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Abstract: Connected and autonomous vehicles (CAVs) are largely at the experimental stage. Their successful deployment and field
implementation require a careful consideration of their vulnerabilities to cyberattacks. The primary security vulnerability is in the
controller area network (CAN) protocol, which permits communication among electronic control units in CAVs. To address this
vulnerability and mitigate cyberattacks, machine learning (ML) algorithms can be developed for intrusion detection in CAV’s CAN
protocol. In this research, the data structure of certain experimental datasets on message injection attack from the Hacking and
Countermeasure Research Lab is examined. A random forest classifier-based ML model is developed owing to its efficiency in
predicting cyberattacks on CAVs consisting of over 3 million datasets. A number of procedures within the Python programming
environment are employed to clean the dataset before performing the prediction. The prediction for intrusion detection is performed with
a 70:30 split of the training: testing data with a random state of 11 and number of estimators as 200. The accuracy is found to be over
92% for all three scenarios in performing the prediction. The model can be deployed in real-time investigation of cyberattacks in CAVs
if real-time data were available. The data cleaning method developed in this study can be applied in other ML applications consisting of
large datasets, such as credit card fraud and drug discovery, to name a few.

Keywords: connected and autonomous vehicles, cyberattack, machine learning, random forest classifier, controller area network, data structure

1. Introduction

Connected and autonomous vehicles (CAVs) are largely at the
experimental stage. A recent article by Lee and Hess [1] performed a
survey of public perception toward CAVs. It was found that safety,
privacy, and data security are key concerns for the slow adoption
of CAVs.

CAVs use advanced communication technologies to establish
real-time connectivity with other vehicles, infrastructure, and the
environment. This connectivity makes it possible to share
information about traffic patterns, potential risks on the road, and
the best routes, improving overall traffic management
and efficiency. CAVs rely on advanced sensors, algorithms, and
artificial intelligence to function without any direct human input.
They have the potential to increase traffic flow, decrease accidents
brought on by human mistakes, and improve road safety by
removing the need for human drivers. However, the incorporation
of connection and automation in automobiles introduces new
security concerns. Particularly vulnerable to cyberattacks is the
controller area network (CAN) protocol, which facilitates
communication among electronic control units (ECUs) in

automobiles. CAN protocols could be used by malicious actors to
launch cyberattacks that jeopardize the security, privacy, and
functionality of the vehicle systems. These attacks can include
RPM spoofing, gear spoofing, fuzzy attacks, denial of service
(DoS) attacks, and others [2, 3]. Intrusion detection systems (IDS)
are essential in CAVs in order to handle these security issues.

An IDS is a security tool made to find and respond to harmful or
unauthorized activity on a system or network. Its main goal is to
quickly detect potential security breaches or intrusions so that
appropriate countermeasures can be taken to preserve the integrity
of the system and limit future harm [4]. It is impossible to
overestimate the importance of IDS in the context of CAVs.
Because they rely on several communication technologies and
intricate software systems as they grow more connected and
autonomous, automobiles are more susceptible to hackers. These
weaknesses can be used by burglars to gain entry without
authorization, undermine the vehicle’s performance, or even injure
occupants and other road users directly.

Due to numerous security flaws in the CAN protocol, it has
become a prime target for cyberattacks on CAVs. Malicious
actors can manipulate CAN messages, introduce malicious
commands, and interfere with communication networks, posing
significant risks. Integration of IDS in CAVs enhances cyber risk
identification and prevention by continuously scanning the
network and system activity, detecting anomalies, deviations, or
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known attack patterns. As CAVs rely on sophisticated software,
sensors, and communication networks, these components, lacking
strong authentication and encryption in the CAN protocol, serve
as potential entry points for cyberattacks, including DoS and
spoofing attacks. External interfaces, such as infotainment systems
and wireless modules, further expose vulnerabilities, leading to
remote attacks, malware insertion, and unauthorized access. The
consequences of cyberattacks on CAVs are severe, including
compromised safety, service suspension, financial losses, harm to
manufacturer’s reputations, and a decline in public confidence. To
mitigate these risks, it is crucial to address the CAN protocol’s
flaws, implement robust security measures, and deploy efficient
IDS to ensure the development of reliable and safe CAV systems.

The absence of efficient IDS tailored for CAVs exacerbates the
problem of cyberattacks. Traditional IDS techniques, including
signature-based and anomaly-based methods, face limitations in
dealing with the unique challenges presented by the CAN
protocol. Consequently, there is a critical need for an innovative
solution that not only comprehensively understands the intricacies
of the CAN protocol but also leverages cutting-edge technologies
to predict and thwart cyberattacks in real-time.

The motivation behind this research stems from the imperative
to ensure the secure deployment of CAVs, considering the pivotal
role they are expected to play in the future of transportation.
Public perception, as revealed by Lee and Hess [1], has identified
safety, privacy, and data security as major hurdles. This
underscores the urgency to address the cybersecurity challenges
confronting CAVs, particularly the vulnerabilities within the CAN
protocol. The unique challenges lie in the dynamic nature of CAV
environments, the lack of authentication and encryption in the
CAN protocol, and the potential consequences of cyberattacks on
passenger safety and overall system functionality.

This research makes a significant contribution by introducing a
novel machine learning (ML) model based on a random forest (RF)
classifier for intrusion detection in CAV’s CAN systems. A
significant amount of research has been done to evaluate the
application of ensemble-based ML models for civil engineering
applications [5]. In the current research, the primary objective is
to develop a sophisticated ML model capable of accurately
predicting cyberattacks, specifically targeting the vulnerabilities
within the CAN protocol. The contribution lies in the formulation
of a data cleansing methodology within the Python programming
environment and the subsequent application of the RF classifier to
datasets from the Hacking and Countermeasure Research
Lab (HCRL).

The significance of this research extends beyond the realm of
CAVs, with potential applications in other domains grappling with
cybersecurity challenges in large datasets. The developed ML
model not only enhances the security posture of CAVs but also
introduces a robust methodology for addressing security concerns
in diverse applications, such as credit card fraud detection and
drug discovery. The implications of this research are profound,
setting the stage for a more secure and trustworthy integration of
CAVs into the broader transportation landscape.

We develop several procedures within the Python programming
environment to clean the dataset before performing the prediction.
We create three test scenarios of training and testing split (60:40,
70:30, and 80:20) of the datasets to examine the accuracy of the
model. The procedures are described under Section 3.

In the subsequent sections of this paper, we delve into the
core components and methodologies employed in our research.
Section 2 provides literature review and an in-depth exploration of
the CAN protocol vulnerabilities within CAVs and the motivation

behind developing a specialized IDS. Section 3 elucidates the
methodology, detailing the development of our innovative RF
classifier, the careful examination of experimental datasets, and the
rigorous testing procedures conducted to validate its efficacy.
Meanwhile, section 3 offers a comparative analysis, highlighting
the advantages of our proposed work over existing solutions in the
field. Furthermore, Section 4 discusses the implications of our
findings and their significance in enhancing cybersecurity for
CAVs. Finally, Section 5 concludes the paper by summarizing key
contributions, discussing potential avenues for future research, and
emphasizing the broader impact of our work in the field of
autonomous vehicle security.

2. Literature Review

2.1. Overview of CAN protocol in vehicles

The CAN protocol used in vehicles is fundamental for
facilitating communication among ECUs. Reducing the
complexity and expense of wiring inside the car is one of the
primary reasons CAN was developed. Systems where only little
information needs to be communicated are most suited for it [6].
Despite having been developed with the automobile industry in
mind, it is now utilized in a variety of different industries and
control systems, including manufacturing, medical devices, lifts,
robots, building automation, and manufacturing [7]. However, the
widespread use of CAN in modern vehicles also introduces
security challenges that need to be addressed. In recent years,
several studies have highlighted the vulnerabilities and potential
security threats associated with the CAN protocol. The CAN
protocol’s lack of built-in security features is one of its main
security issues. The original architecture of CAN placed less
emphasis on implementing strong security measures and more on
offering a dependable and effective means of communication.
This absence of security features leaves the CAN network
susceptible to various cyberattacks.

Walker [8] highlighted the flaws in the CAN protocol and
showed how an attacker might take control of an automobile’s
ECUs and modify their behavior. By successfully executing
attacks during their tests, such as inserting arbitrary CAN
messages and changing the behavior of the car, the study
demonstrated the necessity for stronger security safeguards in the
CAN protocol. Another significant security difficulty is presented
by the CAN protocol’s absence of authentication and encryption.
It becomes challenging to confirm the legitimacy and integrity of
the messages transferred across the network in the absence of
adequate authentication procedures. Due to the lack of encryption,
CAN network data transmissions are vulnerable to eavesdropping
and unauthorized access [9, 10]. Due to the lack of authentication
in the CAN protocol, it is possible to masquerade an ECU or
replace a legitimate ECU with a malicious one using a hardware
device [11].

According to a recent analysis from Tencent’s Keen Security
Lab [12], hackers can leverage these loopholes to take complete
control of a Tesla vehicle’s infotainment system without the user’s
involvement. In one experiment, they got access via wireless Wi-
Fi/Cellular network, hacked a number of in-vehicle systems, such
as firmware on an IC or gateway, and inserted malicious
messages into the CAN bus to carry out a number of tasks,
including opening the car door, window, and trunk. Furthermore,
the CAN protocol’s security issues are made worse by the
dynamic nature of the vehicle environment [13]. Vehicles
frequently connect to and disconnect from the network, giving
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potential attackers an opportunity to enter the system without
authorization when the network is being reconfigured. The open
and uncontrolled nature of the CAN network increases the risk of
unauthorized devices or malicious ECUs gaining entry, leading to
potential security breaches.

The literature emphasizes the security difficulties in the CAN
protocol that automobiles encounter. The absence of built-in
security features, exposure to attacks, such as message injection
and spoofing, and the lack of authentication and encryption are
some of these difficulties. To improve the CAN protocol’s
security and reduce potential cyber threats in CAVs, it is
imperative to solve these issues.

2.2. IDS for vehicle networks

IDS are essential for reducing the risk of cyberattacks on vehicle
networks. In the context of CAVs, several methods and procedures
have been developed to identify intrusions and respond to them.

The signature-based detection method is widely used.
Signature-based IDS rely on predefined patterns or signatures of
known attacks [14]. These signatures were developed using the
traits and tactics of well-known attacks. The IDS creates an alert
to show a potential intrusion when a network event matches a
signature. However, one drawback of signature-based detection is
that it depends on a large and current signature database. It may
be difficult for the IDS to accurately detect new and emerging
attacks since they might not have well-known signatures.

An alternative approach is anomaly-based detection. Anomaly-
based detection is a different strategy. Network traffic and system
behavior are analyzed using anomaly-based IDS to provide a
baseline of typical operations [15]. Anomaly detection is helpful
for spotting new threats without established signatures. However,
if the IDS is not trained on a representative dataset or if genuine
network behavior dramatically deviates from the specified
baseline, it might also produce false positives (FPs). A typical
architecture of intrusion detection of CAN bus network is shown
in Figure 1.

ML approaches have become more popular in IDS for vehicle
networks in recent years. Large amounts of network data can be
analyzed by ML algorithms to spot patterns and detect known and
unidentified attacks [16]. Among the notable contributions in the
field, the work by Zheng et al. [17], Zheng et al. [18], and Zheng
et al. [19] highlights the significance of activation functions in
deep convolutional neural networks and the application of deep

learning in modulation classification. On labeled datasets,
supervised learning algorithms, such as RF, SVM, and ANN, can
be trained to identify the traits of different attacks and correctly
classify them. Without relying on predetermined attack
fingerprints, unsupervised learning algorithms can discover
anomalous patterns and behaviors, such as clustering and anomaly
detection.

Traditional IDS techniques do, however, have several
drawbacks. First, they frequently produce warnings for harmless
network events due to high FP rates, which causes unneeded
disruptions and extra research labor. Second, because they cannot
analyze the payload of encrypted messages, IDS may have trouble
processing encrypted or obfuscated network traffic. Third, because
IDS approaches demand substantial computational resources for
real-time monitoring and analysis, they may not scale well to
large-scale car networks with numerous ECUs and enormous data
volumes. Researchers have suggested cutting-edge solutions to get
beyond these constraints, like hybrid approaches that integrate
signature-based and anomaly-based detection techniques. Hybrid
IDS maximize the benefits of both strategies to increase precision
and decrease FPs. Furthermore, including ML algorithms into IDS
has yielded promising results due to their ability to adapt to new
attack patterns and minimize FPs through ongoing learning.

Existing approaches to intrusion detection for automotive
networks include ML-based, anomaly-based, and signature-based
techniques. These techniques have advantages, but they also have
drawbacks in terms of precision, FPs, scalability, and capacity to
handle encrypted traffic. Future studies should concentrate on
creating more sophisticated and reliable IDS methods that meet
these constraints and guarantee the safety of connected and
autonomous cars.

2.3. ML for intrusion detection

ML techniques have shown significant potential in intrusion
detection for vehicle CANs [20–24]. These methods use the
capabilities of statistical models and algorithms to analyze
network data and spot trends related to cyberattacks. To protect
automotive CAN systems, ML in intrusion detection offers several
benefits. For example, large amounts of complex data generated
by vehicle networks may be rapidly analyzed and processed by
ML algorithms, allowing for the discovery of trends and
behaviors linked to cyberattacks [25]. Based on labeled datasets,
supervised learning algorithms may correctly categorize network

Figure 1
Typical architecture of intrusion detection of CAN bus network
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instances as benign or harmful. Examples of such include RF,
support vector machine, and artificial neural network. Without
depending on established attack fingerprints, unsupervised
learning methods like clustering and anomaly detection can spot
departures from the norm. ML-based IDS can detect new or zero-
day attacks, adapt to changing attack patterns, and reduce FPs,
thereby increasing the security of CAVs and the accuracy of
CAN-based intrusion detection.

Cyberattacks on CAVs could result in the loss of personal
information, physical injury, or even death, among other
significant consequences. Threats to the CAN’s bus system might
be challenging to detect with conventional network intrusion
detection systems. In order to safeguard the CAN bus in
automobiles from infiltration, researchers have created intrusion
detection models using ML approaches [26]. To understand the
characteristics of attack behavior and categories threats in in-
vehicle networks, Lin et al. [24] suggested an intrusion detection
model based on the VGG16 deep learning classifier. Song et al.
[3] developed a deep convolutional neural network-based model
that recognized message injection threats by analyzing the
sequential patterns of in-vehicle network traffic. The model was
very effective and incorrectly classified very few messages as
normal. For example, 12 out of 11,366 DoS attacks were
classified normal, 36 out of 13,441 of fuzzy attacks were
classified as normal, and 27 out of 19,862 spoofing gear message
attacks were classified as normal.

Mansourian et al. [27] suggested a long short-term memory
(LSTM)-based IDS for the CAN bus that uses the temporal
correlations between messages to identify anomalies. It is
specifically a one-class classifier that has been trained with data
free from attacks to forecast the value of CAN messages in the
future. The result showed a prediction accuracy of 0.977, 0.894,
and 0.893 to detect attacked messages of type fuzzy, gear
spoofing, and RPM spoofing, respectively. In order to avoid
disastrous crashes and disruptive effects, real-time intrusion
detection with little processing resources is required. In order to
enable real-time intrusion detection in CAVs with the least
amount of processing resources, Kumar and Das [9] suggested an
intrusion detection approach based on logical analysis of data.
The result showed a FP rate of 0.078.

Bari et al. [20] investigated the effectiveness of aML-based IDS
using support vector machine, decision tree, and K-nearest neighbor
algorithms on real-world datasets. For the dataset provided, the
models showed accuracy ranging from 93% to 99%. A LSTM-
based IDS was proposed by Hossain et al. [22] to identify and
counteract CAN bus network attacks. An effective IDS model was
created by Basavaraj and Tayeb [21] utilizing a neural network to
identify anomalies in the vehicular system. For the purpose of
CAN security, Kalkan and Sahingoz [23] presented a ML-based
IDS. These studies show how ML may be used to build reliable
intrusion detection models for protecting the CAN bus system
in CAVs.

Many researchers have developed models for intrusion
detection in CAN with different datasets resulting into an
accuracy of up to 0.99. For the dataset we have used in this study,
the prediction accuracy is found to be over 0.92. The dataset we
employed to detect cyberattacks on certain experimental CAV
dataset was made publicly available by Seo et al. [2].

One of the underlying issues in ML-based approaches for
CAV’s security not sufficiently addressed in previous works is to
catch true cyber intrusions and minimize instances of FPs. While

applicable to the general class of unsupervised algorithms in the
labeling context, Fang and Zhu [28] developed a formulation for
an active learning paradigm with uncertain information. They
offered an algorithm that used an error-reduction sampling
estimation. The first author extended the active learning concept
called modular active learning (modAL) for minimizing risk and
uncertainty in transportation and construction scheduling [29].

This paper aims to provide a detailed exploration of our ML-
based IDS model, offering insights into its development, dataset
cleaning procedures, and evaluation metrics. The advantages of
our approach, along with its implications for real-time
investigation of cyberattacks in CAVs, are discussed. Our
approach involves a meticulous analysis of experimental datasets,
leading to the creation of a robust RF-based ML model. In
comparison to existing works, our study stands out for its
comprehensive examination of experimental datasets, totaling over
3 million instances, sourced from the HCRL. The adoption of the
RF classifier reflects its efficiency in handling large datasets and
predicting cyberattacks.

3. Research Methodology

We employ RF-based ML to analyze the cyberattacks on certain
experimental CAV datasets of the HCRL obtained from the public
dataset available through the Hacking and Countermeasure Research
Lab (HCRL) website made public by Seo et al. [2] to foster further
research. This dataset offers several advantages over other
benchmark datasets. Firstly, it is helpful for intrusion detection
research since it offers current behavioral traits and attack sequences
of CAN signals. Secondly, it contains a vast array of attributes
generated from the CAN IDs and DATA fields that accurately
represent the content of network packets. Thirdly, it has several
intricate features that help an ML model learn to distinguish between
legitimate and malicious signals more precisely. The DoS attacks,
fuzzy attacks, gear spoofing, and RPM spoofing are the four main
attack types represented in the HCRL dataset. These attack datasets
were created in a controlled setting by emulating ECUs and inserting
fabricated CAN messages [2].

3.1. ML methodologies

The choice of RF in the present study is justified by its
efficiency in handling large datasets and its ability to capture
complex relationships within the experimental data. RF is an
ensemble learning method that builds multiple decision trees
during training and outputs the mode of the classes (classification)
or the mean prediction (regression) of the individual trees. It is
known for its robustness, ability to handle high-dimensional data,
and resistance to overfitting. It also provides a feature importance
ranking, aiding in the identification of critical variables. But
caution should be exercised in employing an RF model since the
training time might increase with a higher number of trees,
affecting real-time applications.

3.2. Labeling procedure

The HCRL dataset includes four main attack types: DoS, fuzzy
attacks, gear spoofing, and RPM spoofing. These attacks were
carefully emulated in a controlled setting by injecting fabricated
CAN messages, simulating ECUs behavior. Each CAN message
in the dataset is labeled with a flag (T or R), where T represents
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injected special attack messages, and R represents normal messages.
This labeling process is crucial for training the classification
algorithm to distinguish between normal and malicious behavior
in the CAN system. Table 1 shows the shape of the raw data in
the four categories.

The data attributes for each CAN message, as summarized in
Table 2, include the timestamp (recorded time in encoded form in
seconds), CAN ID (identifier of the CAN message in hexadecimal
format), DLC (number of data bytes, ranging from 0 to 8), DATA
[0–7] (data value in bytes), and a flag indicating whether the
message is a normal message or an injected attack message. The
flag is either T or R; T represents injected special attack messages
while R represents normal messages.

3.3. Data preprocessing

Prior to model training, a data cleansing algorithm was
implemented in Python to handle missing or corrupted data and
ensure the dataset’s integrity. The algorithm removes rows with
missing values and non-numeric data, resulting in a clean training
dataset. Attributes such as timestamp, Can_Id, and DLC, which
do not contribute significantly to prediction, were dropped to
streamline the dataset.

Figure 2 shows the methodological framework.
The features in the clean dataset include timestamp, CAN ID,

DLC, and DATA [0–7]. While timestamp and CAN ID are crucial
for chronological and message identification purposes, DLC and
DATA [0–7] contain information about the data bytes. To
improve model performance, correlation matrices were analyzed
for each attack type dataset (DoS, fuzzy, gear, RPM). High

correlation was observed between data pairs 3 and 4, suggesting a
potential for feature engineering. However, due to the relatively
quick prediction results and to preserve all attributes for
comprehensive analysis, no features were dropped in this instance.

Tables 3, 4, 5, and 6 show the standard statistics of the clean
training dataset in the four categories.

Table 1
Shape of raw data

Data type Number of rows Number of columns

DoS 3,665,770 12
Fuzzy 3,838,859 12
Gear 4,443,141 12
RPM 4,621,701 12

Table 2
Sample dataset with class labels

Timestamp CAN ID DLC D0 D1 D2 D3 D4 D5 D6 D7 Flag

l.478198e+09 0440 8.0 ff 00 00 00 ff d6 08 00 R
l.478196e+09 043f 8.0 10 40 60 ff 7d 96 09 00 R
l.478193e+09 02a0 8.0 20 00 95 1c 97 02 bd 00 R
l.478193e+09 02a0 8.0 20 00 95 1c 97 02 bd 00 R
l.478196e+09 0329 8.0 86 ba 7f 14 11 20 00 14 R
l.478191e+09 0370 8.0 00 20 00 00 00 00 00 00 R
l.478196e+09 02c0 8.0 15 00 00 00 00 00 00 00 R
l.478191e+09 0260 8.0 19 22 22 30 ff 8f 6f 1c R
l.478193e+09 0370 8.0 00 20 00 00 00 00 00 00 R
l.478191e+09 0440 8.0 ff 00 00 00 ff bc 08 00 R
l.478193e+09 043f 8.0 01 45 60 ff 6b 00 00 00 T
l.478193e+09 02a0 8.0 40 00 95 1c 97 02 bd 00 R
l.478198e+09 0316 8.0 05 21 74 09 21 20 00 6f R
l.478198e+09 0430 8.0 00 00 00 00 00 00 00 00 R
l.478191e+09 0329 8.0 0c b3 7e 14 11 20 00 14 R

Figure 2
Methodological framework

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

311



Figures 3, 4, 5, and 6 show the correlation matrix for each of the
four datasets.

The higher correlation among data pairs is demonstrated by a
higher positive decimal fraction in Figures 3, 4, 5, and 6. In all
four figures, data pairs 3 and 4 exhibit the highest correlation
confirming that one of them can be dropped if computational
burden becomes an issue. But, because we obtained the prediction
results relatively quickly (in less than a minute), we decided to
keep all of the attributes to perform the predictive analytics.

3.4. Evaluation metrices

Several assessment criteria are used in the proposed framework
for intrusion detection in the CAV’s CAN system to evaluate the
effectiveness of the ML model. The model’s precision, recall, and
overall efficacy in identifying and categorizing cyberattacks are all
quantified by these evaluation metrices. The main evaluation
metrices used in this study are confusion matrix, precision, recall,
accuracy, and F1-score.

Table 3
Standard statistics of the clean dataset for DoS

Data_0 Data_1 Data_2 Data_3 Data_4 Data_5 Data_6 Data_7 Flag

Count 1177098 1177098 1177098 1177098 1177098 1177098 1177098 1177098 1177098
Unique 16 5 9 2 19 24 20 100 2
Top 00 00 00 00 00 00 00 00 R
Freq 907163 992397 1165921 1165921 1136146 1118503 1114199 1100048 589577

Table 4
Standard statistics of the clean dataset for fuzzy

Data_0 Data_1 Data_2 Data_3 Data_4 Data_5 Data_6 Data_7 Flag

Count 646368 646368 646368 646368 646368 646368 646368 646368 646368
Unique 93 97 92 92 96 95 93 99 2
Top 00 00 00 00 00 00 00 00 R
Freq 342920 434534 616494 616413 587791 583778 579206 547500 646115

Table 5
Standard statistics of the clean dataset for gear

Data_0 Data_1 Data_2 Data_3 Data_4 Data_5 Data_6 Data_7 Flag

Count 825542 825542 825542 825542 825542 825542 825542 825542 825542
Unique 49 34 44 5 30 30 63 82 1
Top 00 00 00 00 00 00 00 00 R
Freq 482600 587455 798833 798286 766156 735013 740571 715994 825542

Table 6
Standard statistics of the clean dataset for RPM

Data_0 Data_1 Data_2 Data_3 Data_4 Data_5 Data_6 Data_7 Flag

Count 943906 943906 943906 943906 943906 943906 943906 943906 943906
Unique 16 14 26 3 20 24 20 74 1
Top 00 00 00 00 00 00 00 00 R
Freq 498754 607656 833320 833320 791534 772728 861589 747960 943906

Figure 3
Correlation matrix for the DoS dataset
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3.4.1. Confusion matrix
The confusion matrix is a table that displays the counts of true

positive (TP), true negative (TN), FP, and false negative (FN)
predictions to summarize the performance of a classification
model. It gives a thorough overview of the model’s performance
across many classes and aids in identifying the numerous kinds of
errors the model makes.

3.4.2. Precision
Precision is the ratio of TP predictions to the total number of

positive predictions made by the model. When the cost of FPs is
significant, it is very helpful because it measures how well the
model can identify positive cases. It is expressed as:

Precision ¼ TP
TP þ FP

(1)

3.4.3. Recall
The ratio of TP predictions to all the actual positive cases in the

dataset is known as recall, often referred to as sensitivity or TP rate. It
assesses how well the model can detect every positive event, even
those that are overlooked (FN). It is expressed as:

Recall ¼ TP
TP þ FN

(2)

3.4.4. Accuracy
Accuracy is the ratio of correctly classified instances (both TPs

and TNs) to the total number of instances in the dataset. It gives a
broad indication of how well the model predicts both positive and
negative events. When the dataset is unbalanced or the cost of
misclassifying distinct groups fluctuates, accuracy may not be the
most reliable metric. It is expressed as:

Accuracy ¼ Correct Predictions
Total Predictions

¼ TP þ TN
TP þ TN þ FP þ FN

(3)

Figure 4
Correlation matrix for the fuzzy dataset

Figure 5
Correlation matrix for the gear dataset

Figure 6
Correlation matrix for the RPM dataset

Figure 7
Confusion matric for the DoS dataset
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3.4.5. F1-score
The harmonic mean of recall and precision is known as the F1-

score. It is appropriate for imbalanced datasets since it offers a
balanced metric that takes into account both precision and recall.
The F1-score provides an overall assessment of the model’s
performance in terms of both FPs and FNs by combining the data
from accuracy and recall into a single metric. It is expressed as:

F1 Score ¼ 2 X Precision X Recall
Precisionþ Recall

(4)

These evaluation metrices offer a thorough evaluation of the
accuracy, precision, recall, and trade-off between FPs and FNs of
the intrusion detection models. Researchers can assess the
efficiency of the suggested framework and its capacity to
recognize and counteract cyberattacks in the vehicle’s CAN
system by examining these metrices.

4. Experimental Results

The RF classifier was applied to predict the cyberattack for
using the four datasets with a 70:30 training and testing split of
the data. The random state is taken as 11 and the number of
estimators is taken as 200. The prediction accuracy for the four
datasets (DoS, fuzzy, gear, and RMP) is found to be 0.93, 0.99,
1.0, and 1.0, respectively. The confusion matrix for the DoS
dataset is shown in Figure 7.

5. Conclusion and Future Works

In this study,we aimed to develop an effectiveMLmodel based on
anRF classifier for the intrusion detection of cyberattacks in the CANof
CAVs. The research focused on addressing the vulnerabilities in the
CAN protocol, particularly its susceptibility to cyber threats, and
proposed a robust ML model for accurate intrusion detection. The
high prediction accuracy proves that the RF-based ML model
presented in this research is very effective in accurately detecting
intrusions in the vehicle CAN of CAVs. Additional complex
scenarios of cyberattacks can be studied in future works.

The implications of our research extend beyond the academic
realm, with practical applications in enhancing the security of
CAVs. The developed ML model offers a reliable means of
detecting and mitigating potential cyber threats, thereby
safeguarding the communication networks and ensuring the
privacy and safety of CAV users. Our work contributes to the
ongoing efforts to address the key concerns of safety, privacy, and
data security, as identified in public perceptions toward CAVs.

It is crucial to acknowledge the limitations of the proposed
method. The model’s effectiveness may be influenced by the
dynamic nature of cyber threats, and continuous adaptation is
necessary to combat evolving intrusion techniques. Additionally,
the model’s reliance on historical data assumes that future cyber
threats will exhibit patterns similar to those observed in the
training data.

While the current study marks a significant step in the direction
of securing CAVs against cyberattacks, future research should aim at
perfecting and expanding the proposed framework. This could
involve exploring advanced ML methods, incorporating additional
features or datasets, and adapting to emerging attack vectors and
tactics. The framework’s flexibility and ability to identify and
mitigate new risks and vulnerabilities are crucial for its sustained
effectiveness. In the practical implementation of the ML model for
real-time application, it is acknowledged that inaccuracies, such as

FPs or FNs, may arise. Addressing these challenges could involve
exploring an active learning paradigm, as suggested in previous
works, to minimize label mismatches when dealing with
unstructured datasets [29].
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