105,950 182 201 146,265 49

Table 4 vividly portray Mp is the best model in both AIC and MAD values as well as estimates of the population.
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Table 5
Ten simulated data sets: N=300, n1.=150 and n.1=90

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 65 936,000 208 180 1,100,938 292 10,940,576 74 72 13,101,316 14
2 60 864,000 225 188 999,000 300 9,238,940 63 69 10,857,017 4
3 60 864,000 225 188 999,000 300 9,238,940 63 69 10,857,017 4
4 63 907,200 214 183 1,060,007 295 10,241,851 70 71 12,175,385 10
5 56 806,400 241 194 918,512 307 7,985,655 52 65 9,230,167 11
6 53 763,200 255 199 858,892 312 7,108,291 42 62 8,107,397 16
7 61 878,400 221 186 1,019,280 298 9,567,232 66 69 11,287,086 6
8 65 936,000 208 180 1,100,938 292 10,940,576 74 72 13,101,316 14
9 60 864,000 225 188 999,000 300 9,238,940 63 69 10,857,017 4
10 54 777,600 250 197 878,688 310 7,394,805 45 63 8,472,442 15
MAD 859,380 73 112 993,125 5

Table 5 depicts Mp to be the best among models under consideration.

Table 6
Ten simulated data sets: N=300, n1.=150 and n.1=120

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 76 1,385,100 237 212 1,415,272 243 19,453,915 59 65 19,924,124 56
2 82 1,494,450 220 201 1,554,556 235 22,833,390 69 70 23,852,432 64
3 88 1,603,800 205 191 1,694,704 228 26,496,764 75 72 28,163,305 71
4 85 1,549,125 212 196 1,624,563 231 24,629,471 72 71 25,960,373 68
5 81 1,476,225 222 203 1,531,265 236 22,250,481 68 69 23,171,024 62
6 79 1,439,775 228 206 1,484,766 239 21,108,286 64 68 21,840,191 60
7 70 1,275,750 257 225 1,277,500 250 16,356,341 43 58 16,381,234 48
8 74 1,348,650 243 216 1,369,148 245 18,390,171 54 63 18,700,303 53
9 91 1,658,475 198 186 1,764,900 224 28,435,498 76 72 30,460,281 75
10 87 1,585,575 207 192 1,671,314 229 25,866,406 74 71 27,418,493 70
MAD 1,481,393 77 97 1,538,499 64

Mp shows a much better estimate than any other model in Table 6.

Table 7
Ten simulated data sets: N=500, n1.=150 and n.1=50

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 40 400,000 188 161 578,000 480 2,696,754 197 171 4,068,376 31
2 35 350,000 214 167 494,813 495 2,031,665 185 156 2,993,276 10
3 43 430,000 174 157 628,897 471 3,143,421 199 179 4,804,559 46
4 37 370,000 203 164 527,824 489 2,285,859 191 162 3,400,839 18
5 37 370,000 203 164 527,824 489 2,285,859 191 162 3,400,839 18
6 41 410,000 183 160 594,890 477 2,841,655 198 174 4,306,081 36
7 35 350,000 214 167 494,813 495 2,031,665 185 156 2,993,276 10
8 35 350,000 214 167 494,813 495 2,031,665 185 156 2,993,276 10
9 38 380,000 197 163 544,464 486 2,418,866 193 165 3,615,805 22
10 43 430,000 174 157 628,897 471 3,143,421 199 179 4,804,559 46
MAD 383,500 304 337 551,023 15

In Table 7, Mp has the smallest MAD and AIC values as well as most reasonable estimate of the population size.
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Table 8
Ten simulated data sets: N=500, n1.=150 and n.1=100

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 77 1,203,125 195 177 1,379,109 260 17,024,961 222 187 19,806,099 282
2 79 1,234,375 190 174 1,422,356 257 17,971,039 218 185 21,027,366 288
3 75 1,171,875 200 180 1,335,938 263 16,105,613 224 188 18,623,831 275
4 79 1,234,375 190 174 1,422,356 257 17,971,039 218 185 21,027,366 288
5 78 1,218,750 192 176 1,400,724 258 17,494,654 220 186 20,411,869 285
6 69 1,078,125 217 189 1,207,121 272 13,507,287 227 190 15,312,340 255
7 78 1,218,750 192 176 1,400,724 258 17,494,654 220 186 20,411,869 285
8 72 1,125,000 208 184 1,271,376 267 14,776,567 227 190 16,923,877 265
9 76 1,187,500 197 179 1,357,512 261 16,561,949 223 188 19,210,079 279
10 77 1,203,125 195 177 1,379,109 260 17,024,961 222 187 19,806,099 282
MAD 1,187,000 302 321 1,357,132 239

Though having the best MAD value in Table 8, Mp is not the most efficient in terms of AIC values, Mb is.

Table 9
Ten simulated data sets: N=500, n1.=200 and n.1=100

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 73 1,642,500 274 231 2,064,842 454 22,438,886 222 197 28,900,119 82
2 73 1,642,500 274 231 2,064,842 454 22,438,886 222 197 28,900,119 82
3 71 1,597,500 282 234 1,997,195 458 21,163,022 217 194 27,092,801 74
4 74 1,665,000 270 230 2,098,788 452 23,091,473 224 198 29,828,401 87
5 76 1,710,000 263 227 2,166,912 448 24,426,016 227 200 31,734,357 95
6 76 1,710,000 263 227 2,166,912 448 24,426,016 227 200 31,734,357 95
7 70 1,575,000 286 235 1,963,500 460 20,539,720 215 192 26,213,697 70
8 70 1,575,000 286 235 1,963,500 460 20,539,720 215 192 26,213,697 70
9 61 1,372,500 328 248 1,664,660 478 15,366,526 181 177 19,030,554 37
10 74 1,665,000 270 230 2,098,788 452 23,091,473 224 198 29,828,401 87
MAD 1,615,000 220 267 2,024,494 44

Mp has the best AIC as well as the best MAD values in Table 9. The population size appears to be well estimated.

Table 10
Ten simulated data sets: N=1000, n1.=300 and n.1=100

Simulation Estimated population AIC

Iteration n11 bNo
bNs

bNb
bNa

bNp Mo Ms Mb Ma Mp

1 74 2,960,000 405 328 4,222,588 978 42,681,835 752 639 63,113,564 60
2 74 2,960,000 405 328 4,222,588 978 42,681,835 752 639 63,113,564 60
3 80 3,200,000 375 321 4,624,000 960 50,284,113 776 675 75,390,367 114
4 84 3,360,000 357 317 4,894,848 948 55,714,388 785 696 84,265,633 152
5 77 3,080,000 390 325 4,422,534 969 46,401,717 766 657 69,097,653 86
6 81 3,240,000 370 320 4,691,480 957 51,614,454 779 680 77,557,022 123
7 76 3,040,000 395 326 4,355,712 972 45,143,727 761 651 67,068,813 77
8 79 3,160,000 380 323 4,556,681 963 48,971,889 773 669 73,258,322 104
9 75 3,000,000 400 327 4,289,063 975 43,903,774 757 645 65,074,155 69
10 78 3,120,000 385 324 4,489,524 966 47,677,764 769 663 71,160,786 95
MAD 3,111,000 614 676 4,475,902 33

Table 10 shows the efficacy of Mp, both in AIC and MAD values as well as the estimates of the population size.
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4.1. Discussion of the simulation study

Mp model performed better than any other model under
consideration in terms of AIC and MAD values as well as closely
approximating the corresponding hypothetical population sizes in
Tables 1–10. The consistency of the MAD values and the
closeness of estimates to the hypothetical population sizes show
Mp to be more reliable in estimating disproportionate two-sample
capture-recapture population size. This reveals that the proposed
model is more efficient than any of the other four models as the
AIC values appear to be much smaller when the ratio of the first
sample and second sample is directly proportional to the ratio of
the hypothesized population to the first sample.

5. Conclusion

Heterogeneity of clusters within a lot and relatively small sample
sizes are the albatross associatedwith LQAS andmaking it susceptible
to Type I or/and Type II errors given the large size of the population
targeted for vaccination, hence the need to come up with a
complementary tool which would not incur additional cost but to
address the pitfalls in LQAS. CRC techniques addresses the issues
of heterogeneity and takes into account the relatively small sample
size by incorporating the SIAs coverage side by side with the
LQAS coverage thereby mitigating the error accruable from
heterogeneity and small sample size associated with LQAS.

There are number of CRC techniques used for estimating
population size of a close population. Some of these techniques
include: Petersen model, No Effect model, Behavioral mode, Efficient
model for high recapture to mention but a few. The application of any
of the mentioned models is encumber on satisfying the assumptions
associated with each of them. SIAs immunization records and LQAS
are a typology of C-R method with peculiarity to the
disproportionality between the first sample (SIAs house-to-house) and
the second sample (LQAS). Consequently, the need to develop a
model that addresses this disproportionality.

A disproportionate C-Rmodel was proposed and was compared
against some existing C-R models using simulated data, AIC and
MAD. The results showed that the AIC and MAD of the proposed
model were the smallest compared to No factor, Petersen,
Behavioral and Effective model for high recaptures when the ratio
of the estimated population size to the first sample size is
approximately equal to the ratio of the first sample to the second
sample sizes in forestalling the disparity between first sample and
second sample sizes in two-sample C-R associated to SIAs data.
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Disease Monitoring and Forecasting; LQAS: Lot Quality Assurance
Sampling; MAD: Mean Absolute Deviation; MLE: Maximum
Likelihood Estimator; NIPDs: National Immunization Plus Days; SDG:
Sustainable Development Goals; SIAs: Supplementary Immunization
Activities; UHC: Universal Health Coverage; VPD: Vaccine
Preventable Diseases; WPV: Wild Polio Virus.
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