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Abstract: Implantable medical devices are commonly used to treat various medical conditions. These devices, however, may cause serious adverse
events, including repeated surgical intervention and death. Prolonged use of some implantable medical devices can shorten life expectancy and
significantly decrease a person’s quality of life. Large adverse event databases can be used to predict serious adverse events by training machine
learning (ML) models on available data. However, the large volume of data and long free-text response make it challenging to use the databases
effectively. This study focuses on one such dataset: the Australian Database of Adverse Event Notifications, comprising text written by patients,
or healthcare professionals, or pharmaceutical industry. The study focuses on predicting three significant events: Injury, No Injury, and Death,
based on the adverse events reported about the implanted device. A new ML approach called the random regression voting classifier, which
combines random forest (RF) and logistic regression (LR), is proposed. The model’s efficiency is evaluated through experiments using
techniques, such as Bag of Words, Term-Frequency-Inverse-Document Frequency, and Global Vector, and is compared to existing ML models
such as decision tree, RF, kernel support vector machine, Naive Bayes, LR, and XGboost. The results demonstrate a higher performance in
predicting adverse events than other considered approaches. The various experimental analyses showed that the proposed approach performed
better than other ML models.
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1. Introduction

TheWorldHealthOrganization (WHO) defines amedical device as
“any instrument, apparatus, implement, machine, appliance, implant,
reagent for in vitro use, software, material, or another similar or
related article, intended by the manufacturer to be used, alone or in
combination, for human beings, for one or more specific medical
purpose” [1]. These devices play a crucial role in preventing,
diagnosing, treating, and rehabilitating illnesses and diseases in a safe
and effective manner. Examples of medical devices include surgical
equipment, pacemakers, mesh, incubators, and implants. According to
the WHO, there are approximately 2 million different types of
medical devices available on the global market. Prior to their release
onto the market, these devices undergo thorough testing. However,
post-market surveillance reveals a significant number of unfavorable
symptoms caused by implant devices every year [1]. Adverse medical
device events (AMDEs), specifically those associated with higher-risk
medical devices that significantly impact patient outcomes, have
captured widespread attention and prompted calls for action to
establish approaches that effectively address both access to innovative
medical devices and the need to minimize risks, ensuring enhanced

patient safety [2]. Post-market surveillance is a valuable approach that
entails the systematic collection and analysis of a substantial amount
of data over a period to detect any potential adverse events associated
with medical devices [3]. In this regard, the data collected through
spontaneous reporting play a critical role in evaluating product
performance and ensuring patient safety. Spontaneous reporting relies
on voluntary reports of adverse events or side effects from healthcare
professionals, patients, or consumers and is an important tool for
identifying previously unknown or unanticipated adverse events
associated with medical devices. However, the effectiveness of this
approach relies heavily on the quality of the information provided by
healthcare professionals and consumers in their reports.

A complete adverse event report may include several key pieces of
information, such as the product name, mode and serial numbers (in the
case of medical devices), demographic data, and a concise clinical
description of the adverse event [1, 4]. Additionally, temporal
information, including the date of event onset and start/stop dates for
the use of the medical product, the dose/frequency of use (if
applicable), and outcome, can also be included. However, the dataset
generated by post-market surveillance is often enormous, and the
information provided may be in an unstructured format, which can
make extracting data on adverse events more complicated. However,
if the ability to interpret, analyze, and utilize unstructured medical data
is enhanced, increased benefits can be achieved in terms of patient
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treatment, public healthmanagement, andmedical research [5]. This task
can be accomplished manually but will require significant resources.
Therefore, a robust methodology for interpreting and analyzing the
data is required. The most common and effective way to deal with
unstructured data is through the use of machine learning (ML)
techniques.

ML is a self-regulated discovery of potentially valid or useful
knowledge and novel hidden patterns from datasets [6]. ML
techniques have been widely applied in the healthcare sector for
forecasting patient outcomes and evaluating medical devices [7].
The clinical reports generally contain a high level of noise,
sparsity, complex medical vocabularies, medical measures,
abbreviations, misspelled words, and poor grammatical sentences
[8, 9]. In the context of data analysis, noisy data refer to data
that contain a substantial amount of irrelevant or meaningless
information, which is commonly referred to as noise. This can
manifest as data corruption or other forms of errors that render
the data inaccurate or incomplete. So, the first task for
text classification is reducing the noise from the dataset. To
address this issue, Nguyen and Patrick [9] developed a
lexical technique and a preanalysis of corpora to reveal the
linguistic characteristics. Subsequently, many predictive
modeling approaches have been developed to analyze large
datasets and better predictions. Likewise, Zhang et al. [10]
presented a method for semantic role labeling (SRL) of clinical
text. SRL aims to identify the different roles that different parts
of a sentence play in the overall meaning. The authors evaluated
their approach using three state-of-the-art parsers and compared
their performance on a clinical text corpus. The work provided a
formal evaluation of SRL performance on clinical text, which
has unique challenges compared to other types of text due to the
specialized language used in healthcare. Similarly, Renganathan
[11] presented text mining approaches with a focus on
biomedical clustering. The author presented a method for
partitioning text into small clusters before testing.

Later, Turner et al. [12] automated manual chart review of doctors’
notes using text classifiers based on NLP techniques and pattern
recognition ML algorithms. The authors evaluated the performance of
traditional classifiers for identifying patients with systemic lupus
erythematosus (SLE) compared to a newer Bayesian word vector
method. Moreover, Tripoliti et al. [13] used ML techniques for
predicting heart diseases, and Forsyth et al. [14] used ML algorithms
to extract patient-reported symptoms from unstructured notes in
electronic health records. It showed how NLP techniques can be
applied to extract meaningful information from free-text notes, which
can be difficult to process using traditional methods. In addition, Yang
et al. [15] used a transfer learning approach to classify electronic
discharge summaries based on their clinical concepts. The method
achieved high accuracy and reduced the need for manual feature
engineering. Alsentzer et al. [16] explored BERT models for clinical
text and demonstrated that using domain-specific models yields
performance improvements on three common clinical NLP tasks
compared to nonspecific embeddings. This work highlighted the
importance of using domain-specific models for clinical text, which
has unique challenges compared to other types of text. Later, Martenot
et al. [17] developed an augmented intelligence methodology for
automatically identifying relevant publications mentioning an
established link between a drug and a serious adverse event. This
work demonstrated the potential for NLP techniques to be used in
drug safety monitoring, which is critical for ensuring patient safety.

In short, the need for implant devices to enhance health can
potentially lead to more significant issues if not in advance
assessed. Proactive decision-making is invaluable, and delving
into the analysis of unstructured free-text inputs from patients
during treatment emerges as a promising avenue for making
informed decisions. This serves as the primary motivation for our
study. Our objective is to develop a robust ML technique that
predicts adverse events by scrutinizing patients’ reports,
anticipating outcomes that could pose serious risks. This
predictive insight holds the potential to empower healthcare
organizations in making informed decisions regarding medical
devices, anticipating, and preventing serious outcomes.

This study makes the following contributions:

1) An overview of efficient methods to investigate the adverse
events due to implanted medical devices leading to serious
injury or death. The prognosis is based on three significant
events including “No Injury”, “Injury”, and “Death”.

2) A vote-based classifier random regression voting classifier (RRVC)
is devised that combines the approach of random forest (RF) and
logistic regression (LR) classifier under soft voting criterion.

3) To analyze the influence of data balancing on the Australian
Database of Adverse Event Notifications (DAEN) dataset, the
performance of unbalanced dataset results is compared with
the balanced dataset.

The paper is organized as follows: In Section 2, “Materials and
Methods” presents the DAEN dataset description, ML-based models,
and the proposed approach. In Section 3, “Result Analysis and
Discussion” describes the experiments and outcomes. Finally, the
study is concluded in Section 4.

2. Materials and Methods

The aim of this study is to predict the risk of serious injury or death
in patients who have reported adverse events following the implantation
of amedical device. The study uses amulticlass classificationmethod to
categorize the reported adverse events in the dataset as “Injury”, “No
Injury”, or “Death”. The following section provides a brief overview
of the dataset and the methodology used in this study.

2.1. Dataset description

The Australian DAEN dataset contains spontaneous reports of
medicines and medical devices and is maintained by the
Therapeutic Goods Association (TGA). The TGA is the regulatory
body responsible for evaluating, assessing, regulating, and
monitoring medicines, medical devices, and biological to ensure
public health and safety. This study utilizes the DAEN database,
which has not been extensively studied for medical devices. The
data are available on the Therapeutic Goods Administration website
[18]. The data, which were extracted from reported adverse events
regarding implanted medical devices between 2013 and 2019,
consist of 21,381 elements (after removing duplicate rows) and
includes 17 columns, as detailed in Table 1. This study focuses on
investigating the risk of death in patients due to implanted medical
devices and uses the “Reported source category” and “Event
description” variables for this purpose. The “Reported source
category” column includes “Injury”, “No-Injury”, “Death”, and
“Not Known” cases, while the “Event description” column includes
patients’ reviews during treatment and symptoms. However, the
“Not Known” category in the “Reported source category” variable
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is not informative and represents only 2% of the data. Therefore, it is
excluded from the analysis, and the model is trained on the remaining
three meaningful categories. The distribution of these categories is
presented in Figure 1.

2.2. Problem statement

In this study, our focus is the analysis of reported adverse events
post-medical device implantation. Recognizing that certain side effects
may be transientwhile others pose the risk of severe problems, our study
aims to pinpoint potential adverse events, specifically serious injuries or
deaths resulting from medical device implantation. To accomplish this
objective, we employ a multiclass classification approach, categorizing
events intoDeath, Injury, orNo Injury. This study provides an improved
model to predict the likelihood of adverse events based on patient data,

with the aim of aiding the TGA to identify potential issues early and take
appropriate action.

2.3. Methodology

Initially, the DAEN dataset was obtained from the TGAwebsite,
comprising of 92702 reports. However, the data were found to be
highly inconsistent and contained a significant number of duplicate
entries. Therefore, a data preprocessing technique was implemented
to improve the accuracy of the classification results. The
experiments were conducted using the Python platform.

2.3.1. Data preprocessing

1) Spell checking: To ensure the accuracy of the data used in this
study, an automated spell-checking software was utilized to
identify and correct any misspelled words within the medical
database consisting of patient reviews. The spell-checker lexicon
was consulted for each word in the text dataset [19, 20]. If a
word was not found in the dictionary, an error was detected.
However, as the data may contain errors that the automated
software is unable to fix, manual spell checking was also
employed. This approach presented a set of possible options for
any misspelled words and enabled the user to make the most
appropriate selection within the context of the reports.

2) Tokenization: In this step, the process of breaking down a long
text into smaller units, known as tokens (words), is applied to
the “Event Description” containing the patient’s review.

3) Clean data: In this step, the data undergo a thorough cleaning
process to prepare it for natural language processing (NLP) tasks.
Two methods are employed: converting all text data to lowercase
and removing all special characters and symbols. This ensures
that the data are in a standard and easily comprehensible format
for the machine. Additionally, any missing values are handled
appropriately, and duplicate and empty rows are eliminated,
resulting in a final dataset of 21381 entries.

4) Removing stop words and irrelevant English words: In this
step, we eliminated those words that had minimal
contributions, such as common pronouns and articles, as well
as medical measurements; they are {“patient”, “mg”,
“doctors”, “B”, “case”, “always”, “getting”} omitted to
streamline the data and improve the accuracy of our analysis.

2.3.2. Feature extraction
In this step, the text data have been cleaned and prepared forML

techniques. To achieve this, a technique called feature extraction is
utilized to extract the most relevant and significant features from the
preprocessed data, to improve the performance of the model [21].
Three different feature extraction techniques have been used in
this study, including Bag of Words (BoW), Global Vector for
Word Representation (GloVe), and Term-Frequency-Inverse
Document Frequency (TF-IDF). BoW is a method of converting
text data into numerical features, where each word is considered
as a feature, regardless of the number of times it appears in the
documents [22]. TF-IDF is a technique that calculates the weight
of each word, which shows the importance of that word in the
text. The weight is determined by two metrics: Term frequency
(TF) and inverse document frequency (IDF) [23]. GloVe, on the
other hand, generates word embedding of the document by
mapping the relationship between words, which is achieved by
aggregating global co-occurrence matrices [24]. This technique
groups similar words together and rejects different words based

Figure 1
Class distribution

Table 1
Data description

Variables Descriptions

Report number Identification of each patient case
Report date Receiving date of adverse events

report
Trade name Name of the trader of medical device
Sponsors Sponsor company of the device
Manufacturer Manufacturer of the device
ARTG number The register number of Australian

register of Therapeutic Goods
(ARTG)

GMDN term International nomenclature for
describing medical devices.

Device classification Class of device
Sterile Use of sterile during treatment (Y/N)
Single use Use of sterile once or more (Y/N)
Model number Device model number
Software version Software version details
Reported event outcome Outcome of adverse event during

treatment
Reported source category. Adverse event reported source.
Event type Type of medical device
Event description Reported symptoms and reviews.
Other medical devices
reported as being used

Another device is being used during
treatment (Y/N)
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on the co-occurrence matrix of the corpus. The framework of devised
process is presented in Figure 2.

2.3.3. Machine learning models
We utilized ML algorithms commonly discussed in the

literature. Detailed descriptions of the employed algorithms and
their hyperparameters used in this study are discussed as follows:
1) Decision Tree (DT): A DT is a popular supervised ML algorithm

used for both classification and regression tasks. It works by
recursively partitioning the training data into smaller subsets
based on the values of the input features, until a stopping
criterion is met. The tree structure consists of internal nodes that
represent a feature or attribute, and branches that represent the
possible values of the feature. The leaves of the tree correspond
to the predicted class label or output value. During training, the
algorithm determines the optimal split at each node by
maximizing the information gain or minimizing the impurity of
the subsets [25]. One of the advantages of DTs is their
interpretability, as the resulting tree can be easily visualized and
understood by humans. DTs are also robust to noisy data and
can handle both categorical and numerical features. They can
also handle missing data by using surrogate splits. This study
involves tuning various hyperparameters of the algorithm to
improve its predictive power and performance, as well as to
speed up its execution. The values of the max_depth, and
random_state hyper parameters are adjusted according to the
specific requirements. The max_depth parameter is used to
improve the predictive power of the algorithm by limiting the
maximum depth of tree. It limits the number of nodes in the tree
and can help prevent overfitting. We set it to 300 for this study.
The random_state parameter is set to 50 to control the
randomness of the samples and ensure that the model produces
consistent outcomes, which also helps to enhance the
computational speed of the algorithm.

2) Random Forest (RF): The RF classification algorithm is a
versatile method that can be used for both regression and
classification tasks [26]. It is a supervised learning algorithm
that builds a multitude of DTs and combines their outputs to
produce a final prediction. The main idea behind RF is to create
a set of DTs that are independent of each other, but when
combined, provide a more accurate and robust prediction. Each

DT in the forest is constructed by selecting a random subset of
the training data and a random subset of features. This process
helps to reduce overfitting and improve the generalization of the
model [27]. One of the advantages of RF is that it can handle
high-dimensional data and large datasets with many features. It
is also a nonparametric model, which means it can capture
complex nonlinear relationships between features and the target
variable. The n_estimator parameter represents the number of
DTs to be assembled by the algorithm before making
predictions. For this study, a value of 100 is set for this
parameter to obtain highly accurate results, as this value is
considered to be the number of weak learners in the algorithm.
The max_depth and random_state set to 300 and 50, respectively.

3) Multinomial Naive Bayes Model (MNB): TheMultinomial Naive
Bayes (MNB) model is a probabilistic model used for text
classification tasks. It is based on the Bayes theorem, which states
that the probability of a hypothesis given evidence is proportional
to the probability of the evidence given the hypothesis, multiplied
by the prior probability of the hypothesis. In the case of text
classification, the hypothesis is the class label of a document, and
the evidence is the set of words or features that occur in the
document. The MNB model assumes that the frequency of
occurrence of each word or feature in a document follows a
multinomial distribution. It also assumes that the occurrence of
each word or feature is independent of the occurrence of all other
words or features in the document, which is known as the
“naive” assumption. To train the MNB model, the frequency of
occurrence of each word or feature is computed for each class in
the training data. Then, the probabilities of each word or feature
occurring in each class are calculated using the maximum
likelihood estimation (MLE) method. These probabilities are used
to compute the conditional probability of a document belonging
to each class, given the observed set of words or features in the
document [28]. To classify a new document, the MNB model
computes the conditional probability of the document belonging
to each class, given the observed set of words or features in the
document, using the probabilities computed during training. The
class with the highest probability is then assigned as the predicted
class for the document. The hyperparameters set as
random_state= 50, multi_class = “ovr”.

4) Logistic Regression (LR): The LR algorithm is a statistical ML
classifier that maps input features to discrete target variables by
estimating probabilities using a sigmoid function. This function
constrains the probability values between the target variables,
forming an “S”-shaped curve. LR is widely used for efficient
classification tasks and represents an advanced version of linear
regression, applicable to complex linear and nonlinear datasets for
both classification and prediction tasks. One of its common
applications is modeling binary data. The LR technique involves
multiplying input values with weight values. It is renowned for its
effectiveness in detecting defaulters and is a popular choice among
ML classifiers due to its simplicity and reliance on fewer
assumptions [29, 30]. In this study, the LR algorithm utilized the
“saga” solver for faster computation and improved results when
handling large datasets. The “multi_class” parameter was set to
“ovr” as it excels in binary classification tasks. The inverse
regularization parameter “C” was assigned a value of 3.0, which is
inversely proportional to the Lambda regulator and determines the
strength of the regularization. This parameter aids in reducing the
risk of model overfitting, with smaller values indicating stronger
regularization.

5) Support Vector Machine (SVM): It belongs to parametric test
family and can be applied for regression and classification.

Figure 2
Architecture of the methodology devised
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However, it is considered best for classification problem [15]. In
SVM algorithm, a line is drawn in form of hyperplane that
divides a feature space into two subspaces. One subspace
contains vectors that belong to a category, and another contains
vector that do not belong to that category. The optimal
hyperplane is the one with the largest distance between two
subspaces called as maximum margin hyperplane [29]. If the data
are nonlinear and complex, then kernel function can be used to
form the multidimensional hyperplane. The choice of kernel
depends on the complexity and features of the dataset, which
makes understanding the data crucial for achieving good accuracy
and performance. In this study, the radial basis function kernel
was used along with C= 1.0, epsilon= 0.2.

2.3.4. Data sampling using Synthetic Minority Oversampling
Technique (SMOTE)

SMOTE is a popular data augmentation technique used in ML and
data science to balance class distribution in imbalanced datasets, such as
when the minority class is significantly smaller than the majority class.
The basic idea behind SMOTE is to create synthetic samples of the
minority class by interpolating between existing minority class
instances. The algorithm works by selecting an instance from the
minority class and finding its k nearest neighbors in the feature space.
It then creates new instances by interpolating between the selected
instance and its k nearest neighbors, effectively creating new instances
in the feature space [31]. The SMOTE algorithm has several
parameters that can be tuned to control the number and distribution of
synthetic samples generated. The most important parameters are the
number of nearest neighbors’ k to consider, and the amount of
interpolation to use when generating new samples. Other parameters
include the random seed used for reproducibility, and the balance
ratio, which specifies the desired ratio of minority to majority class
instances after augmentation. We set hyper parameters as:
sampling_strategy = “str”, random_state= 50, weight = “equal”,
k= 5, n_features= 20, n_clusters_per_class= 1.

2.4. Proposed random regression
voting classifier (RRVC)

We proposed a new ensemble method RRVC that combines the
predictions of two individual classifiers, RF and LR, to generate a
final output. The reason for suggesting RRVC is to take
advantage of the ensemble capabilities of RF and LR and to
adjust the parameters to decrease the error.

The leverage of RF used in this proposed RRVC lies in its learning
strategies, which involve creating multiple DTs and combining their
predictions to make a final decision. RF is particularly useful for
large datasets as it can determine the significance of each feature and
select the most important ones. It also deals effectively with high-
dimensional data, making it suitable for multiclass classification. The
randomizing property of RF helps prevent overfitting, ensuring that
the model generalizes well to unseen data. On the other hand, we
leverage LR for its successful implementation, extensively used for
binary and multiclass classification in comparison to statistical
methods. LR provides probability predictions and is computationally
less expensive. It also offers built-in flexibility, enabling fine-tuning
of the model’s fit or reduction of errors through regularization
parameters. The detailed implementation is illustrated in Figure 3.

The proposed RRVC classifier also uses a soft voting scheme to
generate a final prediction [4, 20]. Soft voting classifies input data
based on the probabilities of all the predictions made by classifiers.

This means that the final prediction is obtained by averaging the
probability p given by both the RF and LR classifiers to each target
class. This approach helps to select incidents from the data that
contain valuable information, enhancing accuracy. The RRVC
framework is described in Algorithm 1. It also incorporates similar
parameter tuning described in the Section 2.3.3.

We can compute the target class for the weights assigned to
predictions r1; r2; r3; . . . ; rn made by classifier RF and
l1; l2; l3; . . . ; ln by classifier LR, respectively, as

P Rð Þ ¼ r1; r2; r3; . . . ; rn (1)

P lð Þ ¼ l1; l2; l3; . . . ; ln (2)

Final Prediction ¼ argmax
Xn

i¼0
P Rð Þ þ P Lð Þ (3)

where P Rð Þ and P Lð Þ are predictions made by RF and LR, respec-
tively. Soft voting classifies input data based on the probabilities
of all the predictions made by classifiers. Weights applied to each
classifier in the soft voting scheme get applied appropriately based
on the Equation (3). The weight parameter controls the contribution
of each classifier to the final prediction therefore we set equal weights
criteria for this study so that all classifiers are given equal importance
in making the final prediction. Let us understand this using an
example. For a particular record, the two classifiers RF and LRmake
the following predictions in terms of probabilities in favor of classes
[Injury, No Injury, Death]:

RF� > ½0:1; 0:3; 0:6�; LR� > ½0:3; 0:3; 0:4�

With equal weights, the probabilities will get calculated as the
following:

Prob of Class ‘Injury’ ¼ 0:5 � 0:1þ 0:5 � 0:3 ¼ 0:2

Prob of Class “No Injury” ¼ 0:5 � 0:3þ 0:5 � 0:3 ¼ 0:3

Figure 3
Framework of random regression voting classifier
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Prob of Class “Death” ¼ 0:5 � 0:6þ 0:5 � 0:4 ¼ 0:5

The probability predicted by RRVC will be [20, 30, and 50%].
The class will most likely be “Death”.

In summary, RRVC is an influential classifier that combines the
strengths of both RF and logistic regression. It utilizes the feature
selection capability of RF and the probability prediction and
regularization flexibility of LR to generate accurate and robust
predictions.

Algorithm 1: Proposed approach: Random regression voting
classifier

3. Results Analyses and Discussion

In this section, we conduct experiments and analyze the results
of various methods, comparing their performance with the proposed
RRVC using various performance measures.

3.1. Evaluation measures

In this study, we employed cross-validation techniques to
evaluate the performance of the considered algorithms, ensuring
the robust generalization of the model, mitigating bias, and
preventing overfitting. A fivefold cross-validation technique was
adopted for this purpose, involving iterative training and
evaluation with different combinations of training and test sets.
This approach allows for a comprehensive assessment of the
model’s performance, enhancing reliability by averaging results
across multiple iterations [4]. The dataset was divided into two
parts using an 80:20 ratio [32].

Moreover, the proposed algorithm’s effectiveness was
evaluated using multiple metrics, including accuracy, F-Measure,
precision, and recall [33]. Additionally, we employed the
receiver operating characteristic (ROC) curve and the area under
the ROC curve (AUC) to evaluate the algorithm’s performance.
The ROC curve displays the classification model’s performance
at all classification thresholds by plotting the false-positive rate
(FPR) against the true-positive rate (TPR) [34]. AUC provides

an aggregate measure of all possible classification thresholds and
can be interpreted as the probability that the model ranks a
random positive example higher than a random negative
example. In summary, we used a combination of these diverse
evaluation metrics to comprehensively evaluate the effectiveness
of the proposed RRVC approach.

3.2. Result analysis

The six most used algorithms in the literature were compared
to the proposed RRVC approach in terms of multiclass
classification in two distinct scenarios. In the first scenario, the
data had an imbalanced class distribution, while in the second
scenario, the data were made balanced by using oversampling
techniques SMOTE. The results of these two scenarios will be
discussed separately.

3.2.1. Results analysis for scenario 1
In this case, the data used in the experiment are imbalanced,

with more instances of injury classes than others. The proposed
classifier, RRVC, was compared with other ML algorithms to
determine its effectiveness. The results of this comparison were
presented in tables, with Table 2 showing the results when using
TF-IDF as the feature extraction method. In this table, the
proposed classifier attained the highest accuracy of 84%. Other
algorithms such as XGboost and RF also performed well, with
accuracy rates of 80%.

Table 3 shows the results when using BoW as the feature
extraction method. In this table, the proposed RRVC scored a
maximum accuracy of 79%. However, the use of BoW did not
improve the results of the classifiers, and, in fact, a significant
drop in performance was observed for most of the ML algorithms.
The exception to this was the DT classifier, which had a 2%
increase in performance compared to the TF-IDF results.

Random regression voting classifier (RRVC)

Input: Event description
Output: Patient having implanted device Serious injury or
no injury or death
Procedure: Data splitting
Training_set = (Event description, labels)
Testing_set = (Event description)
Training_set, testing_set
Procedure: Voting classifier
Voting_criterion = “soft (set equal weights criteria and thresh-
old = 0.5)
R = Random_forest (Training_set)
L =Logistic regression (Training_set)
Procedure: Predictions made by R

P Rð Þ  Testing set
P Rð Þ ¼ r1; r2; r3; . . . ; rn

Procedure: Predictions made by S
P Lð Þ  Testing set
P Lð Þ ¼ l1; l; l3; . . . ; ln

Final Prediction ¼ argmax
Pn

i¼0
P Rð Þ þ P Lð Þ

Table 2
Classification results of ML algorithms using TF-IDF without

SMOTE (Scenario-1)

ML-Algorithms Parameters Precision Recall
F1

score
Accuracy

(%)

Random forest Death 0.77 0.44 0.56 80
Injury 0.83 0.86 0.81
No-injury 0.81 0.64 0.67

Decision tree Death 0.44 0.42 0.43 69
Injury 0.84 0.83 0.84
No-injury 0.58 0.59 0.58

Naïve Bayes Death 0.53 0.62 0.56 70
Injury 0.84 0.52 0.66
No-injury 0.47 0.68 0.56

Kernel SVM Death 0.83 0.12 0.43 79
Injury 0.84 0.94 0.89
No-injury 0.74 0.53 0.62

Logistic
regression

Death 0.13 0.59 0.51 72
Injury 0.93 0.69 0.79
No-injury 0.55 0.77 0.66

XGboost Death 0.85 0.51 0.63 80
Injury 0.81 0.95 0.88
No-injury 0.77 0.43 0.59

RRVC Death 0.95 0.64 0.76 84
Injury 0.85 0.95 0.89
No-injury 0.78 0.56 0.63
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Table 4 demonstrates the results of ML algorithms using
GloVe as the feature representation method. The performance of
the proposed RRVC dropped compared to the TF-IDF feature
extraction approach. The performance of other algorithms also
dropped, but the DT classifier improved by 2%. The
performance of LR was equal to the TF-IDF approach and better

than the BoW approach. Similarly, RF performed well and
scored 72% accuracy. The XGboost method and RRVC scored
the maximum accuracy among all. Additionally, Tables 2, 3 and
4 also illustrate the precision and recall scores of the proposed
RRVC classifier, and the results are better than other classifiers.
The best results are emphasized in bold. Furthermore, ROC
curve is a more appropriate method of calibrating the probability
threshold in an imbalanced dataset. Figure 6 depicts the TPR
versus FPR in terms of the ROC curve, utilizing IT-IDF as the
feature extraction method. Additionally, for further evaluation,
the AUC has been incorporated into the ROC for each
corresponding category. From Figure 6, it is evident that the
maximum AUC is achieved by the proposed RRVC in the
categories of Death (89%), Injury (88%), and No-Injury (88%).
This demonstrates that the proposed classifier effectively handles
the data.

In conclusion for this scenario, the findings indicate that the
GloVe approach outperformed the BoW method, likely attributed
to optimal word co-occurrence. However, the TF-IDF approach
demonstrated the best results among all three feature
representation techniques. The proposed classifier, RRVC,
exhibited strong performance in the imbalanced data scenario,
achieving the highest accuracy rate when employing TF-IDF as
the feature extraction method. Notably, other algorithms, such as
XGBoost and RF, also delivered good performance.

3.2.2. Results analysis of scenario 2
In this study, the data instances of the minority class were

increased by oversampling in order to balance the classes in the
“Reported Event Outcome” column of the dataset.
Subsequently, the ML algorithms were trained using the BoW,
TF-IDF, and GloVe approaches on the SMOTE-balanced
datasets. The results using the TF-IDF approach are presented

Table 3
Classification results of ML algorithms using BoW approach

without SMOTE (Scenario-1)

Model Parameters Precision Recall
F1

score
Accuracy

(%)

Random
forest

Death 0.70 0.40 0.53 73
Injury 0.76 0.73 0.73
No-injury 0.71 0.52 0.61

Decision tree Death 0.24 0.39 0.33 71
Injury 0.75 0.70 0.71
No-injury 0.49 0.41 0.46

Naïve Bayes Death 0.03 0.60 0.32 59
Injury 0.94 0.42 0.65
No-injury 0.47 0.68 0.56

Kernel SVM Death 0.78 0.12 0.45 71
Injury 0.84 0.94 0.87
No-injury 0.72 0.53 0.62

Logistic
regression

Death 0.13 0.59 0.36 70
Injury 0.93 0.69 0.79
No-injury 0.55 0.82 0.66

XGboost Death 0.14 0.30 0.28 73
Injury 0.89 0.72 0.79
No-injury 0.54 0.78 0.64

RRVC Death 0.84 0.60 0.71 79
Injury 0.80 0.86 0.82
No-injury 0.72 0.73 0.71

Table 4
Classification results of ML algorithms using GloVe approach

without SMOTE (Scenario-1)

Model Parameters Precision Recall
F1

score
Accuracy

(%)

Random
forest

Death 0.69 0.48 0.52 72
Injury 0.72 0.65 0.67
No-injury 0.71 0.50 0.61

Decision tree Death 0.34 0.31 0.34 71
Injury 0.67 0.73 0.69
No-injury 0.42 0.42 0.42

Naïve Bayes Death 0.23 0.42 0.29 62
Injury 0.67 0.40 0.49
No-injury 0.52 0.45 0.47

Kernel SVM Death 0.57 0.12 0.29 55
Injury 0.84 0.94 0.89
No-injury 0.54 0.53 0.52

Logistic
regression

Death 0.70 0.58 0.59 72
Injury 0.72 0.71 0.69
No-injury 0.42 0.70 0.52

XGboost Death 0.72 0.55 0.60 73
Injury 0.71 0.75 0.72
No-injury 0.70 0.42 0.59

RRVC Death 0.72 0.52 0.62 73
Injury 0.73 0.74 0.72
No-injury 0.72 0.71 0.70

Table 5
Classification results of ML algorithms using TF-IDF approach

without SMOTE (Scenario-2)

Model Parameters Precision Recall
F1

score
Accuracy

(%)

Random
forest

Death 0.90 0.39 0.59 81
Injury 0.86 0.90 0.85
No-injury 0.71 0.59 0.61

Decision tree Death 0.74 0.47 0.57 73
Injury 0.88 0.86 0.82
No-injury 0.63 0.69 0.61

Naïve Bayes Death 0.74 0.44 0.55 74
Injury 0.87 0.89 0.84
No-injury 0.69 0.65 0.66

Kernel SVM Death 0.37 0.58 0.45 79
Injury 0.87 0.78 0.82
No-injury 0.58 0.79 0.64

Logistic
regression

Death 0.33 0.41 0.37 76
Injury 0.86 0.80 0.81
No-injury 0.54 0.63 0.55

XGboost Death 0.85 0.51 0.60 80
Injury 0.81 0.95 0.84
No-injury 0.77 0.43 0.58

RRVC Death 0.95 0.66 0.78 85
Injury 0.85 0.90 0.85
No-injury 0.80 0.62 0.70
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in Table 5. It was observed that the results improved significantly,
particularly for Naive Bayes and logistic regression. The proposed
RRVC classifier also exhibited improved accuracy, but its better
results with respect to precision and recall indicate its suitability
for the task. The ROC curve is presented in Figure 7, and the AUC
attained by the RRVC for instances of Death, Injury, and No-
Injury were 92, 89, and 89%, respectively. This indicates that
the model is capable of predicting deaths and serious injuries
with good accuracy.

In Table 6, satisfactory results are presented using the BoW
approach. The proposed classifier and the XGboost classifier
achieved the same level of accuracy, while the other algorithms
performed well.

Additionally, the results of theML algorithms using the GloVe
approach are presented in Table 7. These results were better than the
BoWmodel, but not as strong as the IT-IDF approach. In all feature
extraction methods, the proposed RRVC outperformed the other
classifiers and effectively carried out the prediction task. Further
analysis of the average F1 score was conducted using Pareto
charts for Death and Injury in Figure 8(b) and (d). These two
categories of predictions are particularly important, with the
death category being of particular significance. A correct

prediction in the death category indicates the efficiency of the
classifier, as this category had the least representation in the
dataset. Figure 8(b) and (d) indicate that the proposed RRVC
approach successfully predicted these vulnerable categories.

In conclusion of this scenario, the TF-IDF approach yielded
the most significant improvements, with the proposed RRVC
classifier consistently outperforming other algorithms in
accuracy, precision, and recall. The ROC curve and AUC values
confirmed the model’s capability, particularly in predicting
instances of Death and Injury.

3.2.3. Performance evaluation of ML algorithms using
different feature extraction approaches

Here, in this analysis, we will evaluate the performance of
different feature extraction techniques. Figure 4(a) illustrates the
accuracy comparison of ML classifiers using BoW, TF-IDF, and
GloVe without the SMOTE technique, while Figure 4(b) presents
the comparison of the same approaches with the SMOTE

Figure 5
Performance analysis of TF-IDF, BoW, and GloVe with or

without SMOTE
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Figure 6
ROC curve of ML classifiers (without SMOTE technique) based on TF-IDF

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 3 2024

234



Figure 7
ROC curve of ML classifiers (with SMOTE technique) based on TF-IDF
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technique. It can be observed that some classifiers, such as Naive
Bayes, LR, and SVM, have substantially improved performance
after using SMOTE. However, some classifiers, such as RF, DT,
and the proposed RRVC classifier, have shown less improvement.
The main reason for this is that the classifier’s inbuilt algorithm is
strong enough to handle imbalanced datasets, or the construction
itself requires fine-tuning, where the user can choose the best
possible parameters for the dataset. This requires a deep
understanding of the dataset and their parameter behavior. We
carefully chose and fine-tuned the parameters, as described in the
section on ML classifiers. As a result, the proposed classifier
RRVC’s performance did not diverge much when we changed the
feature extraction.

Figure 5 shows the accuracy comparison of the ML classifier
using the TF-IDF, BoW, and GloVe approaches with and without
the SMOTE technique. It shows that the results obtained by using
the TF-IDF approach with SMOTE are better than the other
approaches.

The Pareto chart comparison of the average F1 score for the
“Death” and “Injury” categories without SMOTE is shown in
Figure 8(a) and (c), while the comparison with SMOTE is shown

in Figure 8(b) and (d). In Figures 8(a), (b) and (d), the highest F1
score is achieved by the proposed RRVC approach, which
demonstrates its superiority as a predictive model. In Figure 8(c),
SVM leads the comparison, with the proposed RRVC following
in second place. These results collectively validate the
effectiveness of the proposed RRVC model.

The concluding analysis above showcases the effectiveness of
the proposed RRVC model in predicting adverse events caused by
medical devices. Healthcare practitioners can utilize the model’s
output to prioritize incidents with a higher risk of adverse events.
The model’s insights can contribute to proactive measures,
leading to a more informed and timely healthcare response.
Integrating the model into clinical workflows involves aligning its
predictions with existing protocols, ensuring a seamless
incorporation of predictive analytics into routine healthcare
practices.

While the RRVC classifier shows promise in predicting adverse
events related to medical devices, it is important to acknowledge
potential limitations. The model’s performance could be
influenced by the quality and quantity of the training data, making
it essential to ensure diverse and representative datasets. Regular

Figure 8
Pareto chart for F1 score (a) death category without SMOTE,

(b) death category with SMOTE, (c) injury category without SMOTE and (d) injury category with SMOTE
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updates and fine-tuning may be necessary to maintain effectiveness
as new data becomes available. Ongoing evaluation and validation
are crucial to addressing and mitigating these limitations for
robust and reliable performance.

4. Conclusion

In conclusion, this study introduces a framework for
analyzing adverse events associated with implanted devices.
The proposed RRVC model introduced in this study effectively
predicts adverse events linked to implanted medical devices by
utilizing the DAEN.

The proposed RRVC was evaluated and compared to six other
ML algorithms using BoW, TF-IDF, and GloVe. To address data
imbalance, experiments were conducted using both the original
dataset (after appropriate preprocessing) and a balanced dataset
created using the SMOTE technique. Through extensive
experiments, it was concluded that the proposed classifier with the
SMOTE-balanced dataset and TF-IDF feature extraction showed
the best results on this dataset. This study also highlights the
potential of ML in improving patient safety and enhancing the
effectiveness of medical treatments through better decision making.

Future investigations might delve into advanced feature
engineering techniques, real-time prediction capabilities, enhanced
interpretability, and cross-domain applicability within healthcare
scenarios. This all-encompassing strategy ensures the ongoing
evolution of RRVC as a valuable tool for forecasting adverse
events and enhancing patient outcomes across diverse medical
contexts.
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