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Abstract: In this work, ambiguity and unclarity are coped with the effective tools of picture fuzzy sets (PFSs), especially where the conditions
demand simulation of various dimensions for evaluation, for example, decision making. PFS requires operators to measure the coordination of
two PFSs. As far as this article is concerned, we bring new operators to PFSs with an application, validating this as the generalization of the
concept of fuzzy sets and intuitionistic fuzzy sets. The hybrid structure of PFSs has been incorporated with other operators to develop picture
fuzzy Dombi Hamy mean operator, picture fuzzy weighted Dombi Hamy mean operator, picture fuzzy Dombi dual Hamy mean operator, and
picture fuzzy weighted Dombi dual Hamy mean operator. Further, the properties such as idempotency, monotonicity, boundedness, and
commutativity related to each proposed operator have been discussed. By using these operators, the multiple attribute group decision-
making methods are proposed. Moreover, we have explained the application by providing an example of a car supplier. The results are
concluded by selecting the best car on the basis of attributes such as quality, production, service efficiency, and risk factors using

operators defined on PFSs. A comparative study is also conducted to study the significance of the developed work.
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1. Introduction

In various parts of life, in order to cope with several issues like
machine learning, multi-attribute decision making (MADM), and
multiple attribute group decision making (MAGDM), it is necessary
to compare things. MAGDM is the important for the deciding
science whose objective is to get the best choice from a group of
similar choices. Originally, MAGDM needs to evaluate the alternate
options by many other categories, for example, single, span, and like
for the objective of the evaluation. But as may be, in various other
conditions it is commonly the effort of leading for MAGDM in a
new manner. To deal with the above-said problems, there are many
ways, but when the data are in fuzzy form, the operators are found
outstanding. The under consideration article for the most part is
related to the picture fuzzy (PF) operators as it is the generalized
production of the fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs).
Therefore, it is appropriate to mention the pioneers and recent studies
in terms of the development and applications of FS and IFS.

There is plenty of unclear, ambiguous, and unstable data in real
life. To handle such a situation, Zadeh [1] introduced FS, in which
each element of uncertainty is assigned with a membership grade
(MG) denoted as ¢. Just the MG is taken in the FSs and a one-minus
gradation is taken as a non-membership grade (NMG).
So, it is sure to find the NMG by taking into consideration the MG.
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Nonetheless, in practical life, one is not sure regarding
the NMG owing to the knowledge of MG. In such circumstances, it
is recommended that there should be a free NMG function. To cope
with the situation, Atanassov [2] developed the idea of IFS, in which
each element is assigned with MG as well as NMG denoted as f,
with the condition 0 < ¢ 4 f < 1. The IF and interval-valued parame-
terized soft set theory and its decision have been studied in Deli and
Cagman [3] as well as Deli and Karatag [4]. Some similarity measures
for IFSs are developed in Deli and Cagman [5]. IFS is widely used in
MADM [6-11].

An IF has not been able to deliver in some cases. For example, ifa
person is given ¢ = 0.7 and f = 0.5, in such condition, IFS will be
unable to manage the situation, that is, t+f=0.7+0.5
= 1.2¢[0, 1]. In such situation, IFS has not been kept in mind. In the
same way, some problems were faced in real-life matters where the
IFS has also deviated. Because of these limitations of the IFS, Yager
[12] as well as Yager and Abbasov [13] initiated the system of
Pythagorean FSs, containing both functions 7 and f ' with the condition
0 < 2 4 f% < 1, extending the space of IFSs. In IF theory, lots of
contributions have been done. Keeping that in mind nowadays,
MADM playsa vital role in decision theory. Intuitionistic fuzzy entropy
is developed in Burillo and Bustince [14]. For MAGDM, the intuition-
istic preference relations are developed by Xu [15]. Some induced cor-
related aggregating operators with intuitionistic fuzzy numbers (IFNs)
proposed in Wei and Zhao [16]. Some Einstein hybrid aggregation
operators are developed in Zhao and Wei [17]. The generalized
interactive geometric interaction operators are developed by Garg [18].
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With IFNs, the model of MAGDM that considers the additive

consistency and group consensus at a time is done in Chu et al. [19].

Dombi T-norm (DTN) and T-conorm (DTCN) operations are devel-

oped by Dombi [20]. Further, the Dombi operations in the context of

IFS are developed in Liu etal. [21], Chenand Ye [22],and Lietal. [23].

IFSs effectively improved FSs; however, in such a situation when
there are in excess of two free circumstances like in casting a ballot

(choice of inclusion, restraint, resistance, and exclusion), IFSs

neglected to depict the circumstance. Understanding this, Cuong

[24, 25] built up a new direction known as picture fuzzy set (PFS),

which described the MG, refusal grade (RG) denoted as 4, and

NMG of an element or object in interval [0, 1], with the condition

0<t+h+f <1. PFSs extend the model of FSs and IFSs. As

research hotspots of PFSs, operators are used to getting the best choice
from a group of similar choices. Some PF operators are discussed in Liu
etal.[21]aswell as Cuong and Pham [25]. MADM problems, based on
bipolar valued PF operators, are discussed by Riazetal. [26]. PF Dombi
aggregation operators are discussed in Jana et al. [27]. Many problems
related to MADM based on PF aggregation operators, Dombi Heronian
mean operators, PF Hamacher operators, complex PF Hamacher oper-
ators, and Bonferroni mean operators are discussed in Garg [28] and
Zhang et al. [29]. Due to a lot of research in PF environment, and by
investigating the drawbacks of IF environment we aim to develop
the novel operators in PF environment as it is the generalized structure
of'the fuzzy sets with three membership functions. The main advantage
of'the work we have done in this article is that it can be used to solve the
problems given in PF context and also we have examined that the result
obtained by applying the proposed work is exactly the same as many
other existing structures give. On the other hand, the existing structures
in IF environment are enabled to solve the problems that are in PF con-
text. To overcome the above limitations of existing operators, we have
introduced novel operators with some features in this article.
Keeping in view the limitations of IFS for example in a situation

when there are in excess of two free circumstances like in casting a
ballot (choice of inclusion, restraint, resistance, and exclusion), the
IFS fails to handle the situation. To handle the situation, we
have extended the domain of the HM operator, DHM operator,
and the DDHM operator in the context of PF information. So,
the operators, intuitionistic fuzzy DHM (IFDHM) operator,
intuitionistic fuzzy DDHM (IFDDHM) operator, and intuitionistic
fuzzy WDDHM (IFWDDHM), developed in Cuong [24] are
extended in the context of PF information. Following this, the
purpose of this article is to

1) Develop the hybrid structure of PFSs and HM operator, DHM
operator, DDHM operator.

2) Investigate the properties such as idempotency, monotonicity,
boundedness, and commutativity of the proposed operators.

3) Develop new models to solve the MAGDM problems related to
the proposed operators.

4) Develop a numerical example of a car supplier. In a nutshell, we
concluded our results by selecting the best car on the basis of
attributes such as quality, production, service efficiency, and risk
factor.

The proposed article is organized as follows. The basic work
that is necessary to study the proposed article is given in the next
section. In Section 3, PFHM operators based on DTN and DTCN
are proposed. Section 4 investigates the application of proposed
work on MAGDM problems in the PF context. Section 5 refers to
the numerical example of MAGDM, and a comparative study is
made by comparing the data given in Liu et al. [21]. In the last
section, we have concluded the article.

2. Preliminaries

The ideas studied in this section provided the basis for proposed
operators; X acts as universal set.

Definition 1: An [FS is of the form k= {(¢(x), f(x)) such
that x € X} where t and f'are functions from X to an element in unit
interval [0, 1] with arestriction 0 < f+f < landr =1— (t+f) is
the hesitant grade (HG) of x in &, where (¢,f) is considered as an
IFN [1].
Now, we will define the concept of IF Dombi mean operators
based on DTN and DTCN.

Definition 2: For IFNs k; = (t;.f,)(i = 1,2,...,n), the IFDHM

]
operator can be defined as: IFDHMW (k;) =& (&1

1
x

<...<ip < n<®j‘:1ki}> ), where x is a parameter and x = 1,2, ...

n, iy, i,...,1,, are x integer values taken from the set {1,2,...,n}
of n integers values, and C} = x,(n"—l)o, [23].

Theorem 1: For IFNs k;(i = 1,2,...,n), Definition 2 results an
IFN and has [23]:

1 1
IFDHM® (k) = <@15,-1<..,<ixgn (@j‘zlki)*)

! x 1t * / x hy *
Further, we use: T;, =27 ) Hi =2 i,
J .
! X J ! X
and F =% (l—f,] , for 6 representation Te, =

j=1
_ A A A
1—ty, H — S ho, F o=y 5
o; >0 j=1 1*h€j >0 j=1 I*fej ’

Definition 3: For [FNs k;(i = 1,2,...,n) having the weight vector

WV) w=(w;,wy,...,w,)T with restriction w; €[0,1] and
>¥ , w; = 1, the IFWDHM operator can be defined as [23]:
Di<iy <o<iy<n I*Z’:l w; % k; ¥
IFWDHM® (k;) = < o ’>( - ’> (1<x<n)
ki (x=n)

Theorem 2: For IFNs k;(i = 1,2,...,n) having the WV w = (w,
Wy, ..., w,) T withrestriction w; € [0,1] and > | w; = 1, Definition 3
results an IFN and has [23]:

B1<iy<-<ip<n (1 -2 Wi]) <®f:1ki,>;

>
Cnfl

IFWDHMW (k;) =

1 1

) 1 [ <x<n).
1+ (ﬁ;Zm.\/ <1Jin(1 -3 1“4,) #) 1+ (%‘;ny,m <:\3u<l - 1Wx,) r%))

=11-

or,

IFWDHM (k) = @ ki
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IFSs effectively improved FSs; however, in such a situation when
there are in excess of two free circumstances like in casting a
ballot (choice of inclusion, restraint, resistance, and exclusion),
IFSs neglected to depict the circumstance. Understanding this, the
new idea was proposed in Cuong [24] known as PFS, which
described the MG, RG, and NMG.

Definition 4: A PFS is of the form k= {(t(x),
i(x),f(x)) sh that x € X} where ¢, i, and f are functions from X to
an element in unit interval [0, 1] with a restriction 0 < t + i+ f <
land r=1—(t+i+f) is the HG of x in k, where (t,i,f) is
considered as picture fuzzy number (PFN) [27].

Definition 5: For two PFSs k; = {(x, t(x
and k; = {(x,1,(x),
defined as [25]:

); i1(%),f1(x))] x € X}

iy(x),f,(x))|x € X}, some basic operations are

1) ky Cky iff ty(x) < t5(x), i1 (%) < ip(x), f1(x) = f(%).
2) ky =k, iffkl Ck,and k, C k.
3) ky Uk, = (max(t,(x), t,(x)), min(i; (x), i, (x)),
min(f; (x), f,(x)))-
4) ky Nk, = (min(t (x), t,(x)), max(i; (x),
ip(x)), max(f, (x), f,(x))).
5) ki = (fi(x), i1 (x), 1 (x)).

3. PFHM Operators

In some situations, there exist limitations when the data are in
IFNs, following this we aim to develop above-discussed operators in
the PF environment. Here, we have developed the picture fuzzy
Dombi Hamy mean (PFDHM) operator and picture fuzzy
weighted Dombi Hamy mean (PFWDHM) operator.

Definition 6: For PFNs k; = (., by, fi) (i = 1,2,...,n), the score
function can be defined as: S(k) = t; — hy — f;, where S(k) € [0, 1].

Definition 7: For PFNs k; = (t, by, fi) (i = 1,2,..., n), the accu-

racy function can be defined as: S(k) =t + hy + f;, where
S(k) € [0, 1].

3.1. The PFDHM operator

Definition 8: For PFNs k = (t;,h;.f;)(i=1,2,.
PFDHM operator can be defined as: PEDHM ™ (k;) =

,n), the

e (@1§11<~~
1

<i, < n(@lek,-)"'), where x is a parameter and x = 1,2,...n,1i;,

iy, ..., 1, are x integer values taken from the set {1,2,...,n} of n

integers values, and Cj = ;‘ix),.

Theorem 3: For PFNs k;(i =1,2,...,
PFN and has:

n), Definition 7 results a

1 1
= & (Grncaiaa (1))
n

1 1 1

1 1 1 N
x 1\ x 1) x 1)’
+ (azl<x.<.<.x<n T/) 1+ (?;ZMK »<xx<n@> 1+ (F,\‘ZK”(. <xx<nﬁ,)

PEDHMWY (k)

=]1-

254

X 1 *> 1
I+ EZZISi,<m<1K§n?{] z1=

Further, for the sake of simplicity we use

1 1
T, =1—  H, = -

T ij 1
P A
X 1 X 1
1+ (TX, Doy <oy T;]) I+ <@ D1y <y H;])
: :
1

F, =

i
X 1
I+ (? D 1<iy iy F])
.

T

x

For PFN 7; = (ty,, hy,. f3),

1 1
Ty =1— r, Hy = g

- 1
x 1\ 1 1\t
I+ (§21gi1<...<ggn fj) 1+ <? Doy <oy r])
‘0 Gl

1
Fy, = I-

) 1
1 L\
1+ ((T; D i< << ﬁ])
o

Proof:
1. By operational rules of PFNs, and applying Definition 7 we have:

1 1 1
®J)'C=1k’} Tl = 71— 1|
1+(T{J)'A 1+(H,fj)" 1+(F;j)*
1 1 1
(®x k)i = 1— 1—
=1 1\ AL 1 )i ]’
ve(m) () e (im)
Moreover,
1 1
1+ El&q\ <:v£nXT,
®l§i1<~~~<iL§n< iz 1kz,> = 1 ( ; ) ) :
(S ) (S ety )
Furthermore,
1 1
PFDHM = C_ilc (@15,‘1<...<ixgn(®f:1ki’,)x) = (T,‘]7Hij,F,']).

2. Next, we prove that Theorem 1 results a PFN.
Consider, T,v], Hij and Fi]_ . Then we are to prove,

DOST, <LO<H <1LO0<F <1
2)0< T, +H +F <1

1) Since t; € [0,1], we can get

1

1€1[0,1] =T, €[0,1].

x 1 \*
1+ (CT Zlgi,<w<ixfn W)
El

Therefore, 0 < T,-j < 1. Similarly, 0 < H; <1, 0< F; <1

2) Obviously, 0 < Tx; + Hx; + Fx; < 1, then (T; + H; +F;) <
(Fij + Hj; +F,.J) =1. So, we get 0<T; +H;, +F <1, it
implies that Definition 7 results a PFN.

Now, we will demonstrate some related properties.
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3.1.1. Properties
In this section, the properties related to the newly proposed
operator (Definition 7) are given.

1. Idempotency: If k;(1,2,...,n) and k; are PFNs and k; = k =
(t;, hi.f;) forall (i =1,2,...,n), then we get: PFDHM = k

Proof: Since k = (t;, h;, f; ), once again by Definition 7, we have:

1 1
PEDHM® (k) = o (@12t ctn( @k )} ) = (T3, Hy Fy)
1 1
= 171_’_171[’71_’_%71_,_% :(tzjahlﬂf:})
J J _J
. T—h;, ;
J 7 J
= (4mf,) =k

2. Monotonicity: For two sets of PFNs k; = (ti},, hij,f,-j) and
T = (t9]7h9j7f0j)(i = 1727 ceey Vl), If ti] 2 t(?j?hi} S hé)]vfi] SfOJS
for all j, then: PEDHM™ (k;) > PFDHM®™ (rr;).

Proof: Since

X 2 17 tzj 2 té?j 2 07 hej Z hi Z 07 andfgj Zfl
> 0, then: ! !

1 1 X 1
T <T) = —>—=— —
= "6 Ti/j = Té)j c El§i1<~~<ix§n Tl_/]

x 1
> CT’;ZIS,K._Qénﬁ = Tij > TJ,
J

In a similar manner, we can deal with the 4 and f.

For k = PFDHM® (k;) and = = PFDHM®™ (7r;), the S(k) and S(x)

are the score values. We can imply that S(k) > S(r), related to the

score value of PFN. Further we investigate the below cases:

1) S(k) > S(m), then we can get PFDHMW (k;) > PFDHMY)
(701,79, TT,).

2) If S(k) = S(m), then (T; + H; +F;) = (Ty + Hg + Fy). As
t; >ty >0,hy >h >0,f, >f >0, then we can estimate

] 7 7 U1 ] lj

that: Tij = TQJ, Hi)_ =4 and Fij = ng. So, it follows that
H(k) = H(r), that is, PFDHM" (k;) = PEDHM™ (;).

3. Boundedness: For a set of PFNs k; = (t;, hij,fi]_)7 k=
(tmax 7hmaxj7fmux}) and k= = (tmin 7hmin] >fmin])(i = 17 27 L] k)a

7 7

then k+ < PFDHM® (k;) < k™.

Proof: From Properties 1 and 2, we have: PFDHMW (k;) >
PEDHMW (k= k~,...,k~) = k- and PEDHM™ (k;) < PFDHM")
(k*,k*,...,kT) = k*. Then, k- < PFDHM® (k;) < k™.

4. Commutativity: For two sets of PFNs ki:(tij,hi]7fi])
and 7; = (g, hy.fo)(i=1,2,....n), then: PFDHMW (k;) =

PEDHMW (1, 75, ..., m,), where (1) is any permutation of (k;).
Proof: Since, (7,,7,,...,7,) is a permutation, then:

1 1 1 1
C_j,‘ (@1§i1<~-<ixgn (®f:1ki]>x> = C_fi (@1§i1<m<ix§n <®f:1”ij)x>,

Thus, PEDHM W (k;) = PFDHM® (;, 71,,..., 7,).

3.2. The PFWDHM operator

Attribute weight plays an important role in constructive DM and
also influences the outcomes. So, it is found important to deal with
the weight of attributes in gathering data. Also seen that PFDHM
operator fails to cope with the issue of attribute weight. To
overcome this problem, we have proposed PFWDHM operator.

Definition 9: Fora group of PFNs k; = (tij , h,»j,f,.])(i =1,2,...,n)
having WV w = (wy;, w,, ..., w,)T with the restriction >_% , w; = 1,
the PFWDHM operator can be defined as:

1
@ By <ociy<n (I*Zle w,]> (@;;Ik,-})
PFWDHM,,’ (k;) = o

n—1

@k, (x = )

(1<x<n),

Theorem 4: For a group of PFNsk; = (;, h;.,f; )(i = 1,2,...,n)
having WV  w= (w;,w,,...,w,)T with the restriction
¥, w; = 1, Definition 8 results a PFN and has:

1
X X x
Di<iy<<ip<n (1 = 2l=1 W;}) < j:lkij)
X
Cn—l

PFWDHMY (k;) =

1— 1

1+<$Z,£q< ,,ASW(I*ZLW'v)#)%A’

= 1 . (1<x<n).

Is

+(—z (S ),>+<,Z (S )7)

i

or

PFDHMY, (k;) = @k,

Il
—
=
I
.
=

Further, for the sake of simplicity throughout the article we use

1
WT,J =1 5
1+ (&Zlgﬁ._@g(lf > W;-,) %)
7
1
WHij = %7
J
1
wFij =

e
1+ <ci; El§i1<~~<ix§n (1 - Zf:l W{,) FL/)

For PFN 7; = (t;, hejvfej)’

1
wT9} =1- )
1+ (c% Zl§i1<"'<ix§n<1 — Zf:] Wif> ﬁ) 3
i
1
wHy, = :
i
1
WFQJ = :

1
1+ (Ci:“ Zl§i1<---<ixgn (1 - Zf:l Wij) ﬁ)
7
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Proof: 1. For (1 < x < n), we have:

1 1
®;C:1kl]: 171_ ‘171_ 1
1+ (T{j)* 1+ (Hﬁj)" 1+ (Fjj)*
1 1 1
( k ) 1 1- Il 1- 1
1+(§T{j)* 1+(§ ;},)' 1+(1FJ)A
Thereafter,
x :
<1 n Zj:l W’}) <®f:1k"f>
1 - ! 1y
1+(<lfz;:1 w,})xT{’])l
- 1 1
1 L
1+<<172} . J)xH;])" 1+(<1fz] . J) F,>
Moreover,
1
Di<iy<<ip<n (1 - Z;;l Wg) ( f:lki]>x

1— 1

I
Ry
1+(zxw,Qq(k§;ﬁm)f)
7

1 1

(S 5m)g) (DS
il

Therefore,

1 * 1
C_z@lii1<~-<ixﬁn (1 - 21 Wi,-) <®f:1kij)x = (WTiﬂ wH,, WF,})
P

For the second case, when (x = n), we get

ool
k=]

1 1
1 1
w(me) w(me)

2. Next, for the first case, when (1 < x < n). Consider, wT,-]7 wH;,
and wF;, then we have to prove:

1)O<WT <10<WH <10<WF <1
2)O<wT +wH; + wF; <1
As,a €0, 1} we have:

N I—Zw >1:>wT €0,1]
C” 1<i) < <iy<n T;

Therefore, 0 < wTij < 1. Similarly, we can get for 0 < le-] < land
0< wFij < 1. Since, 0 < wTiJ + wHiJ + wFi}_ <1, we get the fol-
lowing inequality:

wT,-j + wH,-j + wF,-j < wF,-J + wH,-j + WF,-] = 1. So, we get 0 < wT,-j
+wH; +wF; <1, it implies that Definition 8 results a PFN.

256

For x = n, it is easy to find the feasibility. Therefore, Definition 8
still results a PFN. We will then evaluate some of the required
features of PFWDHM operator.

Now, we will demonstrate some related properties.

3.2.1. Properties
In this section, the properties related to the newly proposed
operator (Definition 8) are given.

1. Idempotency: If k;(i=1,2,...,n) are equal, that Iis,
ki=k=(t,h,f), and WV meets w; € [0,1] and Y 1, w; =1,
then PFWDHM = k.

Proof: Since k; = k = (t,h,f), by Theorem 4, we have
1. For1 << n,

PFWDHMY (k;) = (wT,-}, wH; , WE;)

1-— 1

1
*
x 1
1+ <c§ L <C\ Zlgi1< <iy<n (Z,:l W’j) ) <Hr)‘A>

1
L
x

= 1 X 1 2
1+ (i (Cileg,m..@g,, (Z,zl ij) >m)

1

1
X
1 _ x 1
1+ (“"271 (Cﬁ Zlirl<v~<xxgn (ZH W’;) ) (flff))‘>

1]

= 1 x _ x—1 1
1+(z:fH <C -Gl 2 1)(;1141)*)
1
I
I+ &= CG-C w )= )"
G i=1 ) (i)

Since YK | w; = 1, we can get

1 1 1
PFWDHMY (k) = | 1 — _

1) T
14 ((1 n)/)' 1+ <—<hllhy)'~ 14

= (thf) =k

2. For the second case, when = n,

() e
erwina? )= | ' (et (= | TG | = kD=
-1 L=

which proves the required result.
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2. Monotonicity: For two sets of PFNs k; = (t,ﬂj,h,-r,fij) and
= <t9,h9,f9>(i:1 2,...,n) having WV w; € [0,1] with
restriction 37, w; = 1. If t; > 15, hy < hy,f; < f,, for all j,
then: PEWDHM (k;) > PFWDHME)( ).

l;roof: Since x > 1, f; >t > 0,0 < h; < hy and 0 gfij gfgj,
then:

1 1
T’ <T, :>?2T—,:>(1

1 1
X X
Sm) = (-3 m) 7
& Dicyeaen(1= Shaw ) 42
)

= = (wT,-j > wTHJ).
1
Cfil Zl§i1<--»<ixgn (1 -2 Wx‘j) T

Similarly, we can prove it for 4 and f.
For k = PFWDHMY (k;) and = = PFWDHM' (rr;) the S(k) and

S(m) are the score. We can imply that S(k) > S(r), related to the
score value of PFN. Further, we investigate the below cases:

1) If S(k) > S(w), then we can get: PFWDHM(Vf)(ki) >
PFWDHMY (1))
2) If S(k) = S(r), then:
(WTi WH F]) (WT@ Hg] — WFQJ).

Since, i > to, >0,0 Sfij Sf(,f, 0 Sfij Sf(,j and we can deduce
that: wT,-j = ngj. Similarly, for 4 and f. Therefore, it follows that

H(k) = H(r), the PFWDHMY (k;) = PFWDHMY (rr;). In a simi-
lar way, we can prove for x = n.

3. Boundedness: For a set of PFNs k; = (ti] ,fij>,k
(tmaxijvfmuxi])( 1 2 7k) and k7 = (tminijufminij> having
[ ,1]  with >E w=1,
(k) <

weight vector restriction

then: k= < PFWDHM
Proof: From Properties 5 and 6, we have:

PFWDHMY (k;) > PEWDHM (k= k... k™) =k,

PFWDHMY) (k;) < PFWDHMY (k+,k*,...,k*) = k* = k- < PFWDHMY (k;) < k*.

4. Commutativity: For two sets of PFNs k; = (t,-], h,-]7 fi,-) and; =
(tgj,hgj,fe)(i =1,2,...,
[0,1] with restriction ) ¥, w; =1, then PFWDHMY (k;) =

PFWDHMY (r;), where (m,,70,,...
of (ky, ks, ... k).

n) having weight vector meets w; €

,7,) is any permutation

Proof: Because (my,7,,...,7,) is any permutation of
(kiks,... k), then  ®% kT =®,m, i (x = k), Thus,
PFWDHMY (k;) = PFWDHM'Y(,).

Example 1: For four PFNS k;, =(0.3,0.3,0.3), k, =

(0.2,0.1,0.3), k3 =(0.4,0.3,0.2), ks = (0.1,0.3,0.3) with the
weight vector w = (0.1,0.4,0.3,0.2), then we used to propose
PFWDHM operator to aggregate four PFNs (suppose x =2,
A =2). Let

1
1- T,
2 2 1
I+ <L§ | 2191«. <ip<4 (172,,1 W‘})F)
o J
1

I
2
2 2 1
1+ ((;ﬁ R Zli(l<- -<ipg<d (172,:1 W‘j)ﬂ)
- 7
1
1
2
2 2 1
1+ <c§ | L1gip<sipa (l—ZFl W‘J)i)
- ij

(kh k27 k37 k4)

)

PEWDHMP (ky, ky, ks, k) =

At last we get PFWDHM} (0.23,0.27,0.28).

3.3. The PFDDHM operator

The dual Hamy mean (DHM) operator proposed in Cuong and
Pham [25]. We aim to develop DHM operator in PF environment.

Definition 10: The DHM operator is defined as follows [25]:
x ki 1
DHM(X)(k17k27"'7kn) = (Hl§i1<»--<ixgn (ijl J)) "

Following this, we proposed a picture fuzzy Dombi dual Hamy
mean (PFDDHM) operator as follows:
X

n, iy, iy, ..., i, are x integer
n} of n integer’s values,

PEDDHM®™ (k) = (®1§i,<-«-<u§n(

where x is a parameter and x = 1,2,...
values taken from the set {1,2,...,
and C§ =

(n—x)!*

Theorem 5: For a PFNs k; = (t,-},h,-},fij)(i: 1,2,...,n),
Definition 9 results a PFN and has:
* ki x))

1 1
I 1- I
A A
X 1
1+ (C;,‘ Zl<i,<. <ix<nTl/‘) 1+ (C" Zl<x]\ \1X<nH/ >
i )

1— 1

I

x
1+ LZ 1
cy 1<iy < <fxsm~':]

Further, for the sake of simplicity throughout the article we use

RS

PEDDHM® (k;) = (®1§,-1<...<,-x§n(

1 1
DH, =1- .

i i 1
x 1\t x 1\
1+ <c— D<oy T—> 1+ (c— D1y <oy W)
1 7

DT, =

ki

1

DF, =1-—

; 1

. )7
1+ <c_; Zlgi, <<iy<n ﬁ)
7

For PFN 7; = (tg, hg,,fy.);
1 1
- DH; =1—
1+ (ciﬁ El§i1<---<ixin ﬁ) 1+ <Ci221§"1<'"<’?§" ﬁ)
) 7
1

A
x 1
1+ <F D i< <n a)
1

p

DT, =

DF, =1- T

p
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Proof:

1. First we prove that Theorem 5 holds, we have:

X
@jzlk’f _
On<iy<<iy<n o =

= PFDDHMY (k) = (®1§,»l<u.<,;gn<
— (DT,- ,DH,-,DF,-).
7 il il

2. Next, we have to prove that Theorem 5 results a PFN

Consider, DT,-]7 DHij and DFij , Then the following conditions are
to prove

1) 0< DT, <1, 0<DH; <1, 0 < DF; < 1;

2) 0 < DT, + DH; + DF; < 1.

Since #; € [0, 1], we can get

1

X 11\
1+ (Cﬁj Zl§i1<-~<ix§n Txl)

Therefore, 0 < DT,-], < 1. Similarly, it can be done for 0 < DH,-} <1,
0<DF, <1
Since, 0 < DT,-f + DHi] + DFij <1, we get the following
inequality:DTij + DH; + DF;, < DF; 4+ DH; + DF; = 1. So, we
get 0 < DT, + DH; + DF; < 1.

For x =n, it is easy to find the feasibility. Therefore,
Definition 9 still results a PEN. Now, we will then evaluate some
of the required features of PFWDHM operator.

> 1= DT; €0,1]

3.3.1. Properties
Some basic properties of PFDDHM operator are as follows.
1. Idempotency: If k;(1,2,...,n) and k; are PFNs and k; = k =
(t;.f;) forall (i =1,2,...,n) then we get PFDDHM = k.

Proof: From Theorem 5, we have

Bk \\ &
PEDDHM® (k) = ( @1iyccipen |~

1

- (DTi,DH,-,DFi) -
el gl gl

—

- (t,},h,},f‘,}) =(t.hf) =k

2. Monotonicity: For two sets of PFNs k; = (ti}_, h,-],fij) and
T = <t9]ah9ﬂf€}> (Z =12,..., n)’ if t,-] 2 tﬁﬂhij < hOJ
fi, < f4, forallj, then PFDDHMWY (k;) > PFDDHM"Y (11;).

and

Proof: Since x> 1, ; >ty >0, hy > h; > O and f, >f >0,
we have
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As t; >ty >0, hy >h >0 andfg >f >0,

Therefore, it

1
x

1 1 X 1 g X 1
/A v
T’} <T, é? Zm T, =1+ <C7;\;Zl<x|<-- <A,<n?‘/’> =1+ <C7:21<1‘<~-<:X<n77”>
i

= DT, > DT,
In same manner, we have DH i > DHy, and DF; > DF,.

For k = PEDDHM®Y (k;) and = = PEWDHM®Y (rr;), the S(k) and

S(7r) are the score. We can imply that S(k) > S(r), related to the

score value of PFN. Further, we investigate the below cases:

1) S(k) > S(m), then we can get PFDDHM® (k) >
PEDDHMW (7r;).

2) If S(k) = S(), then

(DijaDHtﬂDsz) = (DT9j7DH9j7DF9f)'

SO we can
estlmate that DT, = DT(, , DH; = DH, and DF; = DF,.

that:  H(k) =
+DF;) = (DTQJ_ + DH,, + DFej) — H(n).
is, PEDDHMWY (k;) = PEDDHMW (1;).

follows (DT,»] + DH;

That

3. Boundedness: For a set of PFNs k; = (tij, h,-},f,-)), kT =
<tmax]a hmuxjfmaxj) (1 = 17 Za LR k) and k== <tminijv hminij7
Jnini,)> then k= < PEDDHM® (k;) < k*.

Proof: From Properties 9 and 10, we have PFDDHMW (k;) >
PFDDHM® (k= k..., k") = k"

PFDDHMW (k;) < PEDDHM® (k*, kt,... k*) = k*.

Then, k= < PEDDHM™ (k;) < k*.
4. Commutativity: For two sets of PFNs k; = (t;,h;, f,-})

and 7; = (tg, hy . fo)(i = 1,2,...,n), then: PEDDHM™ (k;) =

PEDHMWY (1r;), where (m;,7,,...
of (ki, ks, ..., k).

,7,) is any permutation

Proof: Since (7, 75,...

e

PFDDHM®) (7r;).

,7,) is a permutation, then

.
X X cr
<®1§i1<--~<ixgn (@]:1 <®1§i1<~--<ix§n (@jzlnijx)> "

Thus, PEDDHM ™ (k;) =

Example 2: For four PFNs k; = (0.3,0.3,0.3), k, = (0.2,0.1,0.3),
k; = (0.4,0.3,0.2), and k, = (0.1,0.3,0.3), we used PFDHM
operator to aggregate four PFNs (suppose x =2, A =2).

Let k= PFDDHM = (DT,-],DHI-J,DF,-J ) At last, we get
PFDDHM = (0.24,0.25,0.27), for n = 4.

3.4. The PFWDDHM operator

Attribute weight plays an important role in constructive DM and
also influences the outcomes. So, it is found important cope with the
weight of attributes in gathering data. Also it is seen that PFDDHM
operator fails to consider the issue of attribute weight. To overcome
this problem, we have proposed picture fuzzy weighted Dombi dual
Hamy mean (PFWDDHM) operator.
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Definition 11: For a group of PFNs k; = (t,, h,-j,fi} (i=
1,2,...,n) having WV w = (wy, w,,...,w,)T with the restriction
L, w; = 1, the PFWDDHM operator can be defined as:

1
®) D1<iy <oiy<n <1*Z;:, W,j) <$f,1krj>
PFWDDHM,,’ (k;) = (o

n—1
1—w;
X ko
J=17

Theorem 6: Fora group of PFNs k; = (t,«j, h,»j,fi)> (i=1,2,...,n)
having weight vector w = (wy, w,,...,w,)T with the restriction
>% , w; = 1, Definition 12 results a PFN and has:

Bn<i<- <i\§n(1 -2k Wx,) (95}111‘;)7

PFWDDHM (k;) = -
G

1 1— 1

Further, for the sake of simplicity throughout the article we use

1
wDT; = T
1+ (cigzlgig«--qgn(l = 2.in Wi,) %;)
7

1

WDHZ']_ =1- 117
1+ (% Zl§i1<~~<ix§n (1 — 2 Wg) ﬁ/)
7

1

WDF,-], =1-

T
X x 1 X
1+ (C_: 21§i1<...<ix5n (1 -3 Wij) F_,)
ij

For PFN 7; = <taj, hej7fej>,

1
WDTQJ = .
1+ (C%ZISI'KMQ;@ (1 -3, Wij> T%’)
J
1
WDHQJ =1— )
1+ <C% Zl§i1<“‘<ix3n(1 -3 Wi]> ﬁ)
1
1
wDFy =1 —

1+ (% D i<y <iy<n (1 -

or

PFWDDHM (k;) = @k, =

b ' A )l7
_ ‘%Z;,(‘;ﬁ*)(,ﬁ%) )
e (@) e )
(x=mn)

Proof: Consider,

Therefore,
1 x X H
Cx—®1§i1<”'<ix§"(l - Zi:l Wi/) ( j=lkii>
n—1
= <WDT,-,7 wDH, wDFz'j>(1 <x < n).
7 7

For the second case, when(x = n), we get

Next, for the first case, when (1 < x < n),

Consider, wDT,»}7 wDH i and wDF,-]. Then we have to prove
1) 0 <wDT; <1, 0 <wDH; <1and 0 < wDF; <1
2) 0< wDTij + wDH; + wDF; < 1.

Proof:
1) As wDTx; € [0,1], we can get

x " 1 ; )
1+ (C—ﬁzl<il<”.<&<n(1 > wi]) F) gt:1 = wDT; € [0,1].

]

Therefore, 0 < wDTij < 1. Similarly, we can get 0 < wDH i <1,

0 < wDF; <1.

2) Since, 0 < wDT,-] + wDH;, + wDF; <1, we get the following
inequality,
wDTiJ + wDHiJ + WDF,-J, < wDFij + wDHiJ + WDF,-], =1. So,
we get 0 < DT,»J, + DH,.J, + DF,»} <.

For x = n, it is easy to find the feasibility. Therefore, Definition 10

still results a PFN. We will then evaluate some of the required fea-
tures of PFWDDHM operator.

3.4.1. Properties
1. Idempotency: If k;(i=1,2,...,n) are equal, that Iis,

ki=k=(t,h,f), and WV meets w; € [0,1] and > ¥, w;, =1
then: PFWDDHMY (k;) = k.

Proof: Since k; = k = (t,h,f), by Theorem 6, we have:
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(1) For1 <x < n.

PFWDDHMY) (k) = (WDT, . wDH, , wDF, )
j » WDF,

1
(e (i S )

1-— 1 11— 1

= ! 71— ! 7,1 - ! ;| =(thf)=k
(() 1+ () (U))

(2) For the second case, when x = n,

PFWDDHMY (k;)

— 1 N ! TVl ! NL
) (1 (e () ) 1 (sne () 1 (Enen( M)')")

1 1 )
Ty T eyt r| = (t,h.f) = k,Proved.
(1 +EERED) 1+ EET a4 (ﬁ (v)k)) rove

2. Monotonicity: For two sets of PFNs k; = (t,-J,hl-]7 fi]) and

= <t97h97f6)(i:1 2,...,n) having WV w; € [0,1] with

restriction 3 ¥, wj =1, If t; >ty h; < h,.fi, < fo,» for all j,
then: PFWDDHM (k;) > PFWDDHMS)( ).

Proof: Sincex>l ,}>t9 20, 0<h, <hy and0<f1 <f9,
then: T’>T’ & < 7

%, = wDT > wDTe Slmllarly, we have:

wDT,-] < wDng and wDT,-I < wDng.

For k = PFWDDHM (k;) and 7 = PFWDDHM® (), the S(k)
and S(rr) are the score. We can imply that S(k) > S(r), related to
the score value of PFN. Further, we investigate the below cases:

1) If S(k) > S(r), then we can get PFWDDHMY (k;) >
PFWDDHMY (rr,).
2) If S(k) = S(r), then

(WDT,-], — wDH; — wDFij) = (wDng — wDH, — wDng).

Since, t; > tg > 0,0 <h; <hg and 0<f1 <fy, wWe can
deduce that: wDT = wDTg, wDH; = wng and
wDF,; = DFg. Therefore it follows that H (k) H(r). That

is, PFWDDHM( )(k;) = PFWDDHM (rr;).  Similarly,
for x = n.
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3. Boundedness: For a set of PFNs k; = (t,»j,h,-],fi), kT =
<tmaxi] hmaxi] fmaxi)(. = 1 2 k) and k™ = ( minijvh
fmini;) having WV w; € [0, 1] with the restriction > %, w; =1,
then k- < PFWDDHMY (k;) < k*.

mmlﬂ

Proof: Based on Properties 13 and 14, we have
PFWDDHM (k;) > PFWDDHMY (k= k... k™) = k=,
PFWDDHMY (k;) < PEWDDHMY (k* k*, ... k*) = k*.

Then we have k- < PFWDDHMY (k;) < k*.

4. Commutativity: For two sets of PFNs k; = (tiJ , h,-] .f 1}) and 7r;
(tONhOj?fH}) (l = 1727 ceey
[0,1] with restriction Y %, w; =1, then PFWDDHMY (k;)

PEWDDHMW (1,715, ..., m,), where (77, 0, . ..
mutation of (ki k,, ..., k,).

n) having weight vector meets w; €

,T,) is any per-

Proof: Because (7,75, ..., m,) is a permutation of (k;, k, ..., k,),
then:

ﬁ (®1<i,<ocip<n (1 = Zle Wij)(@fﬂkij)i) =

A (Orecian(l - Shw) @), for  (1<x <K
and S = 69}‘:171-% for (x = k). Thus,

PFWDDHM( )(k ) = PEWDDHM®(,).

4. A MAGDM Approach Based on the Proposed
Operators

This section refers to the application of the proposed operators
to deal with the problem of MAGDM with PFNs. Suppose
X ={x;,%5,...,x,} and C = {cy, ¢3,..., ¢, } are the sets of alterna-
tives and attributes, respectively. The weight vector of C be
w = {w;, w,,...,w,} with restriction w; € [0,1] and > ¥, w; = 1.
We may find connoisseurs Y = {y,,5,,...,»,} who are called to
assess data and their weight vector is w = {w, 2, ..., w,}T with
w; €0,1], (t=1,2,...,2), >.%, w, = 1. The expert y, evaluates
each attributes ¢; of each alternative x; by the form of PFN

<tfj,hf], f)( 1,2,...,m,j=1,2,...,n) and then the deci-
sion matrix A = (waj) = ((tfﬂhfj, ))mxn(t =1,2,...,2) is

constructed.
The resultant target is to provide the degrees of all alternatives.
After that, we will provide the stages for the solution to this issue.

Step 1: Provide the whole evaluation value of every feature for
every alternative by aj = PFWDHMY )<~1 az,... ?ﬁ-) and

ijr Fijy e By
! = PEWDDHMY) (a Laz.. 5?;)

Step 2: Evaluate the total value of each alternative taking help from
the PFWDHM (PFWDDHM) operator.

@t = PFWDHMY (G0, 30, ... 3 1n)
and @! = PFWDDHMY (@1, d,...,d:)

Step 3: Evaluate the S(a) and H(a ).
Step 4: Grade the complete alternatives {x;,x,,...,
the most appropriate one.

x,} as select
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5. Practical Example

An example is being suggested here for the explanation of this
method. Take four cars M; = (M, M,, M3, M,) and choose only
one from the transportation company. We calculate all the providers
from four angles E; = (E,, E,, E3, E,), and these are quality, produc-
tion, service efficiency, and risk factor, and w = (0.1,0.4,0.3,0.2)T
represent the weight vector of attributes. Take four experts and the

weight vector (0.1,0.4,0.3,0.2)7. R, = (a;j)4x4(t —1,2,3,4) show

the DM given in Tables 1-4. Our ambition is to choose the best car of all.

5.1. Decision-making progress

Step 1: As E,, E,, E5, and E, all are of the same type so we would
not need to normalize the decision matrices.

Step 2: By using the PFWDHM operator on four decision matrices
R, = (a})  anddevelop a collective decision matrix R = (a;)
which is shown in Table 5 forx =2 and A = 2.

By using the PFWDDHM operator on four decision matrices R, =
(aj),,., and developing a collective decision matrix R =

which is shown in Table 6 for x = 2 and A = 2.

( ’J)mxn

Table 1
Decision matrix R;
E, E, E; E,
M, (0.3, 0.3, 0.3) (0.2, 0.4, 0.1) (0.2, 0.3, 0.3) (0.5, 0.1, 0.1)
M, (0.3, 0.4, 0.3) (0.4, 0.2, 0.3) (0.5, 0.1, 0.3) (0.2, 0.2, 0.3)
M, (0.4, 0.2, 0.3) (0.6, 0.1, 0.1) (0.3, 0.3, 0.2) (0.6, 0.2, 0.1)
M, (0.5, 0.1, 0.2) (0.4, 0.2, 0.2) (0.1, 0.4, 0.3) (0.5, 0.3, 0.1)
Table 2
Decision matrix R,
E E, E; Ey
M, (0.2, 0.1, 0.3) (0.4, 0.4, 0 1) (0.3, 0.2, 0.3) (0.7, 0.1, 0.1)
M, (0.3, 0.4, 0.2) (0.3, 0.1, 0.3) (0.4, 0.1, 0.4) (0.2, 0.4, 0.3)
M, (0.1, 0.3, 0.3) (0.5, 0.1, 0.1) (0.6, 0.1, 0.2) (0.5, 0.3, 0.1)
M, (0.3, 0.1, 0.2) (0.2, 0.2, 0.2) (0.1, 0.4, 0.3) (0.5, 0.2, 0.1)
Table 3
Decision matrix R;
E, E, E; E,
M, (0.4, 0.3, 0.2) (0.3, 0.4, 0.1) (0.2, 0.4, 0.3) (0.7, 0.1, 0.1)
M, (0.3, 0.4, 0.1) (0.6, 0.1, 0.2) (0.6, 0.1, 0.1) (0.4, 0.1, 0.3)
M; (0.2, 0.2, 0.3) (0.6, 0.1, 0.1) (0.2, 0.2, 0.2) (0.5, 0.1, 0.2)
M, (0.6, 0.1, 0.2) (0.4, 0.3, 0.1) (0.2, 0.4, 0.3) (0.4, 0.3, 0.1)
Table 4
Decision matrix R,
E, E, E; Ey
M, (0.1, 0.3, 0.3) (0.3, 0.3, 0.1) (0.1, 0.4, 0.2) (0.5, 0.1, 0.1)
M, (0.2, 0.4, 0.2) (0.2, 0.2, 0.2) (0.1, 0.2, 0.3) (0.4, 0.2, 0.3)
M, (0.5, 0.1, 0.3) (0.3, 0.1, 0.1) (0.3, 0.1, 0.2) (0.3, 0.2, 0.1)
M, (0.4, 0.1, 0.2) (0.4, 0.3, 0.2) (0.5, 0.1, 0.2) (0.4, 0.3, 0.2)
Table 5
Collective decision matrix R
G G, Gs Gy
A, (0.23, 0.27, 0.28) (0.28, 0.38, 0.10) (0.18, 0.33, 0.28) (0.58, 0.10, 0.10)
A, (0.27, 0.40, 0.20) (0.34, 0.36, 0.25) (0.40, 0.12, 0.28) (0.28, 0.20, 0.30)
A, (0.30, 0.19, 0.30) (0.49, 0.10, 0.10) (0.30, 0.17, 0.17) (0.46, 0.19, 0.11)
Ay (0.44, 0.10, 0.20) (0.35, 0.25, 0.17) (0.16, 0.35, 0.27) (0.44, 0.28, 0.12)
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Table 6
Collective decision matrix R
G, G, G; G,
A (0.247 0.25 0.27) (0.29, 0.37, 0.10) (0.19, 0.32, 0.26) (0.59, 0.10, 0.10)
A, (0.27, 0.40, 0.19) (0.36, 0.14, 0.24) (0.44, 0.11, 0.26) (0.29, 0.19, 0.30)
A, (0.30, 0.18, 0.30) (0.52, 0.10, 0.10) (0.31, 0.15, 0.20) (0.49, 0.18, 0.11)
A, (0.46, 0.10, 0.20) (0.36, 0.24, 0.17) (0.17, 0.31, 0.26) (0.45, 0.27, 0.11)
Table 7
Collective decision matrix R
G, G, G; G,
A, (0.53, 0.32, 0.08) (0.70, 0.11, 0.18) (0.30, 0.47, 0.07) (0.13, 0.075, 0.05)
A, (0.72, 0.14, 0.08) (0.34, 0.40, 0.18) (0.17, 0.56, 0.12) (0.68, 0.15, 0.09)
A, (0.84, 0.07, 0.02) (0.46, 0.28, 0.08) (0.04, 0.86, 0.07) (0.12, 0.68, 0.08)
A, (0.26, 0.58, 0.07) (0.65, 0.22, 0.11) (0.81, 0.06, 0.05) (0.13, 0.72, 0.07)

Step 3: By using PFWDHM (PFWDDHM) operator to aggregate
all the attributes values aj;, a,](] =1,2,3,4) and get the comprehen-
sive evaluation value shown in Table 7 forx=2and A = 2.

a, = (0.29,0.22,0.24), a, = (0.34,0.28,0.14),
a; = (0.22,0.25,0.25), a, = (0.44,0.19,0.13).
@, = (0.31,0.20,0.23), a, = (0.37,0.19,0.13),
;= (0.25,0.22,0.23), d, = (0.48,0.16,0.12).

Step 4: Calculate the score values.

S(a,) = —0.17, S(a,) = —0.08, S(a;) = —0.28, §(

) a,) =0.12.
S(a}) = —0.12 §(a,) = 0.05, S(a}) = —0.20, S(aj)

= 0.20.

Step S5: Rank all alternatives. a, > a, > a; > az. Hence, ay is the
best choice.

By considering the different values of x, and by applying the
PFWDHM (PFWDDHM) operator, we came to the result that the
answer is the same.

6. Comparative Study

Keeping in view the above discussion, we will evaluate our
suggested method with the previous ones. For that purpose, the
following remarks show the generalization of the new operators of
PFSs over IFSs and FSs.

Remarks:

1) If we put Hx; = 0 in Definition 7, the PFDHM operator reduces
to the IFDHM operator discussed in Li et al. [23].

2) If we put wHx; =0 in Definition 8, the PFWDHM operator
reduces to the IFWDHM operator discussed in Li et al. [23].

3) If we put DHx;; =0 in Definition 9, the PFDDHM operator
reduces to the IFDDHM operator discussed in Li et al. [23].

4) If we put wDHx; =0 in Definition 10, the PFWDDHM operator
reduces to the IFWDDHM operator discussed in Li et al. [23].

5) If we put Hx; =0 and Fxj =0 in Definition 7, the PFDHM oper-
ator reduces to the fuzzy DHM operator discussed in Dombi [20].

6) Ifweput Hx = 0and Fx = 0 in Definition 8, the PFWDHM oper-
ator reduces to the fuzzy WDHM operator discussed in Dombi [20].
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7) If we put Hx; = 0 and Fx; = 0 in Definition 9, the PFDDHM
operator reduces to the fuzzy DDHM operator discussed in
Dombi [20].

8) Ifwe put Hx; =0 and Fx; = 0 in Definition 10, the PFWDDHM
operator reduces to the fuzzy WDDHM operator discussed in
Dombi [20].

Furthermore, we require an example pertaining to MAGDM
with PFNs. Keeping in view the example related to MAGDM
[26], we use our suggested methods to obtain results with PFNs.
Moreover, we will evaluate the results to reach the logic. Four PF
decision matrices are being represented as an example [26] and to
obtain the results we will use PFWFHM operator. In the
application of the PFWDHM operator in Tables 1-4 given in Liu
etal. [21], we getall feature values a;(j = 1,2, 3, 4) and get the com-
prehensive evaluation value forx = 2 and A = 2 with the weight vec-
tor w = (0.1,0.4,0.3,0.2)7.

a, = (0.58,0.24,0.06),
a; = (0.24,0.51,0.07), a, =

a, = (0.56,0.14,0.13),
(0.68,0.14,0.07).

S(a;) = 28, S(ay) = 0.29, S(a3) = —0.34, S(a,) = 0.47. By ranking
we get,a, > a, > a; > az. Asthe results are the same, therefore, it is
obvious that the suggested work is applicable to PFNs too.

By comparing the results of our proposed methods with the
methods proposed by Liu et al. [21], it is clear that the results
produced by Peide Liu and the results produced by us in
this article are the same by solving the same example
given in Liu et al. [21]. Hence, our proposed methods are
applicable and it is the generalized structure of methods
proposed in Li et al. [23].

7. Conclusion

PFS requires operators to measure the coordination of two
PFSs. The most part of this article is related to the PF operators as
it is the generalized production of the FSs and IFSs. Here, the HM
operator, DHM operator, and DDHM operator are extended in the
context of PFS to develop the PFDHM operator, PFDHM
operator, PFDDHM operator, and PFWDDHM operator. Further,
the properties related to the proposed operators are discussed. By
using the proposed operators, the MAGDM methods are
developed. Further, we applied the operators to a numerical
example of a car supplier to conclude our results. A comparative
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study is also made to study the importance ofthe proposed work. In the
coming years, the use of the PFNs requires to be discovered in the
process of DM, risk analysis, and many other fuzzy conditions. So,
in the incoming years, our aim is to develop the proposed operator
in the context of interval-valued PFSs and bipolar picture FSs. It is
also our aim to extend the operators in complex theory.
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