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Machine Learning Applications for Roadway
Pavement Deterioration Modeling
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Abstract: Roadway and highway agencies across the globe spend a sizable fraction of their annual budget for the upkeep and maintenance of
roadways. Different road segments deteriorate at different rates owing to variable traffic flow along the segments. In previous works, various
forms of mathematical formulations were provided for roadway maintenance and pavement deterioration modeling. Numerical solutions
algorithms using linear programming, dynamic programming, and genetic algorithms were proposed. The solution algorithms, however, did
not benefit from the prescriptive and predictive capabilities of machine learning (ML) algorithms (e.g., random forest classifier, support vector
machine, and artificial neural networks). Furthermore, previous methods treated transition probabilities of condition states of a pavement in
future years to be static. In this paper, a variable transition probability is introduced based on the deterioration rate of a pavement over time. A
modified capacitated arc routing formulation is developed for a highway infrastructure management information system. Prescriptive and
predictive analytics are performed using ML to analyze the road network in simulation studies and from Montgomery County, Maryland,
USA. The pavement condition index (PCI) for the road network is predicted using ML algorithms. The results show a good promise for PCI
prediction based on variable deterioration rate and for obtaining condition states in future years subject to varying transition probabilities.

Keywords: pavement deterioration, Capacitated Arc Routing Problem (CARP), machine learning (ML), pavement condition index (PCI),
prescriptive analytics, predictive analytics

1. Introduction

Timely maintenance of roadway infrastructure, including
pavements, is of utmost importance because well-maintained roadways
ensure good flow of traffic and freight, resulting in an enhanced
economy of a country. However, budgetary and technological
limitations associated with timely inspection and maintenance of
roadways often result in poor roadway condition, which affect the
safety and mobility of the motoring public, freight, and logistics
operations. Poor maintenance of roadways, including bridges, may
result in catastrophic collapses resulting in huge economic loss.

Due to the large number of highway networks and their varying
deterioration patterns over time, timely inspection that would entail
appropriate maintenance rehabilitation and reconstruction (MR&R)
action to be undertaken is important. Thus, action and inspection are
intertwined, i.e., action to be undertaken over a planning horizon can
be represented as a conditional probability depending on the
inspection to be performed.

Urban transportation networks are complex in nature, which
complicates their timely upkeep and maintenance to maintain an
acceptable level of service (Galehouse et al., 2003; Haas et al., 1994;
Sheffi, 1984; Transportation Research Board, 1981). The principles
of pavement preservation can be found in the literature of Galehouse
et al. (2003) and Papagiannakis and Masad (2008). Islam and Buttlar
(2012) discussed the effect of pavement roughness on user costs.

In previous works, various forms of mathematical formulations
were provided for roadway maintenance and pavement deterioration
modeling (Abdullah, 2011; Cheu et al., 2004; Durango & Madanat,
2002; Durango-Cohen & Sarutipand, 2009; Labi, 2001; Ng et al.,
2009; Ouyang, 2007). Numerical solutions algorithms using linear
programming, dynamic programming, and genetic algorithms
were proposed (Golabi et al., 1982; Jha et al., 2006; Madanat, 1991).

The motivation of the present study stems from the lack of
current methods in using machine learning (ML) for prescriptive
and predictive analytics for roadway infrastructure maintenance.
The currently available solution algorithms do not benefit from
the prescriptive and predictive capabilities of ML algorithms (e.g.,
random forest (RF) classifier, support vector machine, and
artificial neural networks). Artificial intelligence and deep
convolutional networks have been used in recent years in many
domains, including transportation, healthcare, finance, and defense
(see, e.g., Zheng et al., 2017; Zheng et al., 2020; Zheng et al.,
2023a; Zheng et al., 2023b). This gives us an opportunity to apply
ML for pavement deterioration modeling and predict future
condition states subject to varying transition probabilities.

Recently, Jha and Ogallo (2022) proposed a ML framework for
developing a roadway maintenance action plan over time. They
performed a case study using data from Kenyan roadway network
to calculate the condition of a road over a 10-year planning
horizon. In another recent work by Ali et al. (2023), ML was used
for predicting the pavement condition index (PCI) using case study
data from Canada. However, the model was unable to apply a
generalized method for deterioration prediction. Nyirandayisabye
et al. (2022) used various ML algorithms for automatic pavement
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damage predictions. However, the study did not consider a Markov
decision process (MDP) in examining the relationships between
pavement condition in future year as a function of pavement
deterioration and various actions undertaken, such as do nothing,
intermediate MR&R, or full repave. MDP is widely used for
predicting future condition states because of its unique ability to
relate actions, states, and time (Madanat, 1991).

Guo et al. (2023) applied a deep learning model for accurate
prediction and early detection of pavement structural damage.
However, the study once again, like other studies, did not
incorporate an MDP in the decision-making process.

In this paper, the author seeks to fill the critical gaps in the
current state of knowledge related to roadway infrastructure
inspection and maintenance and offer two sets of formulations,
one with variable demand and one by proposing an extension of
the Capacitated Arc Routing Problem (CARP) for Highway
Infrastructure Maintenance and Scheduling. An overview of
different variations of roadway maintenance problems is provided
followed by a description of the benefits of ML models in solving
such problems. Prescriptive and predictive analytics are performed
using ML to analyze the road network of Montgomery County,
Maryland, USA. The PCI for the road network is predicted for
future years using ML algorithms.

2. Literature Review

In previous works, aMDPwas proposed to formulate the roadway
maintenance problem and obtain the sequence of actions to be
undertaken over a planning horizon to keep the roadway condition at
an acceptable level (Madanat, 1991; Madanat & Ben-Akiva, 1994).
However, the pavement or infrastructure deterioration was assumed
to be available exogenously. Maji and Jha (2007) proposed a
mathematical formulation to obtain the highway infrastructure
maintenance schedule with budget constraints. The method did not
consider the current PCI to forecast PCI for future years. Obazee-
Igbinedion et al. (2013), Obazee-Igbinedion (2015), and Obazee-
Igbinedion and Owolabi (2018) proposed a regression modeling
framework for the development of pavement sustainability index
using data from the Maryland State Highway Administration
database and field investigation data. The method, however, did not
have the ability to forecast PCI over time in the future.

While the latest work by Jha and Ogallo (2022) offered a ML
framework for the development of a highway maintenance
management system, pavement or roadway condition was assumed
to be available exogenously. On the contrary, Ali et al. (2023),
Nyirandayisabye et al. (2022), and Guo et al. (2023) provided
methods for pavement conditions deterioration but did not
incorporate MDP for examining the relationship between pavement
actions and resulting deterioration. This papers aims to fill this void.

3. Methodology

Pavement or highway maintenance schedules, including the
deterioration rate, over a planning horizon can be calculated using
the MDP (Jha & Ogallo, 2022). It can also be calculated using
mathematical functions (Maji & Jha, 2007).

While modern approaches to inspect pavement consist of Lidar
via aerial and satellite imagery as well as via low flying aircrafts,
manual inspections are still being performed to closely monitor
and inspect cracks and potholes, and other forms of deterioration
in roadways overt time. For manual inspection, an arc routing
problem can be formulated to perform inspection over specified
highway segments with certain constraints. When constraints are

imposed, such as a highway worker’s ability to perform
inspection within specified time constraints, the problem mimics
the characteristics of a CARP.

A special class of CARP for Highway Infrastructure
Maintenance Inspection and Scheduling (HIMIS) called CARP-
HIMIS is formulated to perform the maintenance activities across
various roadway segments in a road network. In CARP-HIMIS, a
nonnegative quantity qij is associated with each roadway segment
represented as an arc (vi; vj). An inspection crew ofm personnel, each
having a capacity Q of undertaking the inspection activities, must
traverse all edges or arcs of the graphs and perform the required
inspection, without ever exceeding Q. As in the standard vehicle
routing problem, the number of maintenance crew may be given a
priori or can be a decision variable.

Arc routing problems are extensively discussed in the literature of
Dror (2000). The CARPwas introduced byGolden andWong (1981).
Various variations of the original CARP formulation proposed by
Golden and Wong (1981) have emerged since 1981. Between 1973
and 1991 (see, Eiselt & Laporte, 2000), several researchers
proposed heuristics for the CARP based on various edge or arc
portioning criteria and on tour construction methods. In previous
works of Jha et al. (2006), they introduced separate formulations
for inspection and scheduling and proposed a genetic algorithm to
solve the problems. The genetic algorithm seemed to be efficient;
however, a sensitivity analysis to test the computational efficiency
as the number of arcs and node grew was not performed.

3.1. The CARP-HIMIS formulation

The formulation is an extension of our previous works reported
in the work of Jha et al. (2006). Let G = (V, A) be a directed graph
with n+1 nodes. Each node represents a roadway intersection, and
each arc represents a roadway segment. An inspection can be
performed along a roadway segment at different periods of time.
CARP-HIMIS can be formulated as:

min
P

i;jð Þ2A
P

k2K tij � xijkþ
P
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twt
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γðPtÞ ¼ 1 if Pt � tc
0 otherwise

�
(15)

where
K: allowable time intervals to performmaintenance activity; A: set

of road segments; V: set of road intersections; S: a smaller set of road
segments;Vs: a smaller set of road intersections; i,j: intersection pairs; k:
time interval; tij: time to travel road segment (i,j) without performing
maintenance activity; cij: time to perform maintenance activity along
road segment (i,j); M: a dummy positive number; T: allowable time
to perform maintenance activity; xijk: frequency of traveling road
segment (i,j) in k; yijk: = 1 if maintenance activity is undertaken
along road segment (i,j) in k, 0 otherwise; Zþ: a set of positive integer
values; αt is a factor to calculate net worth of time value t; wt

ems is the
probability that roadway segment ewill be in a state of s if an activitym
is applied in time t; c e;m; sð Þ is the cost for undertakingmaintenance on
road segment e for applying actionmwhich results in state s; tc= allow-
able deterioration to maintain the required level of service.

The objective function represented in Equation (1) minimizes total
travel time to inspect a network of road segments. Equation (2) ensures
route continuitywhile Equation (3) guarantees that each road segment is
inspected at least once. Equation (4) states that a road segment must be
traveled at least once. Equation (5) is the limitation on time duration
while Equation (6) ensures acceptable road network. Equations (7)
and (8) are problem-specific constraints. Equation (9) is a constraint
to impose certain level of capacity on the road segments. Equation
(10) guarantees probabilities to be greater than or equal to zero.
Equation (11) guarantees maximum probability to be 1. Equation
(12) assumes that we start with a given roadway state or condition in
the beginning of the analysis, and Equation (13) is transition to the
next state in time t depending on the maintenance action taken in the
previous year. Equation (14) ensures upper bound on budget is
maintained. Bt is the allocated money for undertaking maintenance
activity t. In Equation (15) Pt is the probability of reactive maintenance.

3.2. MDP and deterioration function

The theory of MDP is well developed and therefore has been
skipped here. A schematic of three conditions state MDP
applicable to roadway maintenance is shown in Figure 1. The
condition states of a pavement can be either Good, Fair, or Poor
determined by PCI. PCI is a number anywhere between 0 and 100.
For example, a PCI above 80 can be considered to be a Good state,
a PCI between 60 and 80 can be considered to be a Fair state, and
a PCI below 60 can be considered to be a Poor state. The
corresponding transition probabilities are shown over the arrows in
Figure 1. For example, P11 is the transition probability of a
pavement section from Good in the current timeframe to Good in
the next timeframe.

The transition probability for a three condition state scenario
can be represented as:

P ¼
P11 P12 P13
P21 P22 P23
P31 P32 P33

2
4

3
5 (16)

In previous works, transition probabilities were assumed to be
exogenously available and fixed over time (Jha & Ogallo, 2022).
But, in reality, transition probability at any time will depend on

the extent of deterioration. The dynamic nature of transition
probability can be addressed by first calculating the PCIt over
time t as follows and then calculating transition probabilities by
dividing the PCIt by 100:

PCIt ¼ t2

a Ht;Wt ;Vtð Þ (17)

Pt ¼ PCIt
100 (18)

where PCIt is the pavement condition index at t (usually an integer
value measured as a year), t is time (an integer, usually a year), and a
is a function of percent of heavy vehicles at time t Ht, probability of
adverse weather Wt, and percent of traffic volume at peak hour Vt.
Thus, a represents the cumulative effects of heavy vehicle percent,
presence of adverse weather, and fraction of vehicles at rush hour.
Pt is the transition probability at time t.

While the formulation presented in this study is developed using
conditions in the United States, it is applicable in other parts of the
world as long as percent of heavy vehicles probability of adverse
weather percent of traffic volume at peak hour is correctly captured.

To automate the process of calculating the condition state at a
specified time, a function can be defined which can be called as
desired by specifying t and 1. An example with a t value of 10 and
a value of 0.2 yields a condition state of Poor, as shown in Figure 2.

Three sample results for a range of a values for years 1, 5, and 10
are shown in Figures 3, 4, and 5.

A comparison of Figures 3, 4, and 5 shows that while condition
states for the roadway segment in years 1 are Good for all a values,
deterioration over time starts impacting its condition over time; as a
result, the conditions get downgraded to Fair and Poor in future
years. Please note that, as explained earlier, a represents the
dynamic nature of deterioration.

Figure 1
MDP process for three condition states
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4. Example Studies

4.1. Example 1

In the first example, we develop a ML model to decide when to
undertake a maintenance action on a road segment over a planning
horizon based on varying levels of deterioration. First, we test the
probability of a road segment being in a Good condition after 10
years starting from a Poor condition in the current year (considered
as year 0) under the transition probability shown in Equation (19).

P ¼
0:73 0:07 0:43
0:89 0:94 0:43
0:37 0:88 0:69

2
4

3
5 (19)

The conditions forecast under this scenario is found to be:

[Poor, Fair, Good, Fair, Good, Fair, Good, Fair, Good, Fair, Good].

We set up twoMLmodels, onewith a RF classifier and the other
with K-nearest neighbor (KNN) classifier. We generate 10,000
random datasets on pavement condition, traffic volume, heavy
vehicle percent, adverse weather percent, and percent traffic
volume at peak hour. The predictor variable is whether to do
nothing (0), perform some intermediate maintenance (1), or full
repave (1). The code snippet is shown in Figure 6.

A test size of 0.2 and a random state of 99 are chosen.
Interestingly, the RF classifier performs much better than the
KNN classifier. The accuracy of RF classifier is found to be
0.985, whereas the accuracy of KNN classifier is found
to be 0.565. Because the RF classifier gave us an accuracy of
0.985 for the test size and random state chosen, there was no need
to perform additional sensitivity analysis. The confusion matrix
for RF classifier is plotted, which is shown in Figure 7.

Figure 2
Function defining the dynamic nature of pavement condition

index and transition probability

Figure 3
Sample grouping of condition state for year 1

Figure 5
Sample grouping of condition state for year 10

Figure 4
Sample grouping of condition state for year 5

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

04



4.2. Example 2

In this example, pavement dataset from Montgomery County,
Maryland, USA is used. The summary statistics of the dataset are
shown in Table 1. It shows 25,172 road segments of length
ranging from 0 to 7,272.4 ft. with a mean width of about 27
inches. The mean PCI for these road segments is about 67, which

means the majority of the roads segments are either in Fair or
Good condition.

A histogram of PCI is shown in Figure 8.
As observed in the summary statistics table, the majority of the

pavements have a PCI of 60 or above, which puts them in a Fair or
Good category. However, there are pavements with PCI of below 60,
which puts them in Poor category. Figure 9 shows the grouping of
pavements by surface type.

Pavements labeled as AC or NOA have a PCI below 65. This
means these surface types deteriorate faster than other surface types
resulting in a lower PCI.

Figure 10 shows a plot of length vs. PCI. It is observed that PCI
ranges from a low value to high value for shorter lengths or roads. No
clear pattern is observed for road segments with longer lengths.

Figure 11 shows the roads with PCI< 20. It can be seen that
majority of roads with very low PCI have a length between about
200–1,200 ft. This means mostly highly traveled roads are in Poor
condition but shorter in length.

Table 2 shows the top ten streets with lowest PCI along with
their length and surface type. The lowest PCI values for these
streets confirm that these streets deteriorate at a much faster rate
than normal because they are heavily traveled.

Figure 12(a) shows condition states, transition names, and
transition matrix for the road segments with poor condition (i.e.,
lowest PCI). Figure 12(b) shows the possible states over an
11-year planning horizon. A high transition probability from Poor
to Fair (0.8) results in the final state as Fair in the 11th year.

Figures 12(c) and 12(d) shows corresponding input and results
for a high transition probability for Poor to Good (0.7). This results as
an end state of Good in the 11th year.

Figure 6
Code snippet for generating random dataset

Figure 7
Confusion matric for RF classifier
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The simulation study presented above shows that a proactive
intermediate maintenance schedule can ensure a bump in
condition over successive years.

The CARP-HIMIS formulation can be applied to inspect the
roads with lower PCIs of type AC and NOA on a more frequent
basis as they quickly deteriorate over time. A budget forecast and

Table 1
Summary statistics

OBJECTID Segment_ID CENSUS_ID DEPOT_NUMB Shape_Leng Length_1 Width PCI

Count 25172 25172 25172 25172 25172 25172 25172 25172
Mean 12586.5 87115.69 87115.69 13.94252 480.7693 480.8341 27.33403 66.68534
Std 7266.675 39952.69 39952.69 1.907934 408.5246 408.6022 9.76293 16.60348
Min 1 32 32 11 1.125486 0 0 0
25% 6293.75 51322 51322 13 259.1789 259.175 22 56.1862
50% 12586.5 103083.5 103083.5 14 374.6538 374.7475 24 69.00005
75% 18879.25 117515.5 117515.5 15 585.6932 585.9 26 78.57
Max 25172 168228 168228 18 7272.388 7272.4 98 100

Figure 8
Histogram of pavement condition index

Figure 9
Grouping of pavements by surface type

Figure 10
Length vs. PCI for road segments

Figure 11
Length vs. PCI for road segments with PCI< 20
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a maintenance schedule can then be worked out using procedure
developed in our previous works (Maji & Jha, 2007).

5. Results and Discussion

A new formulation for highway infrastructure management
systems was developed by extending the concept of CARPs. The
condition of road segments of Montgomery County, MD, USA
was analyzed, and several simulation studies were performed to
investigate the final condition state of streets with poor PCI’s
subject to varying transition probabilities. The results show that
proactive maintenance in intermediate years may lead to a higher
condition state in future years.

The formulation can be applied to find optimal allocation of
budget and personnel to perform maintenance activities across
various road or highway segments. The formulation can also be
applied in other related problems, such as trash pickup and
delivery or doing other routine activities across a road network.

The dynamic nature of the pavement deterioration over time
was examined and used a dynamic transition probability over a
planning horizon to more accurately obtain the PCI.

In formulating the dynamic deterioration function, the effects of
a number of factors aiding to deterioration were considered,
including percent of heavy vehicles at time t Ht, probability of
adverse weather Wt, and percent of traffic volume at peak hour Vt.

We develop a ML model using two well-known classifiers, RF
and KNN. For the dataset that we examined, RF performed better
than KNN.

The prescriptive analysis using pavement data from
Montgomery County, MD, USA showed a number of interesting
observations were noted, which are summarized below:

• The majority of the road segments have a PCI value of 60 or above
confirming that majority of the road segments are either in Fair or
Good condition.

• Pavement of type AC and NOA have the lowest PCI.
• Road segments of shorter length exhibit both low and high PCI.
Those with a low PCI value appear to be highly traveled.

• PCI should be calculated on a more frequent basis for road
segments with low PCA values. The CARP-HIIS formulation
will be particularly suitable to inspect such roads.

• A budget forecast and a maintenance schedule can then be worked
out using procedure developed in our previous works.

6. Recommendations

The study revealed that: (a) CARP-HIMIS is a better way of
calculating optimal maintenance and budget schedule for
undertaking maintenance and pavement activities for heavily
travels roads of shorter lengths; (b) in applying MDP to solving
the pavement deterioration problem, transition probabilities should
be considered as a variable over the planning horizon as the
deterioration rate of a pavement depends on many factors, such as
percent of heavy vehicles at time t Ht, probability of adverse
weather Wt, and percent of traffic volume at peak hour Vt.; (c) if a
large pavement dataset is available, then ML algorithms can be
developed to perform the predictive analytics to make the decision
of what maintenance action to undertake over the planning
horizon; (d) ML can be used for performing efficient prescriptive
analytics to get insight into pavement conditions of a road
network, such as the relationship between PCI and road length;
and PCI and surface type; and (e) condition states in future years
can be analyzed subject to varying transition probabilities
reflecting the intermediate maintenance activities undertaken.

The study revealed many new contributions for pavement and
roadway maintenance, in general, especially using ML procedures.
The methods developed here can be further expanded by analyzing
additional datasets and can be applied to other jurisdictions.

6.1. Application of the model to other jurisdictions

While the case studies presented in the paper are conducted
using the data from the United States, the basic concepts
presented are applicable in any road network in the world. For
example, the nature of road deterioration as a function of traffic
load, weather, percentage of heavy vehicles, and other parameters

Figure 12
(a) First simulation study: states, transition states, and transition
matrix for the simulation study for streets with lowest PCI. (b)
First simulation study: possible states over an 11-year planning
horizon. (c) Second simulation study: states, transition states,
and transition matrix for the simulation study for streets with
lowest PCI. (d) Second simulation study: possible states over an

11-year planning horizon

Table 2
Streets with lowest PCI

Street name Length (feet) Surface type PCI

BEECH AVE 434.2 AC 6.0589
OLD DOVER RD 602.8 AC 10.4408
NORDEN DR 155.7 AC 11.4524
OLD DOVER RD 529 AC 12.4363
MAYOR LA 489 AC 12.61
TIMBER RIDGE
DR

455.4 GR 12.61

VIEWPOINT CT 414.7 AC 12.6526
OLDHAM RD 420.6 AC 14.1181
DENLEY RD 363.3 AC 14.1719
RIVERSIDE AVE 450.5 AC 14.4918
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presented in the studywill generally be non-linear in nature. Also, the
pavement activities are generally conducted at fixed time intervals
(e.g., every 6 months or every year).

If the datasets were available from other jurisdictions around the
world, the underlying empirical equations can be further calibrated
for specific application of the model in those jurisdictions. For
example, we did a study last year using road network data from
Kenya (Jha & Ogallo, 2022). Similar studies can be conducted for
other parts of the world. The theory presented here will be equally
applicable in any of those cases.
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